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Phase lag in epidemics on a network of cities
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We study the synchronization and phase lag of fluctuations in the number of infected individuals in a network
of cities between which individuals commute. The frequency and amplitude of these oscillations is known to be
very well captured by the van Kampen system-size expansion, and we use this approximation to compute the
complex coherence function that describes their correlation. We find that, if the infection rate differs from city
to city and the coupling between them is not too strong, these oscillations are synchronized with a well-defined
phase lag between cities. The analytic description of the effect is shown to be in good agreement with the results
of stochastic simulations for realistic population sizes.
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I. INTRODUCTION

The theory of the frequency and amplitude of stochastic
oscillations in models of epidemics of childhood diseases has
been extensively developed over the last few years [1–10],
but the question of the synchrony of these oscillations has
received comparatively little attention. This is despite its
undoubted importance; whether the oscillations in different
locations are in phase or out of phase with each other will
clearly have consequences for the duration of an epidemic
and for the persistence of a disease. The particular case of
in-phase and antiphase locking of epidemics in coupled cities
has been described and interpreted in the literature [11,12],
but only for models that exhibit periodic oscillations in the
infinite population limit. Similarly, synchronization in models
of coupled oscillators has been extensively studied [13],
including in particular demographic oscillators [14], but not in
the context of epidemics.

This subject has been so little investigated from a theoretical
point of view that it is useful to recall a simpler and more
familiar example. It is frequently argued in connection with
predator-prey interactions that if predator numbers happen to
be high, prey numbers will subsequently fall due to increased
predation, and when prey numbers fall, predator numbers
will subsequently fall due to lack of food. This is actually
an argument which relates to fluctuations in the number of
predators and prey and would seem to indicate oscillations,
with predator and prey numbers being out of phase with each
other.

A similar argument, although not so well known, can be
applied to infected and susceptible individuals in a city. In
both cases, the frequency and amplitude of these oscillations is
very well captured by the van Kampen system-size expansion
[1–8,15,16], and it seems reasonable to suppose that the
same approach should also be able to quantify the synchrony
and phase lag between oscillations of different kinds of
individuals. In this paper we apply this method to study
possible synchronization between fluctuations in the number
of infected individuals in a network of cities between which
individuals commute.

A previous study [17] has shown that if the parameter
setting the infection rate, denoted by β, is the same for

all cities in the network, then the stochastic dynamics takes
a remarkably simple form. This has been known for some
time in the case of the deterministic dynamics: a rather
general theorem tells us that in this case the fraction of
susceptible, infected, and recovered individuals is the same
in all cities [18]. In Ref. [17], it was shown that the stochastic
oscillations in this situation are also quite simple, having
only one frequency, which is independent of the city, even
if the sizes of the cities are different. As we will show later,
these oscillations are synchronized between cities, but with
no phase lag, in agreement with the findings reported in the
literature for stochastic simulations of infection dynamics on
coupled population patches [11,19]. Exploring spatial hetero-
geneity as a means to overcome some of the shortcomings of
the standard description of epidemics, namely, in the predicted
frequency of disease fade-outs, was one of the goals of these
studies. In this sense, the trivial phase relation between cities
is a negative result.

However, it was assumed in previous work that the infection
rate β is the same in all cities. If β is taken to be different in
different cities, the symmetry of the fixed point is broken,
which introduces the possibility of more complex oscillations.
There are other ways of achieving this, but within the
framework in which we will work, this is a natural way of
introducing the symmetry breaking. We shall see that, under
these conditions, the numbers of infected individuals fluctuate
with a phase lag between cities, provided that the coupling is
not too strong.

This paper is structured as follows. In Sec. II we describe
the stochastic model, including a microscopic interpretation
of the parameters in terms of the mobility patterns of the
populations and the characteristics of the disease. The deter-
ministic equations in the infinite population limit are derived
in Sec. III, as are the Langevin equations for the fluctuations
around the nontrivial deterministic equilibrium in the linear
noise approximation, found using van Kampen’s system-size
expansion. In Sec. IV we introduce the complex coherence
function that measures the cross correlations between different
cities and/or types of individuals, and we compute it for
susceptibility and infection in the simple case of one city as an
illustration of the method. The correlation between infection in
two cities is studied in Sec. V, and it is shown that for moderate
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coupling and different β the fluctuations have a characteristic
frequency range and phase relation. This is extended to the
case of three cities in Sec. VI. We conclude in Sec. VII.

II. MODEL

The model consists of n cities, labeled j = 1, . . . ,n con-
taining individuals who are infected, susceptible, or recovered
from a disease. As is common, for mathematical convenience
the total number of individuals in a particular city, Nj for
city j , is fixed. This means that the number of recovered
individuals in each city may be expressed in terms of the
number of infected and the number of susceptible individuals:
Rj = Nj − Sj − Ij , j = 1, . . . ,n. This reduces the number of
degrees of freedom from three to two per city, considerably
simplifying the analysis. It also means that deaths and births
are coupled, with the random death of an individual giving rise
to the birth of a susceptible individual and so providing a fresh
victim for the disease.

We will have in mind a particular type of interchange of
individuals between cities, but we will see that the construction
which comes from this is sufficiently general to encompass a
large variety of situations. A concrete example of what we
have in mind is a set of residential areas and one or more
urban areas; there would typically be a significant fraction of
commuters from the former to the latter and fewer from the
latter to the former. The model will thus allow for a fraction
of the individuals from city j to commute to city k, denoted
by fkj , with the number of noncommuters (residents) in city
j being 1 − fj ≡ 1 − ∑

k �=j fkj . The model will differ from
that studied in Ref. [17] in that we will take into account the
different nature of the city (for instance, residential or urban)
by allowing the parameter describing the rate of infection β to
vary from city to city.

If we denote the state of the system of n cities at a given time
by σ ≡ {S1,I1, . . . ,Sn,In}, then the recovery of an individual
in city j will occur at a rate γ Ij and cause a transition to
the new state σ ′ = {S1,I1, . . . ,Sj ,Ij − 1, . . . ,Sn,In}. We will
write the transition rate for this case as

T (Sj ,Ij − 1|Sj ,Ij ) = γ Ij , (1)

with the initial state on the right and the final state on the left.
It should be noted that we have only listed only the variables
in city j in order to lighten the notation. In a similar fashion,
the death of an infected or recovered individual and the birth
of a susceptible individual in city j are given by

T (Sj + 1,Ij − 1|Sj ,Ij ) = μIj ,
(2)

T (Sj + 1,Ij |Sj ,Ij ) = μ(Nj − Sj − Ij ),

respectively.
The network structure manifests itself when constructing

the transition rates induced by infections. The rate of infections
involving susceptibles from city j and infectives from city k

will be proportional to Sj Ik . There will be five types of terms.
In two of them k = j . These are when the infective residents in
city j infect susceptible residents in city j and when infective
commuters from city j infect susceptible commuters from city
j in city � (� �= j ). The rates for these are, respectively, βj (1 −
fj )2Sj Ij /Mj and β�f

2
�jSj Ij /M�, where βj is the parameter

which characterizes the infection rate in city j and where Mj

is the number of individuals in city j :

Mj = (1 − fj )Nj +
∑
m�=j

fjmNm. (3)

The other three terms result when the susceptibles from
city j are infected by individuals from city k, where cities
j and k are different. Then, infective commuters can infect
resident susceptibles at a rate βj (1 − fj )fjkSj Ik/Mj , infective
residents can infect commuting susceptibles at a rate βkfkj (1 −
fk)Sj Ik/Mk , and finally, infective commuters from city k infect
susceptible commuters from city j in city � (� �= j,k) at a rate
β�f�jf�kSj Ik/M�. These results allow us to write down the
transition rate for infection as

T (Sj − 1,Ij + 1|Sj ,Ij ) =
n∑

k=1

βjk

Sj Ik

Nk

, (4)

where

βjj = βj (1 − fj )2Nj

Mj

+
∑
� �=j

β�f
2
�jNj

M�

, j = 1, . . . ,n,

βjk = βj (1 − fj )fjkNk

Mj

+ βkfkj (1 − fk)Nk

Mk

+
∑
� �=j,k

β�f�jf�kNk

M�

, j,k = 1, . . . ,n; j �= k. (5)

Although we have a particular picture of how individuals
move between cites and of the assignment of infection rates to
the cities themselves, the final form of the transition rate (4) is
quite general. Our results will therefore apply to a wide range
of the possible types of interchanges of individuals and choice
of infection parameters. Unlike the case where the βj were all
equal [17], the βjk have no relations between them and so in
general are independent. Therefore they can be chosen from a
consideration of Eq. (5) or simply externally imposed.

III. DYNAMICS

The model defined in Sec. II is stochastic and Markovian
since the transition rates (1), (2), and (4) do not depend on past
states of the system. This means that, adopting a continuous
time description, the time evolution of the system may be
obtained from a master equation for P (σ,t), the probability
distribution for finding the system in state σ at time t

[16,20,21],

dP (σ,t)

dt
=

∑
σ ′ �=σ

[T (σ |σ ′)P (σ ′,t) − T (σ ′|σ )P (σ,t)], (6)

where T (σ |σ ′) are each of the rates (1), (2), and (4) taken in
turn [16,20,21].

The full master equation (6) cannot be solved exactly,
but the aspects that concern us here can be analyzed in a
remarkably precise way using the system-size expansion of
van Kampen [16]. We have carried out this calculation on a
simpler version of this model, when all the βj were equal,
elsewhere [17], and while the predictions are different, the
method of carrying out the expansion is very similar. A
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comparison of the transition rates shows that the results for the
model we are investigating here may be obtained from those in
Ref. [17] by substituting βcjk by βjk . We will therefore only
briefly indicate the steps in the analysis and refer the reader to
Ref. [17] for more details.

The method begins by making the following ansatz [16]:

Sj = Njsj + N
1/2
j xj , Ij = Nj ij + N

1/2
j yj , (7)

where j = 1, . . . ,n. Here sj = limNj →∞ Sj/Nj and ij =
limNj →∞ Ij /Nj are the fraction of individuals from city
j which are respectively susceptible and infected in the
deterministic limit. Therefore the variables are broken down
into a sum of deterministic terms, sj and ij , and the stochastic
deviations from these, xj and yj . The deterministic terms
satisfy the ordinary differential equations

dsj

dt
= −

n∑
k=1

βjksj ik + μ(1 − sj ),

(8)
dij

dt
=

n∑
k=1

βjksj ik − (γ + μ)ij ,

where j = 1, . . . ,n.
The stochastic fluctuations, xj and yk , which describe the

linear fluctuations around trajectories of the deterministic set
of equations (8), are found to obey a set of linear stochastic
differential equations. For convenience we introduce the vector
of these fluctuations z = (x1, . . . ,xn,y1, . . . ,yn) and indices
J,K = 1, . . . ,2n. Then these stochastic differential equations
have the form [16,20,21]

dzJ

dt
=

2n∑
K=1

AJKzK + ηJ (t), J = 1, . . . ,2n, (9)

where ηJ (t) are Gaussian noise terms with zero mean which
satisfy 〈ηJ (t)ηK (t ′)〉 = BJKδ(t − t ′). The two 2n × 2n matri-
ces A and B are obtained from the expansion procedure. In
fact, to determine matrix A it is not necessary to carry out the
full system-size expansion since it is related to the Jacobian
J found from linear stability analysis about a fixed point
of Eq. (8). The precise relationship is J = S−1AS, where
S = diag(

√
N1, . . . ,

√
Nn) [17]. The explicit forms for J and

B are most easily given in terms of the four n × n submatrices:

J =
[
J (1) J (2)

J (3) J (4)

]
(10)

and similarly for B. The elements of these submatrices are
found to be

J (1)
jk = −μδjk − δjk

n∑
�=1

βj�i�,

J (2)
jk = −sjβjk,

(11)

J (3)
jk = δjk

n∑
�=1

βj�i�,

J (4)
jk = −(μ + γ )δjk + sjβjk

and

B
(1)
jk = μδjk(1 − sj ) + δjk

n∑
�=1

sjβj�i�,

B
(2)
jk = B

(3)
jk = −μδjkij − δjk

n∑
�=1

sjβj�i�, (12)

B
(4)
jk = (γ + μ)δjkij + δjk

n∑
�=1

sjβj�i�.

These matrices depend on the solutions sj and ij of Eq. (8)
and so on time, but since we will be interested in fluctuations
about the stationary state, we use the fixed point values of sj

and ij , denoted as s∗
j and i∗j . The resulting matrices, J ∗ and

B∗, are then time independent.

IV. ANALYSIS

Adding the two sets of equations in (8), we immediately
see that the fixed points satisfy

(γ + μ)i∗j = μ(1 − s∗
j ), j = 1, . . . ,n. (13)

Using this equation to eliminate i∗, one finds that

s∗
j

[
(γ + μ) +

n∑
k=1

βjk(1 − s∗
k )

]
= (γ + μ) , j = 1, . . . ,n.

(14)

We will assume that the matrix of the coupling coefficients
βjk is irreducible, which means that any two cities have a
direct or indirect interaction. Otherwise, the n cities may be
split into noninteracting subsets, and several equilibria may be
found by combining disease extinction in some subsets with
nontrivial equilibrium in other subsets. The disease extinction
fixed point is simple to find. If we assume that any one i∗ is
zero, for instance, i∗� = 0, then from Eq. (13) s∗

� = 1. From
Eq. (8) we see immediately that

∑n
k=1 β�ki

∗
k = 0. Since the

matrix of couplings is irreducible and from Eq. (5) the entries
are non-negative, it follows that i∗k = 0 for all k.

Although it is difficult, and in most cases impossible, to
determine any nontrivial fixed points analytically, a theorem
[18] tells us that a unique stable fixed point exists and is stable.
The linear stochastic deviations from this fixed point satisfy
Eq. (9), with A and B being evaluated at the fixed point. To find
the dominant frequencies of the stochastic oscillations and, as
we shall see, also to study synchronization and phase lag, we
Fourier transform Eq. (9) to obtain

2n∑
K=1

(−iωδJK − AJK ) z̃K (ω) = η̃J (ω), J = 1, . . . ,2n,

(15)

where f̃ denotes the Fourier transform of function f . Defining
the matrix −iωδJK − AJK to be 	JK (ω), the solution to
Eq. (15) is

z̃J (ω) =
2n∑

K=1

	−1
JK (ω)η̃K (ω). (16)
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We now introduce the matrix

PJK (ω) ≡ 〈z̃J (ω)z̃∗
K (ω)〉

=
2n∑

L=1

2n∑
M=1

	−1
JL(ω)BLM (	†)−1

MK (ω), (17)

where the asterisk (∗) now denotes complex conjugation.
In previous studies, where the focus was on finding the

frequencies and amplitudes of the stochastic oscillations
[1–8,15], only the power spectrum (when J = K) was ana-
lyzed. Here we will also be interested in the cross correlations
between infection in two different cities and so will also wish
to calculate the cross spectrum (when J �= K). It is frequently
convenient to normalize this by the relevant power spectrum
and instead work with the complex coherence function (CCF)
defined by [22–24]

CJK (ω) ≡ PJK (ω)√
PJJ (ω)PKK (ω)

. (18)

The CCF will, in general, be complex for J �= K , and so
typically one calculates its magnitude and phase, that is, the
coherence,

|CJK (ω)| = |PJK (ω)|√
PJJ (ω)PKK (ω)

, (19)

and the phase spectrum,

φJK (ω) ≡ tan−1

[
Im[CJK (ω)]

Re[CJK (ω)]

]
= tan−1

[
Im[PJK (ω)]

Re[PJK (ω)]

]
.

(20)

As an example of using the CCF to understand synchroniza-
tion and phase lag in systems with sustained stochastic cycles,
we apply it to the susceptible-infected-recovered (SIR) model
in a single city. We could also apply it to the predator-prey
system discussed earlier, but we already have the required
equations for the one-city SIR model in this paper: Eqs. (8)–
(14), with the indices omitted and with βjk replaced by β.
It should be emphasized that in this example we are looking
at the synchronization and phase lag between susceptible and
infected individuals, whereas in the actual application of the
formalism to n cities, the interest is in possible synchronization
and phase lag between infected individuals in city j and
infected individuals in city k.

For models such as the one-city SIR and the predator-prey
model, Eq. (19) becomes

|C21(ω)| =
√

g4ω4 + g2ω2 + g0

h4ω4 + h2ω2 + h0
, (21)

where the coefficients of the polynomials are sums of products
of AJK and BJK , J,K = 1,2, which can be found from
Eqs. (15)–(19), and Eq. (20) becomes simply

φ21(ω) = tan−1

[
k1ω

k0 + k2ω2

]
, (22)

where again k0,k1, and k2 are sums of products of AJK and
BJK , J,K = 1,2.

The power spectra of the fluctuations of susceptible and
infected individuals computed from Eqs. (17), P11(ω) and
P22(ω), are shown in Fig. 1(a). Stochastic amplification gives
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FIG. 1. (Color online) Synchronization and phase lag between
susceptible and infected individuals in the one-city SIR model.
(a) Analytical power spectra of the fluctuations of susceptibles
(solid black line), P11(ω), and of infectives [solid cyan (gray) line],
P22(ω), given by Eq. (17). The dotted vertical line indicates the
frequency ωmax at which these spectra attain maxima. (b) Phase
spectrum φ21(ω) and (c) coherence |C21(ω)| for the fluctuations
of infectives and susceptibles. The solid lines are the analytical
results given by Eqs. (22) and (21). The open circles are the results
for the same quantities obtained from simulations. Parameters are
N = 106, β = 17(γ + μ), μ = 1/50 1/yr, and γ = 365/13 1/yr. In
all panels the dashed vertical lines bound the frequency range where
the stochastic amplification is significant.

rise to significant fluctuations in a well-defined frequency
range centered at the frequency ωmax where both P11(ω) and
P22(ω) peak. The coherence |C21(ω)| and phase spectrum
φ21(ω) given by Eqs. (21) and (22) are shown in Figs. 1(c)
and 1(b), respectively, together with the results for the same
quantities obtained from numerical simulations. There is very
good agreement between the analytic approximation and the
simulations in the frequency range where the fluctuations have
significant amplitude. Outside of this range, the magnitudes
of the power spectra are so low that errors become significant,
leading to agreement which is not as good. However, within
this frequency range the fluctuations of the two kinds of
individuals are strongly correlated and have a well-defined
phase lag.

The numerical results presented here and in the following
sections were obtained from long numerical simulations based
on the Gillespie algorithm [25]. Each run started from a random
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initial condition, with the vector of the fluctuations of suscep-
tibles and infectives in n cities, z = (x1, . . . ,xn,y1, . . . ,yn),
computed from simulated time series according to Eq. (7)
and recorded at equal time intervals. From each simulation
run the power and cross spectra for the fluctuations are
computed as z̃J (ω)z̃∗

K (ω), where J,K = 1, . . . ,2n and where
the asterisk (∗) denotes complex conjugation, by using discrete
Fourier transforms. The final spectra are averages of 103 to
5 × 103 simulations. Having computed these, the numerical
CCFs, coherence, and phase spectra can easily be computed
from Eqs. (18)–(20). The values for the epidemiological and
demographic parameters used in this paper are those relevant
for measles. In all simulations, we take μ = 1/50 1/yr and
γ = 365/13 1/yr [26–28].

V. TWO CITIES

We now turn to the description of the synchronization
and phase lag between infected individuals in two different
cities, using the quantities introduced in Sec. IV. Plots of the
power spectra for infectives, P33(ω) and P44(ω), are shown
in Fig. 2(a) for a certain choice of parameters (recall that
z3 and z4 are the fluctuations of infection in cities 1 and 2,

respectively). Different values have been taken for β1 and β2

to reflect different social contact patterns in the two cities. In
contrast with the spectra for different types of individuals in the
one-city case, P33(ω) and P44(ω) peak at different frequencies
ωmax1 and ωmax2 . The frequency range of interest is bounded
by the two dashed vertical lines in Fig. 2(a); outside this range,
P33 and P44 have negligible amplitude. A parametric plot of the
range of the coherence function C43(ω) in the complex plane
is shown in Fig. 2(b), where the red (dark gray) portion of the
solid line corresponds to the frequency range highlighted in
Fig. 2(a). It can be seen that the fluctuations in the number of
those infected in the two cities are correlated and synchronize
with a well-defined phase relation in the whole frequency range
where both their amplitudes are significant.

Also shown in Fig. 2(b) are the results for C43(ω) obtained
from numerical simulations. There is a good agreement
between simulations and analytic results within the frequency
resolution limits of the former, showing that for the chosen
system sizes the fluctuation cross-correlation behavior is well
captured by the linear noise approximation.

In order to investigate the dependence of the coherence and
phase spectrum on the choice of parameters, we have computed
the value ωM for which |C43(ω)| attains its maximum,
|C43(ωM )| and φ43(ωM ). A plot of φ43(ωM ) and |C43(ωM )|
as a function of (β2 − β1)/(γ + μ) is shown in Figs. 3(a)
and 3(b). To obtain the plot only the infection rate β2 was
varied while the remaining parameters were kept fixed. With
respect to the example of Fig. 2, we have chosen one of the
populations, N2, to be twice as large and one of the coupling
parameters, f12, to be five times larger. It should be noted
that when (β2 − β1)/(γ + μ) is so large that the frequency
ranges of the stochastic fluctuation peaks in each city no longer
overlap, |C43(ω)| becomes bimodal instead of unimodal, and
ωM is no longer well defined. The difference between the
peak frequencies ωmax1 of P33 and ωmax2 of P44 is shown
in Fig. 3(c). For values of (β2 − β1)/(γ + μ) to the left of
the represented range, i.e., for values smaller than −17.5,
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FIG. 2. (Color online) Synchronization and phase lag between
infected individuals in city 1 and infected individuals in city 2 in the
two-city SIR model. (a) Power spectra of the fluctuations of infectives
in city 1 (solid black line), P33(ω), and of infectives in city 2 [solid
cyan (gray) line], P44(ω), given by Eq. (17). The dotted vertical lines
indicate the frequencies ωmax1 and ωmax2 at which these spectra attain
maxima. The dashed vertical lines bound the frequency range where
the stochastic amplification is significant. (b) Parametric plot of the
CCF, C43(ω), in the complex plane. The solid line is the analytical
result given by Eq. (18) [the parts of the curve shown in red (dark gray)
and in light gray correspond to 1 � ω � 5 and {0 � ω < 1} ∪ {5 <

ω � 100}, respectively], and the open circles are the result for the
same quantity obtained from simulations for 0 � ω � 10. Parameters
are β1 = 12(γ + μ), β2 = 17(γ + μ), N1 = N2 = 106, f12 = 0.001,
f21 = 0.01, μ = 1/50 1/yr, and γ = 365/13 1/yr.

this difference becomes larger, leading to a more complex
synchronization pattern and a bimodal |C43(ω)|.

We also see that, in this case, fluctuations with a nontrivial
phase relation require the two cities to have different values
of the infection rates, β1 and β2. We have found this to be
true in general. More precisely, the imaginary parts of the
cross spectra of infection PJK (ω) with J,K = n + 1, . . . ,2n

and J �= K , as given by Eq. (17), are identically zero when
the infection rates βi , i = 1, . . . ,n, are the same in all cities,
independently of the choice of the population sizes and
fractions of commuters. The proof of this result is given in the
Appendix. This is compatible with either in-phase or antiphase
synchronization.
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FIG. 3. (Color online) Dependence of the synchronization and
phase lag between infected individuals in city 1 and infected
individuals in city 2 on the infection rates in the two-city SIR model.
(a) Phase φ43(ωM ) and (b) coherence |C43(ωM )| given by Eq. (20) and
by Eq. (19) as a function of (β2 − β1)/(γ + μ). (c) The difference
between the peak frequencies ωmax1 of P33 and ωmax2 of P44 as
a function of (β2 − β1)/(γ + μ). To obtain the plots β2/(γ + μ)
was fixed at 15, and β1/(γ + μ) was varied between 5 and 32.5.
Parameters are N1 = 106, N2 = 2 × 106, f12 = 0.005, f21 = 0.01,
μ = 1/50 1/yr, and γ = 365/13 1/yr.

Another condition for φ43(ωM ) to be different from zero is
that the coupling between the two cities is not too strong. A
plot of |C43(ωM )| and φ43(ωM ) as a function of the coupling f21

is shown in Fig. 4. The remaining parameters are as in Fig. 2,
except for N2, which was taken twice as large. It can be seen
that |C43(ωM )| increases monotonically with f21, indicating an
increase in cross correlation between infected individuals in
the two cities as the coupling gets stronger, but φ43(ωM ) tends
to zero with increasing f21.

VI. THREE CITIES

The analysis carried out in Sec. V can be extended to
three or more cities. In this section we will illustrate this by
investigating two examples for three cities. We have checked
that the approximate analytic description is again in good
agreement with the results of simulations, and the plots show
the analytic results only, to avoid cluttering.

In the case of Fig. 5, the population sizes are equal, the
demographic coupling parameters fij are all equal, but the
three transmission rates βj , j = 1,2,3 are different. The power
spectra of the fluctuations of infectives in each city, PJJ ,
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FIG. 4. (Color online) Dependence of the synchronization and
phase lag between infected individuals in city 1 and infected
individuals in city 2 on the fractions of commuters between the cities
in the two-city SIR model. The description and coloring are as in
Fig. 3. To obtain these log-linear plots, f12 was fixed at 0.001, and
f21 was varied between 0 and 1. Parameters are β1 = 12(γ + μ),
β2 = 17(γ + μ), N1 = 106, N2 = 2 × 106, μ = 1/50 1/yr, and γ =
365/13 1/yr.

J = 4,5,6, shown in Fig. 5(a), behave as in the example of
Fig. 2, as do the coherence and the phase spectra. The ranges
of C54, C64, and C65 in the complex plane are plotted in
Fig. 5(b). The phase lags between cities 4 and 5 and 5 and
6 are approximately the same in this case.

In the example of Fig. 6 we have considered different
population sizes and coupling parameters fij , and we have
also increased the difference between the transmission rates βj ,
j = 1,2,3 with respect to the previous example. The results
for the fluctuation power spectra and for the ranges of C54,
C64, and C65 in the complex plane are plotted in Figs. 6(a)
and 6(b), respectively. In this case we find three different
phase lags for the correlated fluctuations in the three city
pairs.

These phase lag effects have implications for estimates
of the duration of an epidemic and of the likelihood of
disease extinction. In a metapopulation model with different
transmission rates epidemic bursts should last longer, and
disease extinction should occur less frequently than in a single
population with the same overall size.

VII. CONCLUSIONS

In this paper we have considered a stochastic metapop-
ulation version of a susceptible-infected-recovered model
representing infection dynamics in different demographically
coupled urban centers. We derived the state transition rates
of the stochastic process from a microscopic model for the
mobility of individuals between cities. Similar rate equations
based on a phenomenological coupling parameter have been
proposed in the literature. Here we have adopted a bottom-up
approach, as an illustration of how the parameters of the
general model can be related with the mobility patterns of
the subpopulations.

The correlations between the fluctuations in the number
of infected in different cities were studied by means of the
complex coherence function. It was found that, if the infection
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FIG. 5. (Color online) Synchronization and phase lag between
infected individuals in three cities with different infection rates in
the three-city SIR model. (a) Power spectra of the fluctuations of
infectives in city 1, P44(ω), in city 2, P55(ω), and in city 3, P66(ω),
given by Eq. (17). The dotted and the dashed vertical lines have
the same meanings as in Fig. 2. (b) Parametric plot of the CCFs
given by Eq. (18), C54(ω), C64(ω), and C65(ω), in the complex plane.
Parameters are β1 = 7(γ + μ), β1 : β2 : β3 = 7 : 12 : 17, Ni = 106,
μ = 1/50 1/yr, γ = 365/13 1/yr, and fij = 0.005, where i = 1,2,3
and i �= j .

rate differed from city to city and the coupling was not too
strong, oscillations were observed which were synchronized
with a well-defined phase lag between cities. We also showed
that for realistic population sizes this effect was well described
analytically by the linear noise approximation.

The combined effect of stochasticity and demographic
coupling as a possible driver of correlations and spatial patterns
that are missed by traditional epidemic models was suggested
long ago [19,29]. This idea has been left largely unexplored
because these early studies based on computer simulations
took the infection rate to be the same in different cities.
In this case, as we have seen, the fluctuations are trivially
synchronized, with no phase lag. However, the infection rate
is a phenomenological parameter that depends not only on the
disease but also on the rate of potentially infectious contacts
that characterize a given social environment. In particular, a
strong positive correlation between the measles transmission
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FIG. 6. (Color online) An example of synchronization and phase
lag between infected individuals in three cities in the case when
all parameter values are different. The description and coloring are
as in Fig. 5. Parameters are β1 = 7(γ + μ), β1 : β2 : β3 = 7 : 12 :
27, N1 = 2 × 106, N1 : N2 : N3 = 2 : 1 : 0.5, μ = 1/50 1/yr, γ =
365/13 1/yr, f12 = f31 = 0.001, f13 = f23 = 0.002, f21 = 0.01, and
f32 = 0.005.

rate and population density was confirmed in a recent study
based on daily monitoring of urban populations [30]. The
conditions found in this paper for a nontrivial phase relation
between the disease incidence fluctuations in connected
urban centers can therefore be considered realistic in many
settings.
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APPENDIX: PROOF THAT P (4) IS REAL WHEN THE
INFECTION RATES ARE EQUAL

In this appendix we will show that the matrix PJK defined
by Eq. (17) is real for J,K = n + 1, . . . ,2n, in the case where
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the infection rates for each city are equal: βj = β for all j . This
shows that the cross spectra for fluctuations in the number of
infected individuals is real, and so in this case there is either
no phase lag or a phase lag of π . We would expect that the
former situation, i.e., no phase lag, would hold, and we have
explicitly checked this for the case of two cities. For general n

we have a partial proof that the phase lag is zero, and work is
underway to complete it.

The results for the situation where βj = β for all j can be
inferred from the results of the current paper and are given
explicitly in Ref. [17]. They are given in terms of matrices A

and B at the fixed point and can be most easily expressed in
terms of four n × n submatrices by writing

A =
[

A(1) A(2)

A(3) A(4)

]
(A1)

and similarly for B and 	(ω) ≡ −iωI − A. Here I is the n × n

identity matrix. The matrices 	(1) and 	(3) are proportional
to the identity matrix, and we write them as ρI and σI ,
respectively. The inverse of 	(ω) then takes the simple
form

	−1(ω) =
[−	(4) 	(2)

σI −ρI

] [
Y 0
0 Y

]
, (A2)

where Y−1 is the n × n matrix σ	(2) − ρ	(4).
In the calculation of PJK (ω) the matrices Y appear in the

combination

Z =
[

Y 0
0 Y

] [
B(1) B(2)

B(3) B(4)

] [
Y † 0
0 Y †

]
. (A3)

However, in the case we are interested in [17], the submatrices
B(α), α = 1, . . . ,4 are diagonal: B

(α)
jk ≡ Bαδjk with j,k =

1, . . . ,n. Therefore

Z =
[

B1YY † B2YY †

B3YY † B4YY †

]
. (A4)

The quantity we wish to study, PJK (ω), is now given by

P =
[−	(4) 	(2)

σI −ρI

] [
Z(1) Z(2)

Z(3) Z(4)

] [−	(4)† σ̄ I

	(2)† −ρ̄I

]
, (A5)

where Zα is one of the four submatrices given in Eq. (A4).
It follows from Eq. (A5) that

P (4) = σ 2Z(1) − σ (ρ + ρ̄) Z(2) + |ρ|2Z(4), (A6)

where we have used Z(2) = Z(3), which follows from the
symmetry of the matrix B (B2 = B3), and have also used the
reality of σ . We now show that the matrix Z is real, and so
P (4) is real.

To do this we write down the explicit forms for the entries
of 	(ω). They are [17]

ρ = μβ

μ + γ
− iω,

σ = μ − μβ

μ + γ
,

(A7)
	(2) = (μ + γ ) χ,

	(4) = (μ + γ − iω) I − (μ + γ ) χ,

where χ is an n × n matrix given by χjk = (Nj/Nk)1/2cjk and
is real and symmetric [using Eq. (B5) of [17]]. Therefore from
the definition of the matrix Y ,

Y−1 = G(ω)I + H (ω)χ, (A8)

with

G(ω) = −
(

μβ

μ + γ
− iω

)
(μ + γ − iω) (A9)

and

H (ω) = (μ + γ ) (μ − iω) . (A10)

Using the symmetry and reality of the matrix χ ,

Y−1†Y−1 = |G(ω)|2I + |H (ω)|2χ2

+{G(ω)H (ω) + G(ω)H (ω)}χ, (A11)

which is clearly real. Therefore the inverse of this matrix, YY †,
is also real. From Eq. (A4) it follows that Z is real since B is
real.

We end by showing that the cross spectra for the fluctuations
in the number of susceptible individuals is also real in this case.
Although we have not explicitly investigated this quantity in
the main text, it is also of interest, and by analogy with P (4)

we would expect it to be real too. From Eq. (A5)

P (1) = 	(4)Z(1)	(4)† − 	(4)Z(2)	(2)†

−	(2)Z(3)	(4)† + 	(2)Z(4)	(2)†. (A12)

Since, from Eq. (A7), 	(4) = (μ + γ − iω)I − 	(2) and 	(2)

is real and since Zα are real, the imaginary part of P (1) is given
by

ImP (1) = ω{Z(1)	(2) − 	(2)Z(1)

+Z(2)	(2) − 	(2)Z(3)}. (A13)

Writing Zα = BαYY † and 	(2) = (μ + γ )χ yields

ImP (1) = ω(μ + γ )(B1 + B2){(YY †)χ − χ (YY †)},
(A14)

where we have used B3 = B2. Now from Eq. (A11), the matrix
Y−1†Y−1 is a sum of matrices proportional to the identity, χ and
χ2. Therefore it commutes with matrix χ , that is, χY−1†Y−1 =
Y−1†Y−1χ , from which it follows that YY †χ = χYY †, and so
from Eq. (A14), ImP (1) = 0.
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