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Particle velocity distribution in saltation transport
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We report on wind-tunnel measurements of particle velocity distribution in aeolian transport. By performing
extended statistics, we show that for saltation occurring over an erodible bed the vertical lift-off velocity
distributions deviate significantly from a Gaussian law and exhibit a long tail accurately described by a
lognormal law. In contrast, saltation over a rigid bed produces Gaussian velocity distributions. These results
strongly suggest that the deviation from Gaussian distributions is a consequence of the splash process which
is exclusively present in saltation transport over an erodible bed. We further suggest that the non-Gaussian
statistics is intimately related to the statistical properties of a single splash event which produces ejection of
particles with lift-off velocities distributed according to a lognormal law. This lognormal behavior can be simply
inferred from the propagation process of the impact energy through the granular bed which can be viewed as the
analog of a fragmentation process. These findings emphasize the crucial role of the splash process in saltation
transport.
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Introduction. Sand transport by wind is a complex pro-
cess which includes air-particle and bed-particle interaction.
Saltation motion, in which sand grains are propelled by wind
along the sand bed in short jumps, has been identified by
Bagnold [1] to be the dominant mode of transport. In the last
decades, numerical and theoretical studies on saltation motion
have been developed [2–8]. In these models, the grain-bed
collision is generally treated through an empirical way; the
resulting lift-off velocity distribution of the splashed grains
is taken as an input parameter of the model and is assumed
to obey an exponential or Gaussian distribution law [3,6,9].
This distribution plays an important role because it affects the
calculation of the height and length of the saltating trajectories.
It is therefore crucial to have an accurate description of these
velocity distributions.

Many efforts have been made to characterize the lift-off
velocity distributions either by field measurements or wind
tunnel experiments [10–17]. Although most of these inves-
tigations reported a deviation from a Gaussian distribution,
there is no consensual description with respect to the form and
nature of the distribution: a broad spectrum of distributions has
been proposed ranging from normal to lognormal distributions
and going through �, Pearson, or Weibull distributions. The
large variety of experimentally found distributions is in general
due to a lack of accurate statistics for the determination of
the distribution tail which is the most informative part to
discriminate between different distribution laws.

In this Brief Report, we give clear evidences through
comprehensive wind tunnel measurements that the distribution
of lift-off velocities of particles saltating over an erodible bed
exhibit a long tail statistic that can be accurately described
by a lognormal-type law. Conversely, saltation over a rigid
bed (where the splash process is ineffective) reveals that the
vertical lift-off velocity distribution obeys a Gaussian law.
These results strongly indicate that the splash process plays
a key role in the velocity distribution. We suggest that the
non-Gaussian statistics is intimately related to the statistical

properties of a single splash event. The latter has been shown to
produce ejection of particles with lift-off velocities distributed
according to a lognormal law [18,19]. We provide in the last
part of the article basic arguments explaining the origin of
the lognormal law. This lognormal statistics can be simply
inferred from the propagation process of the impact energy
through the granular bed which can be viewed as the analog
of a fragmentation process.

Wind-tunnel facilities and instrumentation. The experi-
ments reported here were performed in a 6 m long wind tunnel
with a cross section of dimensions 0.27 m × 0.27 m where
the nominal air velocity U∞ (i.e., the air speed outside from
the boundary layer) can be varied between 0 and 20 m/s. The
floor of the tunnel is either a sand bed of uniform height or
a rigid substrate covered with glued sand grains. To reduce
the transient length required to reach steady state saltation,
turbulence spires are placed at the tunnel entrance and sand
grains are fed from the tunnel roof (see Fig. 1) [6]. We used
natural sand with a median diameter d = 230 μm and a density
ρp = 2470 kg/m3.

We employed particle tracking velocimetry techniques to
determine the particle velocity of the saltating particles. The
scene was illuminated from above with a laser sheet produced
by a YAG pulsed laser and the images were captured from
the side with a high sensitive camera synchronized with the
laser. Image analysis processing was then performed to extract
the instantaneous velocity of the saltating particles. Statistics
were performed over 250 images and the velocity distributions
are obtained on a statistic ensemble of more than 2 ×
104 particles.

Particle velocity distribution. We performed experiments
over erodible bed for various wind strengths corresponding
to Shields parameter S ranging from 0.01 to 0.2 (S =
ρairu

2
∗/ρpgd where u∗ is the air friction velocity, ρair the air

density, ρp the particle density, and d the particle diameter).
Figure 2 shows the vertical velocity distribution of the saltating
particles close to the ground (i.e., at z ≈ 10d above the bed
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FIG. 1. (Color online) Sketch of the wind-tunnel.

surface within a layer dz ≈ 5d). These distributions were ob-
tained over a large statistic ensemble and thus provide a unique
set of experimental data. Three important features should be
emphasized. First, these distributions exhibit unambiguously
a deviation from a Gaussian distribution. A long-tail statistic
is clearly observed. Second, they do not significantly change
with the Shields parameter confirming that the features of the
saltating particles are invariant with the wind strength [20].
Third, they are almost symmetrical with respect to the origin
indicating that saltating particles experience a negligible drag
in the vertical direction during their flight. In other terms,
upward and downward velocities have similar features.

Actually, the vertical velocity distribution can be well
approximated by a lognormal type distribution of the following
form:

P (v/
√

gd) = A
e−[ln

√
(v2+2gz)/gd−μ]2/(2σ 2)√
(v2 + 2gz)/gd

, (1)

where A is a constant of normalization and μ and σ are free
parameters of the distribution. z is the altitude where vertical
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FIG. 2. (Color online) Vertical velocity distribution p(v) of
saltating particles located close to the ground (at z = 10d within
a layer dz = 5d) for various wind strengths measured in terms of
the Shields parameter S. Fitted distributions: dashed line—Gaussian
law with variance s2 = 53 gd (χ 2 test: χ 2 = 0.35), solid line—
lognormal law with μ = 1.6 and σ = 1.0 (χ 2 = 0.17), dot-dashed
line—Weibull distribution, pW (v) ∝ vk−1e−(v/λ)k , with k = 1.0 and
λ = 7.8

√
gd (χ 2 = 0.20), dot-dashed line—� distribution, pG(v) ∝

vk−1e−v/λ, k = 1.1 and θ = 7.9
√

gd (χ 2 = 0.20), dotted line—linear
combination of two Gaussian laws with variances s2

1 = 25 gd and
s2

2 = 625 gd (χ 2 = 0.17). Inset: Variation of the variance of the
distribution (i.e., 〈v2/gd〉) with the Shields parameter S.
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FIG. 3. (Color online) Distribution of the vertical particle velocity
close to the ground (i.e., z ≈ 10d) obtained over a rigid bed for
various Shields numbers with a given mass flow rate Q/ρpd

√
gd ≈

1.7. Solid line represents a Gaussian distribution that best fits the
upward velocities. Inset: Variation of 〈v2

up/gd〉 with the Shields
parameter.

particle velocities were measured and
√

v2 + 2gz corresponds
to the particle velocity extrapolated at the bed. This distri-
bution is nothing but a truncated lognormal distribution. It
is important to note that due to technical limitation of the
particle tracking technique, it is not possible to get accurate
measurements at height below z = 10d. As a consequence, we
miss the low energetic grains of the velocity distribution.

The best lognormal fit to the data gives μ = 1.6 and
σ = 1.0. Interestingly, the lognormal distribution is not the
only model distribution that can fit to the data with a reasonable
agreement: � and Weibull distributions are also good candi-
dates (see Fig. 2). However, the lognormal distribution offers
several advantages. First, a χ2 test shows that the latter yields
the better agreement, and second, the lognormal behavior can
be explained from simple considerations based on the splash
process as to be seen later on.

To further investigate the interplay between the particle
velocity distribution and the interaction of the saltating
particles with the bed, we performed similar measurements
over a rigid bed. Vertical velocity distributions obtained over
a rigid bed exhibit contrasting features (see Fig. 3). First, the
symmetry between upward and downward velocities is broken.
This is a manifestation of air drag effect which is no longer
negligible because saltating particles over rigid bed experience
much higher jump than over an erodible bed [20]. Second,
the right part of the distribution corresponding to upward
velocities is extremely well described by a Gaussian law,
thus contrasting with the lognormal distribution obtained over
erodible bed. Third, the distributions over rigid bed are much
wider than those over erodible bed and their width increases
with increasing wind strength (see inset of Fig. 3). Typically,
〈v2

up/gd〉 varies from 300 to 1500 for Shields parameter
ranging from 0.011 to 0.027. Conversely, for transport over
an erodible bed, the velocity variance is on the order of 100
and is invariant with the wind strength.

Gaussian vs non-Gaussian distribution. The above results
indicate that there is a marked difference in the velocity
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distributions obtained respectively over rigid and erodible bed.
While the lift-off velocities of grains saltating over a rigid bed
obey a Gaussian distribution, those saltating over an erodible
bed exhibit a long tail statistics that can be well described by
a lognormal type law. The deviation from a Gaussian law can
be therefore attributed to the splash process which is solely
present in the case of transport over an erodible bed. The
identification of the intimate physical grounds is not a trivial
issue. Different possible explanations can be put forward. The
long tail statistics can be interpreted in terms of a superposition
of several Gaussian distributions with different variances
producing eventually a seemingly lognormal distribution. It
turns out that our data can be captured with a reasonable
agreement by the sum of two Gaussian distributions (as shown
in Fig. 2). This interpretation is interesting at least in two
aspects. First, it offers the advantage to stay within a framework
based on Gaussian statistics which is rather convenient for
theoretical modeling. Second, it allows the identification
of two different populations of grains: weakly energetic
grains and highly energetic ones which may be referred,
respectively, to as reptating and saltating grains (according
to Bagnold classification [1]). This classification between two
distinct populations is somehow a simplified representation
of the saltation transport. An alternative explanation can be
however suggested based on the fundamental characteristics
of the Splash process. The long tail statistics of the lift-off
velocity distributions of saltating grains is reminiscent of
the velocity distribution of the grains ejected from a single
splash event. Recent model experiments on the splash collision
process [18,19] have indeed shown that the resulting velocity
distribution of the splashed grains obeys a lognormal law. This
leads us to conjecture that both distributions are intimately
connected.

In the remaining part of this Brief Report, we provide simple
arguments to understand the physical origin of the lognormal
velocity distribution resulting from a splash event and then we
argue how to infer the velocity distribution obtained in steady
state saltation from that corresponding to a single splash event.

Splash process. A simple and successful model describing
the collision process between an impacting particle and a
granular bed was recently developed [18]. The key ingredient
of the model is the description of the propagation of the energy
(resulting from the impact) within the granular bed. In this
model, the energy or momentum is described in terms of a
succession of binary collisions between neighboring grains
of the packing. The energy propagation can be thus seen as
a fragmentation process where at each collision the energy
is split into two fractions between the “reflected” particle
and the “target” one according to a binary collision law
characterized by an inelasticity coefficient ε (see [18,21]).
A sequence of collisions produced by the impact of one
particle onto a granular packing is illustrated in Fig. 4. The
result of the propagation process is the creation of a “tree”
made of “branches” and nodes, where a branch represents a
moving particle and a node a binary collision. The branches
of the collision tree correspond to different paths of energy
propagation and it results that a branch ending at the surface
of the granular packing produces the ejection of a particle.

Within this model, the resulting velocity distribution of
the splashed particles can be computed and it was shown
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FIG. 4. Left panel: illustration of successive binary collisions
produced by an impacting particle and leading to the ejection of
a particle. Right panel: construction of the resulting collision tree;
from a node (i.e., a collision) results two branches: the right one
corresponds to the reflected particle and the left one to the target
particle.

that the latter can be well captured by a lognormal law [18].
Here, we provide new insights to understand the origin of the
lognormal distribution. In particular, we are able to interpret
the lognormal distribution using simple basic arguments based
on the energy propagation process through the granular media.
Let us call N (k) the average number of paths leading to ejection
with a length k. The energy Ek released at the end of a branch
of length k simply reads

Ek = u1u2 . . . ukE0, (2)

where E0 is the incident energy and ui (i = 1,2, . . . ,k) is
the fraction of energy transmitted during the ith collision.
When averaged over a large number of configurations, one gets
in the elastic limit (i.e., the inelasticity coefficient ε is close
to 1):

Ek ≈ (
1
2

)k
E0, (3)

which yields the following relationship:

ln V 2
k ≈ 2 ln Vk = 2 ln V0 − k ln 2. (4)

It thus turns out that the distribution of the logarithm of velocity
Vk , N (ln Vk), is completely determined by the distribution of
path length N (k): N (ln Vk) = (ln 2/2) N (k).

The distribution of the number of collision N (k) can
be computed. The resulting distribution for two different
impact velocities V0 is presented in Fig. 5. The latter can
be well captured by a Poisson distribution characterized by a
parameter λ ≈ 1.25 ln(V 2

0 /gd) or equivalently by a Gaussian
distribution with a mean m = λ and a standard deviation
s = √

λ.
This result is strongly reminiscent of outcomes obtained

in fragmentation models [22] and it is thus interesting to
push further the comparison between the energy propagation
process through a granular media and fragmentation processes.
In particular, a formal analogy can be made with the discrete
sequential fragmentation process, that consists in breaking a
unit segment into two pieces of equal length, then in selecting
a fragment at random and breaking it into two pieces of equal
lengths, and in repeating the process again and again. Within
this process, after f fragmentation events, fragments of length
L = 2−s (s = 0, . . . ,f ) are thus produced. The number of
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FIG. 5. (Color online) Distribution of path length N (k)/Ntot

obtained from the discrete collision model for two different impact
velocities V0/

√
gd = 30,100. Solid lines represent Gaussian fits.

fragments n(s) of “size” s is the analog of the number of paths
N (k) in the energy propagation process within the granular
bed, while the length L of a given fragment of size s is
equivalent to the energy released Ek at the end of a given
path of length k and the total number f of fragmentation
events is in correspondence with the impact energy E0 in
the splash process. This mapping is instructive because the
simple fragmentation problem is analytically solvable. The
distribution of number of fragments n(s) of size s is shown to
tend asymptotically to a Poisson distribution with a parameter
λ = 2 ln f . This exact result is very similar to that obtained in
the collision model (λ ≈ 1.25 ln E0/mgd).

With all the elements given above, it is now straightforward
to derive the distribution N (Vk). Taking advantage of the
Gaussian feature of the distribution N (k) together with Eq. (4),
we arrive at the conclusion that the number N (Vk) of ejected
particles of velocity Vk obeys a lognormal distribution:

N

(
Vk√
gd

)
= N0

(Vk/
√

gd)
√

2πσ 2

× exp

(
− [ln(Vk/

√
gd) − μ]2

2σ 2

)
, (5)

where μ = ln(V0/
√

gd) − (ln 2/2)λ, σ = (ln 2/2)
√

λ, and N0

corresponds to the number of splashed particles. Importantly,
the mean and variance of the path length distribution N (k)
have a weak (logarithmic) dependence with the incident
velocity V0 (for V0 = 100

√
gd, μ ≈ 0.9, and σ ≈ 1.1). The

velocity distribution of a single splash event can be thus
considered as invariant with the impact speed, as confirmed
experimentally by Beladjine et al. [19]. The lift-off velocity
distribution measured at the bed in steady state saltation is the
result of the sum of many splash events with varying impact
velocities (weighted by the number of splashed particles)
plus the velocity distribution of the rebound particles. Due
to the invariance of the velocity distribution of a single
splash, one can argue the sum of many splash events is thus
expected to produce the same distribution as that given by
a single splash event, that is a lognormal distribution. The
final resulting distribution cannot be derived explicitly since
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FIG. 6. (Color online) Comparison of the vertical lift-off velocity
distribution obtained in steady state saltation over erodible bed and
that resulting from a splash event derived from the splash model [cf.
Eq. (5)]. Lift-off velocities are evaluated at the height z = 10d within
a layer dz = 5d .

we have to combine the splash distribution with that of the
rebound particles which is not known a priori and depends
on the impacting velocity distribution. The latter results from
a complex interplay between air flow and saltating particles.
However, we are tempted to conjecture that the final lift-off
velocity distribution would not differ much from the splash
distribution because the statistical weight of the splashed
particles is expected to be higher than that of the rebound
particles. This conjecture is supported by the remarkable
similarity between the lift-off vertical velocity distribution
obtained in steady state saltation and that resulting from the
splash model (see Fig. 6). In Fig. 6, the lift-off velocities
obtained from the splash distribution were evaluated at a height
z = 10d as for the experimental data. This amounts to plot
N (V ′

k) with V ′
k =

√
V 2

k − 2gz. The weakly energetic grains
of the splashed particles (corresponding to the left part of
the lognormal law) are consequently lost in this operation.
Note also that we did not adjust any parameter: we used the
values of the parameters μ and σ derived from the splash
model.

Conclusion. We show in this Brief Report that the lift-off
velocity distribution of particles saltating over an erodible
bed exhibits a long tail statistics that can be well captured
by a lognormal law. We provide strong evidences that the
long tail statistics is intimately related to the splash process.
First, saltation over rigid bed (where splash is ineffective) is
found to produce Gaussian velocity distributions. Second, the
lognormal statistics is strongly reminiscent of that found for
the velocity of the splashed particles in a single splash event.
These findings emphasize the importance of the splash process
in the aeolian saltation transport and show that the latter
governs the statistics of the saltation layer. Besides, we believe
that the long tail statistics of the lift-off velocity distribution
is a key feature for a better understanding of the saltation
transport.
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