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Strongly nonlinear waves in capillary electrophoresis
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In capillary electrophoresis, sample ions migrate along a microcapillary filled with a background electrolyte
under the influence of an applied electric field. If the sample concentration is sufficiently high, the electrical
conductivity in the sample zone could differ significantly from the background. Under such conditions, the local
migration velocity of sample ions becomes concentration-dependent, resulting in a nonlinear wave that exhibits
shocklike features. If the nonlinearity is weak, the sample concentration profile, under certain simplifying
assumptions, can be shown to obey Burgers’ equation [Ghosal and Chen, Bull. Math. Biol. 72, 2047 (2010)],
which has an exact analytical solution for arbitrary initial condition. In this paper, we use a numerical method
to study the problem in the more general case where the sample concentration is not small in comparison to the
concentration of background ions. In the case of low concentrations, the numerical results agree with the weakly
nonlinear theory presented earlier, but at high concentrations, the wave evolves in a way that is qualitatively
different.
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I. INTRODUCTION

In capillary electrophoresis (CE), separation of charged
molecular species is accomplished by exploiting the differ-
ential migration of ions in a narrow channel (10–100 μm)
in which a strong electric field (∼100 V/m) is applied in the
axial direction [1,2]. The sample ions exist in solution in an
electrolytic buffer which is referred to as the background elec-
trolyte (BGE). Separation is accompanied by the competing
process of diffusive spreading in the axial direction, which
causes peak dispersion. Dispersion reduces resolution of the
separation and may lower the peak concentration to below the
detection threshold. It is therefore detrimental. Any effect that
tends to increase axial spreading over the minimum imposed
purely by molecular diffusion in the axial direction is referred
to as “anomalous dispersion” [3]. The transport problem of
ions in the capillary is of considerable interest as it determines
the amount of dispersion of the sample peak.

In this paper, we are concerned with an effect known as
“electromigration dispersion” (EMD) that causes significant
anomalous dispersion when the ratio of sample to background
ion concentration becomes large enough. For this reason, it
is also known as the “sample overloading effect.” In CE, it is
desirable to have the sample concentration at the inlet as high
as possible (to ensure that even trace components are within
detectable limits) and buffer conductivity as low as possible
(to minimize Joule heat), so that the limitation imposed by
EMD quickly becomes significant [4].

The physical mechanism of EMD may be explained roughly
in the following way: when the concentration of sample ions
is sufficiently high in comparison to that of the background
electrolyte, the local electrical conductivity of the solution is
altered in the region around the sample peak. However, charge
conservation requires the electric current to be the same at all
points along the axis of the capillary. If diffusion currents due
to concentration inhomogeneities are ignored for the moment,
it follows that the electric field must change axially. This is

*s-ghosal@northwestern.edu

because Ohm’s law, taken together with current conservation,
implies that the product of the conductivity and electric field
must remain constant along the capillary. The axially varying
electric field then alters the effective migration speed of the
sample ions, which in turn alters its concentration distribution.
Thus, in the continuum limit, the concentration of sample ions
is described by a nonlinear transport equation. As expected,
the CE signal exhibits features reminiscent of nonlinear waves
familiar from other physical contexts [5,6].

A one-dimensional nonlinear hyperbolic equation for the
sample ion concentration may be derived using simplifications
that arise from assuming local electroneutrality and from
neglecting the diffusivity of ions [7]. The restriction to
zero ionic diffusivities was recently removed by Ghosal and
Chen [5]. They considered the minimal model of a three-ion
system—the sample ion, a co-ion, and a counter-ion. The
diffusivities of the three ionic species were assumed equal,
though not necessarily zero. The sample ion concentration was
then shown to obey a one-dimensional nonlinear advection-
diffusion equation which reduced to Burgers’ equation if the
sample concentration was not too high relative to that of the
background ions.

In this paper, we focus on the minimal three-ion system
considered by Ghosal and Chen [5], but we do not assume
that the concentration of sample ions is small. Local electro-
neutrality is, however, an excellent approximation in CE
systems, since characteristic length scales are much larger
than the Debye length, which is on the order of nanometers.
We therefore exploit it to reduce the numerical stiffness of the
coupled ion transport equations. We identify a small number
of parameters that primarily determine the system evolution
and study the dynamics for a representative range of these
parameters. We show that at low concentrations, the peak
evolves in accordance with the weakly nonlinear theory [5],
but at high enough concentrations, the dynamics of peak
evolution is qualitatively different as the system is dominated
by the nonlinearity. Surprisingly, in the strongly nonlinear
regime, the peak breaks up into two zones marked by a critical
concentration (φ = φc) and separated by a diffusive boundary.
The high concentration zone (φ > φc) remains quasistationary
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whereas the low concentration zone propagates forward form-
ing a “surge front” superficially resembling nonlinear wave
phenomena familiar in the context of water waves, such as a
river bore [8]. The critical concentration (φc) can be predicted
by a simple argument based on flux conservation. At late
times, dispersion ensures that concentrations throughout the
domain get smaller and the peak once again may be described
by Burgers’ equation. The complex nonlinear behavior is a
consequence of the nonlinearity inherent in the Nernst-Planck
equations of ion transport, just as the behavior of large-
amplitude water waves arises from the nonlinear nature of
the Navier-Stokes equations of hydrodynamics.

II. NUMERICAL SIMULATIONS

We set up and solve numerically an idealized problem in
which a sample peak migrates in a background electrolyte.
The channel walls are assumed charge-neutral, so that electro-
osmotic flow is absent.1 Further, local electroneutrality is
invoked, which enables us to express the electric field in
terms of the instantaneous concentration distributions rather
than solve Poisson’s equation for the electric potential. This
considerably simplifies the numerical work as Poisson’s
equation is stiff due to the smallness of the Debye length. Thus,
the problem is reduced to solving a set of one-dimensional
coupled partial differential equations for the ion concentration
fields.

A. Model system

We will consider a three-ion system consisting of sample
ions, co-ions, and counter-ions. Results will be expressed in
terms of dimensionless variables: all lengths are in units of a
characteristic length w0 determined by the initial peak width,
time is in units of w0/v, where v is the migration velocity
of an isolated sample ion in the applied field (E∞), and the
electric potential is in units of E∞w0. All concentrations are
in units of c∞

n , where c∞
n is the concentration of negative ions

in the background electrolyte. In order to define a minimal
problem with the fewest possible parameters, we assume that
the mobility (u) is the same for all the species, and therefore so
is the diffusivity (D), in accordance with the Einstein relation
(Di/ui = D/u = kBT , where kB is Boltzmann’s constant and
T is the absolute temperature). Note, however, that since
the valence zi are different, the electrophoretic mobilities
of the species μi = zieu are not identical. Then the only
parameters in the problem are Pe = vw0/D, which may be
regarded as a “Péclet number” based on the electromigration
velocity v, and the two valence ratios zn/z,zp/z, where zp,
zn, and z are, respectively, the valence of cations, anions, and
the sample. We present results for two values of the Péclet
number, Pe = 100 and 200, and we fix the valence ratio at
z : zp : zn = 1 : 2 : −1. For other values of these parameters,
the results are qualitatively similar. The parameter of greatest
interest is the degree of sample loading or the amplitude of
the initial peak. The shape of the wave is insensitive to initial
conditions, so for convenience we take the initial peak shape

1The effect of a wall zeta potential was recently investigated [16].

to have a rectangular2 profile of height cm and width 2w0

centered at x = 10w0. This is also the most common initial
shape encountered in practice where the sample is introduced
by electrokinetic injection. The degree of sample loading is
conveniently characterized [5] in terms of the quantity

� =
∫ +∞

−∞
φ(x,t) dx =

∫ +∞

−∞

cn

c∞
n

dx, (1)

which has units of length. The length scale � may be used
to define a second Péclet number P = v�/D, which may
be treated as a dimensionless measure of sample loading.
A series of simulations are conducted with peak heights in
the range φm = cm/c∞

n = 0.01 (low sample loading) to 2.0
(high sample loading). The initial co-ion concentration cp is
assumed constant throughout the domain. Then the counter-ion
concentration is determined by the local electroneutrality
constraint, Eq. (3). An infinite domain is approximated by
a finite computational box of length much greater than w0.
The values of the concentrations are held fixed at the domain
boundaries and ∂φe/∂x is set to the constant value −E∞. The
domain is chosen to be sufficiently large that the perturbations
of the concentrations and fields are always negligible near the
domain boundaries.

B. Numerical method

We will solve the governing equations for ion transport in
solution, which are

∂ci

∂t
+ ∂

∂x

[
−μici

∂φe

∂x
− Di

∂ci

∂x

]
= 0, (2)

where ci is the concentration of species i (i = 1,2, . . . ,N ) with
electrophoretic mobility μi and diffusivity Di . Electro-osmotic
flow is neglected so that the problem is one-dimensional and
may be described using the coordinate x along the capillary
and time since injection, t . Due to the requirement of local
electroneutrality [9],

N∑
i=1

zici = 0 (3)

(zi is the valence of the ith species). The electric potential φe

may be found from the equation of current conservation:

∂

∂x

[
−

N∑
i=1

ziμici

∂φe

∂x
−

N∑
i=1

ziDi

∂ci

∂x

]
= 0. (4)

Equation (4) may be readily integrated to yield the local electric
field, E = −∂xφe:

E(x,t) = E∞ ∑
i ziμic

∞
i + ∑

i ziDi∂xci∑
i ziμici

, (5)

where the superscript ∞ indicates the value of the respective
variable far away from the peak and the summation is over all
species.

A finite volume method is used to discretize Eqs. (2) and (4)
in space using an adaptive grid refinement algorithm that is

2To reduce numerical errors, the corners of the rectangle were
slightly “rounded” by using a tan hyperbolic function.
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FIG. 1. (Color online) Time evolution of the profiles of the normalized sample ion concentration (φ), electric field (E/E∞), and Kohlrausch
function (K/K∞) in the case of weak sample loading (φ � φc). The Kohlrausch function spreads only by diffusion so that the sample peak
rapidly migrates into the zone where K = K∞ [18].

enabled by applying the MATLAB library “MATMOL” [10]. The
spatially discretized system of equations is then integrated
in time using the MATLAB solver “ode45” [11], which is
based on an explicit Runge-Kutta (4,5) formula. Equations (2)
and (4) automatically ensure that the electroneutrality con-
dition, Eq. (3), is satisfied and this is verified at each time
step.

C. Results

Figure 1(a) shows the profiles of the normalized sample
concentration φ(x,t) = cn/c

∞
n at fixed times vt/w0 = 0, 0.5,

2.0, 4.0, and 8.0 for the case of low sample loading.
Figures 1(b) and 1(c) show, respectively, the profiles of the cor-
responding electric field E(x,t) and the Kohlrausch regulating
function K(x,t) = (cp + cn + c)/u. The Kohlrausch regulat-
ing function is a useful quantity for describing electrokinetic
transport. If all ionic species have the same diffusivity, K(x,t)
evolves as a passive scalar [5]. If ionic diffusivities are treated
as zero, then K(x,t) is a conserved quantity [12]. It is seen that
K(x,t) remains localized near the injection zone and spreads
only slowly by molecular diffusion. The sample peak, on the
other hand, moves to the right, and after a short time the sample
peak essentially lies in a zone where K = K∞. This illustrates
the behavior postulated earlier that makes possible a simplified
description in terms of the one-dimensional nonlinear equation
[5]:

∂φ

∂t
+ ∂

∂x

(
vφ

1 − αφ

)
= D

∂2φ

∂x2
. (6)

If φ is small, Eq. (6) reduces to Burgers’ equation on Taylor
expansion of (1 − αφ)−1. In the vicinity of the sample peak, the
electric field is functionally related to the normalized sample

concentration; E = E∞/(1 − αφ). Here α is the “velocity
slope parameter” introduced in [5].

It may be shown [5] that the requirement of positivity of
co- and counter-ion concentrations implies that only sample
profiles satisfying the condition φ < φc, where φc is a positive
number, may be described by the theory. We will call such
profiles “realizable.” The critical concentration, φc, is given
by φc = (zp − zn)/(zp − z) when z < 0 and φc = −[zn(zp −
zn)/[zp(z − zn)] when z > 0. When the parameter α > 0, it
may be shown with some simple algebra that φc < φ′

c ≡ α−1

(see the Appendix), so that the singularity implicit in Eq. (6)
when φ = φ′

c is never reached for realizable solutions. Figure 2
shows the behavior of the system for initial conditions that are
not realizable. In this situation, a stationary “barrier” develops
at a fixed spatial location corresponding to a certain value
φ = φinter < φc. The sample ions move more or less freely
on crossing the barrier but are effectively immobilized on the
left of the barrier. This is due to the greatly reduced strength
of the electric field in the injection zone where the electrical
conductivity is high. This is clearly seen in Fig. 2(b), which
shows a sharp reduction in the electric field in the injection
zone. Only sample ions near the edge of the zone are able to
“leak out” and are carried to the right as an advancing wave.
Since part of the sample profile remains quasistationary, the
assumption of the constancy of the Kohlrausch function, K =
K∞, can no longer be made for nonrealizable concentrations.
Thus, Eq. (6), which would have led to unphysical negative
concentrations for such nonrealizable profiles, is not applicable
until after a sufficient time has evolved so that φ is reduced to
a value below φinter throughout the domain.

Figure 3 shows the variation in time of the quantity
(2D)−1dσ 2/dt (where σ 2 is the peak variance) for a series
of different values of the diffusivity and sample loading
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FIG. 2. (Color online) The same as in Fig. 1 except here the amplitude of φ exceeds φc. Here the part of the peak above the value φ = φinter

appears to be effectively immobilized. The middle panel shows that the stagnant zone is due to a sharp reduction in the electric field caused
by the very high electrical conductivity in this zone. The assumption K = K∞ is clearly invalid as a part of the peak remains trapped in the
injection zone [18].

characterized by the pair of Péclet numbers (Pe,P). If the
profile spread purely by molecular diffusivity, this quantity
should approach 1 asymptotically. However, it is seen that
the long-time asymptotic value is not 1 but rather Deff, which
depends solely on P . The dashed line shows the theoretical
value of Deff predicted by the weakly nonlinear theory based
on solutions of Burgers’ equation [5]. Thus, once the system
has evolved long enough, and dispersion has caused the
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FIG. 3. The normalized rate of change of variance as a function of
dimensionless time vt/w0 for (a) Pe = 100 and (b) Pe = 200 for three
different values of sample loading (P). At long times, the peak is seen
to spread with an effective diffusivity Deff = limt→∞(2D)−1(dσ 2/dt)
given by Eq. (37) of [5] and indicated here by the horizontal dashed
line.

amplitude to drop sufficiently, Burgers’ equation provides
a valid description of the peak evolution. However, a real
separation happens in a finite capillary and the long-time limit
may not necessarily apply. A quantity of interest is the time
scale characterized by t∗: the time needed for the quantity
(2D)−1dσ 2/dt to relax to 0.95 of its asymptotic value Deff.
If the separation is conducted in a capillary of length L, the
question of interest is whether t∗ is small or large compared to
the total separation time T = L/v. In Fig. 4, we show the
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FIG. 4. The normalized convergence time vt∗/w0, where t∗ is the
time taken for the effective variance (2D)−1(dσ 2/dt) to reach 95% of
its final asymptotic value of Deff as a function of the sample loading
(P) for different values of the Péclet number (Pe).
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FIG. 5. Schematic diagram describing approximately the initial
phase of peak evolution when φ > φc. The domain can be divided
into an “initial zone,” an “interzone,” and a “background zone.” All
the dependent variables are approximately constant within each zone
but may undergo jumps across zone boundaries.

normalized time vt∗/w0 from a series of simulations with
different values of (Pe,P). Clearly, vt∗/w0 is a monotonically
decreasing function of P. This can be anticipated from the
theory of nonlinear waves [6]: the higher the amplitude, the
quicker a shock or shocklike structure is formed. In contrast
to the effective diffusivity shown in Fig. 3, which depends
on P but not on Pe, the time to reach the asymptotic state
does depend on Pe. In fact, as Fig. 4 shows, the curve vt∗/w0

as a function of P is shifted upward as Pe is increased.
Indeed, larger Pe corresponds to lower diffusivity and therefore
a longer time for the peak to spread and its amplitude
to fall sufficiently for the weakly nonlinear description to
be valid. Typical values of the physical parameters in a
microchip-based system may be w0 ∼ 100 μm, L ∼ 5 cm,
so that vT /w0 ∼ 500. Thus, Fig. 4 suggests that Burgers’
solution does describe the peak dynamics for most of the
separation time except for possibly a relatively short initial
transient.

D. Analysis

An approximate theoretical determination of the concentra-
tion φinter may be provided using the conservation equations.
The method of doing this is in fact entirely analogous to
the “moving boundary equations” (MBE) [13] for describing
advancing fronts (e.g., in isotachophoresis), except, in this
case, the front happens to be quasistationary. The conceptual
framework is illustrated in Fig. 5. The domain is decomposed
into three parts: the “initial zone,” where the sample is
injected, the “background zone” ahead of the advancing wave,
where all concentrations equal their initial values, and an
“interzone” between them. All variables are assumed constant
within each zone but undergo a discontinuous change across
zone boundaries. The values of the variables in each zone
are indicated in Fig. 5. The boundary between the initial
zone and the interzone is stationary whereas the boundary
between the interzone and the background zone moves to
the right. The arrows indicate fluxes of ions across the
stationary zone boundary. Conservation of these ionic fluxes
requires

Einiφini = Einterφinter, (7)

Einiφini
n = Einterφinter

n , (8)

where E represents the electric field and φ represents the
concentration (normalized by c∞

n ). The superscript (“ini” for
the initial zone, “inter” for the interzone, and “∞” for the
background zone) indicates the zone in which the variable is
evaluated and the subscript (p for cation, n for anion, and no
subscript for the sample) identifies the species. Therefore,

φinter
n = (

φini
n /φini

)
φinter. (9)

For the interzone,

K inter = c∞
n

(
φinter + φinter

p + φinter
n

)/
u

= K∞ = c∞
n

(
φ∞

p + 1
)/

u

= c∞
n (1 − zn/zp)/u. (10)

The electroneutrality condition (valid in all zones) is

zpφp + znφn + zφ = 0. (11)

By combining Eqs. (9) and (10) and using the electroneutrality
condition, we get an equation for determining φinter,

(1 − z/zp)φinter + r(1 − zn/zp)φinter = 1 − zn/zp, (12)

where the ratio φini
n /φini = r is a constant determined by the

ionic composition of the injected zone. Solving the above
linear equation for φinter, we have

φinter = [r + (zp − z)/(zp − zn)]−1. (13)

In our numerical experiment, the cation concentration was
chosen to be uniform, so that φini

p = φ∞
p = −zn/zp. Since

z : zp : zn = 1 : 2 : −1, r = 1/φini − z/zn = 1.5 and φinter =
0.55. This value is indicated by the dashed line in Fig. 2(a).
Clearly, it correctly describes the concentration of sample in
the interzone.

Thus, the theoretical description developed in [5] may be
used in the interzone (φ < φinter) but not in the initial zone.
In order for all ion concentrations to be non-negative in the
interzone, we must have φinter < φc < φ′

c. This inequality is
indeed true, as can be shown by some simple algebra (see the
Appendix).

III. CONCLUSIONS

The development of nonlinear waves in capillary elec-
trophoresis in the limit of a low as well as a high concen-
tration of sample ions was studied by numerical integration
of the governing equations. An idealized minimal model
was considered consisting of a three-ion (sample, co-ion,
and counter-ion) system of strong electrolytes.3 This study
complements an earlier paper by the authors. There it was
shown that, in the weakly nonlinear limit, the evolution of the
sample concentration may be reduced to Burgers’ equation,
which admits an exact analytical solution.

Numerical simulation revealed that the evolution of the
peak proceeds in a way that is qualitatively different when the
sample concentration is high. As a consequence of the sharp
reduction of the electric field in the region of sample injection,
the ion migration velocity in this zone is very small. Ahead of

3The situation of a weak electrolytic buffer was recently investigated
by the authors [17].
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this zone, the ions form a surge front with a steplike profile
propagating to the right. This state of affairs continues until the
dimensionless ion concentration (φ) in the injection zone drops
sufficiently so that φ < φinter. The subsequent dynamics then
proceeds in accordance with the weakly nonlinear theory [5].
The value of φinter may be approximately calculated by using
a simple model based on conservation of ionic fluxes.

This qualitative change in the dynamics of peak evolution
explains the breakdown of the weakly nonlinear theory when
the concentration φ exceeds the critical value φc. When φ

exceeds a certain value φinter < φc, part of the propagating
wave is effectively immobilized in the injection zone. It is
then no longer correct to assume [5] that the sample pulse
would quickly move out to a region where the Kohlrausch
function is constant.

The model studied here is clearly oversimplified. In
particular, real electrophoresis buffers contain many more
than three ions, including one or more weak acids or bases
to maintain a stable pH. Further, complex effects due to
inhomogeneities in the electro-osmotic flow may be relevant
[14]. In this paper, we ignore these complexities and attempt
to produce a detailed understanding of a “minimal” model
problem. One may question whether the strongly nonlinear
regime considered here is of relevance to actual laboratory
practice. The answer depends on the numerical values of
the critical concentrations φinter < φc < φ′

c. If the sample and
carrier ions have similar valences, then all of these critical
concentrations are of order unity. Thus, to exceed these critical
values, the sample ions in the injected plug will need to
be present at concentrations approaching that of the carrier
electrolyte. Such high concentrations are rarely employed in
laboratory practice. However, if the sample is a macro-ion,
the critical values may actually be quite small. For example,
at pH 2.0, bovine serum albumin has a valence, z ∼ 55 [15].
Then, in a univalent carrier electrolyte, we have φc ∼ 0.04, so
that the strongly nonlinear regime studied here may be easily
reached.
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APPENDIX: PROOF OF THE INEQUALITY φinter < φc < φ′
c

The critical concentration φc is defined as [5]

φc =
⎧⎨
⎩

zp−zn

zp−z
if z < 0,

− zn

zp

zp−zn

z−zn
if z > 0,

(A1)

whereas

φ′
c = 1

α
= zn(zp − zn)

(z − zn)(z − zp)
. (A2)

We need to show that φc < φ′
c when α > 0, that is, when zp >

z > zn. To do this, evaluate the ratio φc/φ
′
c when zp > z > zn:

φc

φ′
c

=
⎧⎨
⎩

zp−zn

zp−z

(z−zn)(z−zp)
zn(zp−zn) = −zn+z

−zn
< 1 if z < 0,

− zn

zp

zp−zn

z−zn

(z−zn)(z−zp)
zn(zp−zn) = zp−z

zp
< 1 if z > 0,

(A3)

which completes the proof.
To prove the remaining inequality, φinter < φc, we first

show that r > −z/zn when z < 0. To do this, we use the
electroneutrality condition to express φini

p in terms of the other
variables,

φini
p = − z

zp

φini − zn

zp

φini
n = φini

zp

(−z − rzn). (A4)

Now we must have φini
p > 0. This is always true if z < 0, but

if z > 0, then we require that r > −z/zn.
First suppose that z < 0. Then

φinter = 1

r + (zp − z)/(zp − zn)

<
1

(zp − z)/(zp − zn)
= zp − zn

zp − z
= φc. (A5)

Now suppose that z > 0. Then

φinter = 1

r + (zp − z)/(zp − zn)

<
1

−(z/zn) + (zp − z)/(zp − zn)

= − zn

zp

zp − zn

z − zn

= φc. (A6)

Thus, in all cases, φinter < φc, which completes the proof.
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