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Comment on “Effect of polydispersity on the ordering transition of adsorbed
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The critical behavior of self-assembled rigid rods on a square lattice was recently reinvestigated by Almarza
et al. [Phys. Rev. E 82, 061117 (2010)]. Based on the Binder cumulants and the value of the critical exponent
of the correlation length, the authors found that the isotropic-nematic phase transition occurring in the system is
in the two-dimensional Ising universality class. This conclusion contrasts with that of a previous study [López
et al., Phys. Rev. E 80, 040105(R) (2009)] which indicates that the transition at intermediate density belongs to
the q = 1 Potts universality class. Almarza et al. attributed the discrepancy to the use of the density as the control
parameter by López et al. The present work shows that this suggestion is not sufficient, and that the discrepancy
arises solely from the use of different statistical ensembles. Finally, the necessity of making corrections to the
scaling functions in the canonical ensemble is discussed.
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The isotropic-nematic (IN) phase transition in a model of
self-assembled rigid rods (SARRs) on a square lattice was
considered for the first time by Tavares et al. [1]. Using
a theoretical approach and Monte Carlo (MC) simulation,
the existence of a continuous phase transition was pointed
out. However, the universality class of the transition was not
studied and the ordering of SARRs was assumed to be that
of monodisperse rigid rods (RRs), which was found to be the
two-dimensional (2D) Ising class [2].

The criticality of the SARRs model in the square lattice was
investigated in Ref. [3] by means of canonical MC simulation
and finite-size scaling theory. The existence of a continuous
phase transition was confirmed. In addition, the determination
of the critical exponents along with the behavior of the Binder
cumulant (g4) for different system sizes revealed that the
universality class of the IN transition, at intermediate density,
changes from 2D Ising-type for monodisperse RRs without
self-assembly to q = 1 Potts-type (random percolation) for
polydisperse SARRs.

Recently, a multicanonical MC method based on a Wang-
Landau sampling scheme was used by Almarza et al. [4]
to reinvestigate the critical behavior of the model studied
in Refs. [1,3]. Employing the crossing point of the Binder
cumulants (g∗

4 ) and the value of the critical exponent of the
correlation length (ν), it was observed that the criticality of
the SARRs model is in the 2D Ising class, as in models
of monodisperse RRs. This finding is in sharp contrast to
that reported in [3], and the authors have given a possible
explanation for this discrepancy [4] (μ denotes the chemical
potential): “In the analysis of López et al., the use of the
density as the control parameter leads to a value of the g4

crossing that differs substantially from that of the 2D Ising
universality class. We have shown that using μ as the control
parameter leads to a more robust scaling of g4 and to a much
better overall Ising scaling.”
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The purpose of this Comment is to show that the above
explanation is insufficient, and to point out and discuss the
source of the discrepancy between our results and that obtained
by Almarza et al. As in Ref. [4], the distinction between the
two universality classes is based on the determination of both
the value of g∗

4 and the value of ν, which are clearly different
for the two universality classes under discussion.

Then, in order to analyze the explanation given by Almarza
et al., a series of MC simulations have been conducted in
the canonical ensemble. The procedure was similar to that
used in [3], but this time maintaining as constant the surface
coverage (at θ = 0.525, critical density obtained in [3]) and
varying the temperature of the system (the natural control
parameter in the canonical ensemble).

The fourth-order Binder cumulant was computed as a
function of the temperature for different lattice sizes (L × L),
at θ = 0.525 (see Fig. 1). The values obtained for the critical
temperature and the intersection point of the cumulants were
Tc = 0.25 and g∗

4 = 0.639, respectively. The same fixed value
of the cumulants was reported in [3], which is consistent
with the q = 1 Potts universality class (ordinary percola-
tion). As was mentioned in [3], a value of g∗

4 ≈ 0.638 was
obtained by Vink for 2D site percolation [5]. Vink’s result
was recently reproduced by the authors via Monte Carlo
simulation [6].

Once Tc was calculated, the scaling behavior was tested
by plotting g4 versus εL1/ν (where ε is the normalized scaling
variable ε ≡ T/Tc − 1) and looking for data collapsing. Using
the exact value of the critical exponent of the correlation length
for ordinary percolation, ν = 4/3, an excellent scaling collapse
was obtained, as shown in Fig. 1.

As mentioned above, the use of the density as the basic
variable in our previous study [3] led us to calculate values of
the critical exponents and the crossing point of the cumulants
that differ from those obtained by Almarza et al. [4]. In Ref. [4],
the authors indicated that the difference in the values of ν

can be understood by introducing a correction (ln L) when
using θ as the scaling variable. However, the behavior of
the curves in Fig. 1, where the control parameter now is the
temperature, provides convincing evidence that the value of
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FIG. 1. (Color online) Data collapsing of the cumulant, g4 vs
εL1/ν . Upper-right inset: Curves of g4(T ) vs T for lattices of different
sizes. From their intersections one obtains g∗

4 . In the lower-left inset,
the data are plotted over a wider range of densities.

g∗
4 and the scaling obtained using ν = 4/3 are not due to

“the use of the density as the control parameter,” as claimed
in Ref. [4]. This immediately suggests that the discrepancy
between the results of [3] and [4] arises from the use of
different ensembles. To test this new statement and, at the
same time, to check the data presented by Almarza et al., MC
simulations in the grand canonical ensemble were carried out
using an adsorption-desorption algorithm. It is important to
note that the algorithm used here is different from that used by
Almarza et al.

In the grand canonical ensemble, the critical behavior was
studied at the same point of the phase diagram, fixing the
temperature at T = 0.25 and varying the chemical potential
μ. The Binder cumulants versus μ are shown in Fig. 2.
The intersection point converges to a fixed point, allowing
an accurate estimation of the fixed value of the cumulants,
g∗

4 = 0.611. This value is consistent with the extremely precise
transfer-matrix calculation of g∗

4 = 0.610 690 1(5) [7] for the
2D Ising model. On the other hand, very good collapse was
obtained with ν = 1 in the scaling plot of g4 (Fig. 2), thus
corroborating the data of Almarza et al.

The results presented above confirm that the discrepancy
under study arises solely from the use of different statistical
ensembles. This behavior, which appears to be a violation
of the principle of ensemble equivalence, has been discussed
many times in the literature, usually related to systems subject
to constraint (such as the constraint of fixed density that is
imposed in canonical ensemble studies).

In this sense, Fisher [8] (i) showed that, for systems with
thermodynamic constraints, critical exponents characterizing
scaling behavior at continuous phase transitions may deviate
significantly from their ideal theoretical counterparts (without
constraint) due to the effects of such constraints; and (ii)
established elegant relations between the exponents of the
ideal and constrained systems. In this scheme, known in the

FIG. 2. (Color online) Data collapsing of the cumulant, g4 vs
εL1/ν . Upper-right inset: Curves of g4(μ) vs μ for lattices of different
sizes. From their intersections one obtains g∗

4 . In the lower-left inset,
the data are plotted over a wider range of densities.

literature as the “standard Fisher renormalization scheme,” the
critical exponents in the constrained system are renormalized
if the specific-heat exponent for the ideal system α is positive,
or remain the same when α is negative or zero.

The case presented here, where the system without con-
straint belongs to the two-dimensional Ising universality class,
shows that a generalization of the Fisher renormalization is
necessary in certain circumstances where α = 0 (Dohm [9]
has also discussed this possibility for cases where α < 0).

In summary, several conclusions can be drawn from the
present Comment: (i) The discrepancy between the results
in [3] and [4] arises solely from the use of different sta-
tistical ensembles. In this sense, even though it might be
more appropriate (or convenient) to use the grand canonical
ensemble to study a system such as the one described here,
the consistency of the results obtained in the canonical
ensemble warrants an explanation that has not yet been given.
(ii) The system under study represents an interesting case
where the use of different statistical ensembles leads to
different and well-established universality classes. (iii) Since
most of the studies on the critical behavior of self-assembled
systems have been carried out in the canonical ensemble,
they should be revisited. (iv) Fisher renormalization arguments
predict that the values of the critical exponents should remain
unchanged since the specific-heat exponent α for the present
model is zero. However, our simulations disagree with this
prediction. The development of a modified (or alternative)
renormalization scheme, as was done in Refs. [9,10], could
help to solve this problem. Obviously, this task is beyond the
scope of this Comment.
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