
PHYSICAL REVIEW E 85, 051901 (2012)
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Various microorganisms use chemotaxis for signaling among individuals—a common strategy for communi-
cation that is responsible for the formation of microcolonies. We model the microorganisms as autochemotactic
active random walkers and describe them by an appropriate Langevin dynamics. It consists of rotational diffusion
of the walker’s velocity direction and a deterministic torque that aligns the velocity direction along the gradient of
a self-generated chemical field. To account for finite size, each microorganism is treated as a soft disk. Its velocity
is modified when it overlaps with other walkers according to a linear force-velocity relation and a harmonic
repulsion force. We analyze two-walker collisions by presenting typical trajectories and by determining a state
diagram that distinguishes between free walker, metastable, and bounded cluster states. We mention an analogy
to Kramer’s escape problem. Finally, we investigate relevant properties of many-walker systems and describe
characteristics of cluster formation in unbounded geometry and in confinement.
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I. INTRODUCTION

The self-organization of identical units into complex time-
and space-dependent structures appears as one of the most
fascinating and common features in nature [1]. Aristotle’s
understanding after which the whole is greater than the
sum of its parts, also holds for biological systems. Many
microorganisms form aggregates and ultimately constitute a
multicellular organism that offers optimal living conditions for
the cell community [2]. Important paradigms of multicellular
communities are biofilms, formed by various species, such
as B. subtilis, P. aeruginosa, and E. coli [3,4]. To coordinate
growth, motion, and biochemical activities, microorganisms
interact and communicate with each other by physical and
chemical means. For instance, direct cell to cell contact is
a typical physical interaction [5,6], whereas chemotaxis and
quorum sensing represent the most prominent examples for
signaling mechanisms with the help of chemicals [7,8].

Chemotaxis denotes the directed motion of microorganisms
along the gradient of a chemical substance called chemoat-
tractant [9]. Many cells such as the bacteria E. coli and S.
typhimurium or the amoeba Dictyostelium discoideum (Dicty
in short) produce chemoattractants themselves under certain
living conditions and use it for chemotactic signaling [10].
In the following we refer to it as autochemotaxis. It provides
an important means for microorganisms to communicate with
and to attract each other.

A central aspect of current research on chemotaxis is the
collective dynamics of chemotactic cells [11–17]. Further
research concentrates on understanding internal signaling
pathways on the biochemical level [18–21] and on elucidating
mathematical features of chemotaxis models [22]. Numerous
studies more related to nonequilibrium statistical physics
examine active particle systems with a particular focus on
clustering and collective motion [23–28]. In the present
publication we aim to present and analyze a generic model for
autochemotaxis of identical model microorganisms and study,
in particular, the formation of clusters and their properties.

In our previous work we have introduced a model for the
dynamics of a single autochemotactic walker [29]. Here we

give the formerly point-like walker a finite extent and regard
it as soft disk which is repelled by other walkers as soon as
the disks overlap. Inspired by experimental results of Miyata
et al. [30], we assume a linear relation between the velocity
of the walker and the force acting on it. For simplicity, the
repulsive force between two walkers is harmonic. For two
autochemotactic walkers we present a state diagram where we
identify free walker, metastable, and bounded cluster states in
terms of the chemotactic coupling strength, one of our relevant
parameters. Apart from ensemble averaged quantities, such as
the mean lifetime of a two-walker cluster and the size and
asymmetry of larger aggregates, we also show typical trajec-
tories of the model microorganisms. When the chemotactic
field is not sufficiently strong, some of the two-walker clusters
in the metastable state break up during simulation time. We
investigate this situation in detail and compare it to Kramers’
escape problem. At the end, we qualitatively study some as-
pects of many-walker systems. Walkers can form metastable or
hot clusters that dissolve in time. Stable clusters relax exponen-
tially toward their stationary circular shape after some distur-
bance. Several of these microcolonies coalesce into one bigger
cluster. Experiments with cells, such as granulocytes or Dicty,
have shown that clustering requires a minimal cell density
[31,32]. By tuning our model parameters in confined geometry,
we confirm this experimentally observed clustering transition.

The article is organized as follows. In Sec. II we first intro-
duce our model of autochemotactic active walkers (Sec. II A),
treat collisions between walkers by modeling them as soft disks
(Sec. II B), relate our parameters to biological quantities, and
introduce a rescaled version of our model (Sec. II C). We study
the properties of two-walker and many-walker systems in Secs.
III and IV, respectively. Finally, we summarize our results in
Sec. V.

II. THE MODEL

A. Autochemotactic active walkers

We model motile microorganisms that communicate via
autochemotaxis as active Brownian walkers using a Langevin
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equation. In a previous publication [29] we have motivated our
approach in detail and just summarize it here. We consider a
system of m identical walkers that move on a planar surface
with velocities vi(t) (i = 1, . . . ,m). The observation that for
various cell types fluctuations in speed and direction of motion
decouple, suggests to express the velocity vectors in polar
coordinates [33]. Furthermore, we keep the speed of isolated
particles constant, |vi(t)| = v, so that the velocity of particle i

becomes

vi(t) = vei(t) = v

(
cos ϕi(t)
sin ϕi(t)

)
. (1)

The unit vector ei(t) gives an intrinsic direction along which
isolated microorganisms move. When they collide, their
velocities do not necessarily have to be parallel to ei(t), as
explained in Sec. II B [34]. The walker’s trajectory ri(t) is
obtained by integrating d

dt
ri(t) = vi(t).

Each walker emits a chemical substance with a constant
production rate h. The chemical diffuses in the plane with
diffusion coefficient Dc and is degraded by the environment
at a constant decay rate k. The resulting reaction diffusion
equation for the chemical’s concentration c(r,t) thus reads

∂t c(r,t) = Dc∇2c(r,t) − kc(r,t) + h

m∑
i=1

δ[r − ri(t)], (2)

where ∇2 denotes the two-dimensional Laplacian.
To account for chemotaxis we define the chemotactic field

E(r,t) = κ∇c(r,t) and introduce a torque E × ei that tries
to align the walker’s intrinsic direction ei(t) along E. In the
following we assume the coupling strength or chemotactic
sensitivity κ to be constant [35]. Positive κ represents attractive
chemotaxis in response to a chemoattractant, negative κ means
repulsive chemotaxis due to a chemorepellent. We formulate
the Langevin equation for the intrinsic direction of motion in
the overdamped limit. It contains the deterministic chemotactic
torque and a stochastic torque:

dϕi(t)

dt
= − 1

γR
[E(ri(t),t) × ei(t)]z + √

2qϕ �i(t). (3)

The cross product is oriented perpendicular to the plane along
the z axis and γR > 0 is the rotational friction coefficient. As
usual, qϕ > 0 denotes the strength of the Gaussian white noise
�i(t) characterized by a zero mean 〈�i(t)〉 = 0 and the time
correlation function 〈�i(t)�j (t ′)〉 = δij δ(t − t ′). The noise
term represents all stochastic torques acting on the walker.
In contrast to ordinary Brownian motion, it also includes
nonthermal contributions.

We solve Eq. (2) with the help of its Green function and
then determine the chemotactic field at the particle’s position
ri(t), E = E(ri(t),t), which enters in Eq. (3):

E = − κh

8πD2
c

∫ t−τdel

0
dt ′

e−k(t−t ′)

(t − t ′)2

×
m∑

j=1

[ri(t) − rj (t ′)] exp

(
− [ri(t) − rj (t ′)]2

4Dc(t − t ′)

)
. (4)

Here we assume that the walkers start to emit their chemical
substance at t = 0. Note that the concentration gradient in

Eq. (4) has been derived in a more general form by Grima in
Ref. [36]. The delay time τdel > 0 regularizes the integral. It
means that a walker reacts to its own emitted chemical only
after a short delay. The integral representation of E(ri(t),t)
reveals the non-Markovian property of the chemotactic inter-
action since the history of all trajectories contributes to the
current value of E(ri(t),t).

B. Collisions of autochemotactic walkers

So far we have described how autochemotactic walkers
interact by the chemotactic field which they create themselves.
However, real microorganisms are not point-like objects and
if they collide with each other, their velocities change. It
is known that the shape of bacteria plays a significant role
for how they cluster and the resulting collective motion (see,
for example, Ref. [24]). Here we are interested in clustering
as a pure result of autochemotactic signaling. Therefore,
instead of introducing the specific shape of the cell body,
we view an autochemotactic walker in two dimensions as a
circular disk of radius a whose center moves with velocity
vi(t) = vei(t). When they touch each other, they experience
some repulsive force which then alters their velocities. In
the following we describe how we implement the collisions
between autochemotactic walkers.

When two walkers move against each other in a central
collision, the repulsive force will slow them down until they
both come to a halt at a stall force Fst, while still trying to walk
against each other. For example, for the parasitic bacterium
Mycoplasma mobile the relation between velocity and applied
force has been measured by Miyata et al. [30]. They found
that the bacterium’s gliding speed decreased linearly with
force until it became zero at the applied stall force. We will
use this linear velocity-force relation for our autochemotactic
walkers as indicated by the solid line in Fig. 2. Each walker
has an intrinsic direction ei along which it walks with a speed
v. During a collision with walker j , the unit vector ei does
not have to be parallel to the connecting line of walkers i

and j (see Fig. 1). Normal to this line, the motion of the
walkers is not hindered, and v⊥

i is just the normal velocity
component of vei . However, the parallel velocity component
v‖

i = −v
‖
i eij is slowed down by the collision so that the

walker’s momentary velocity vi = v‖
i + v⊥

i deviates from vei .
As Fig. 2 illustrates, we assume that at a given collision angle γ

between ei and the connecting line, the velocity-force relation
for v

‖
i has the same slope as for the central collision. So,

the parallel component as a function of the central force Fij

becomes

v
‖
i = −v

Fij

Fst
+ v cos γ. (5)

In particular, the stall force for an oblique collision is smaller
than for a central encounter. Note that a negative v

‖
i means

that walker i moves away from walker j . For example, when
ei changes its direction from a central (γ = 0) to an oblique
(γ �= 0) collision, the repulsive force Fij from particle j might
be strong enough that it not just stops walker i, but also reverses
its parallel velocity v‖

i .
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FIG. 1. Two chemotactic walkers of radius a collide. Whereas
the velocity component v⊥

i normal to the connecting line agrees with
the normal component of the free velocity vei , the parallel velocity
component v||

i along the connecting line decreases according to a
linear velocity-force relation illustrated in Fig. 2. The angle between
ei and the connecting line is γ and eij is a unit vector that points from
walker j to i.

For simplicity we assume that the repulsive force Fij is
harmonic and only acts when the two disks of the walkers
overlap:

Fij =
{

F0
(
1 − rij

2a

)
eij , rij � 2a,

0, rij > 2a.
(6)

Here rij is the distance between the centers of disk i and j and
F0 > 0 is a measure for the strength of repulsion. The force
law (6) was successfully applied to model the rigidity-loss
transition in foams [37]. An alternative to Eq. (6) would be
a Hertzian contact force [38]. However, we do not expect
large changes of the results presented below since the only
purpose of Eq. (6) is to introduce some finite extension of the
autochemotactic walkers.

We can now write down the velocity of walker i, vi =
−v

‖
i eij + v⊥

i , both during a collision (rij < 2a) and when it is

FIG. 2. (Color online) Force-velocity relation for the parallel
velocity component v

‖
i of walker i. Fij is the force with which walker

j acts on i. Each curve corresponds to a certain collision angle γ

which is defined in Fig. 1.

well separated from other walkers (rij > 2a):

vi =
{

vei + v
1− rij

2a

1− rst
2a

eij , rij � 2a,

vei , rij > 2a.
(7)

To arrive at the upper line we have used vei = −v cos γ eij +
v⊥

i together with Eqs. (5) and (6). We have also introduced
the stall distance rst where two walkers come to a halt
during a central collision. Setting Fst = Fij (rst), Eq. (6)
gives rst/2a = 1 − Fst/F0. To account for the softness of
microorganisms during collisions, we choose typical values
for rst/(2a) between 0.8 and 0.95 throughout our work. If a
walker overlaps with several neighbors, the correction term in
Eq. (7) is summed up over all neighbors and the upper line in
Eq. (7) becomes

vi = vei + v
∑

j �=i, rij �2a

1 − rij

2a

1 − rst
2a

eij . (8)

A similar treatment of colliding active disks is found in
the model of Ref. [39]; for an alternative interaction where
a speed-dependent potential penalizes overlap between disks,
we refer to Ref. [40]. In contrast to the cited publications, we
have given a clear physical explanation for our treatment of
colliding disks. It is based on a harmonic interaction potential
and a linear relationship between force and velocity.

We add a final comment. In the following we make the
simplifying assumption that the chemotactic substance is
emitted at the disk center of each microorganism and that its
diffusive spreading is not influenced by the finite extent of the
autochemotactic walkers. Since the walkers or microorganisms
move in a plane, the chemical can always use the third
dimension to diffuse parallel to the plane. This would imply
a full three-dimensional treatment for the diffusion of the
chemical. Since it is more tedious and not crucial for the current
considerations, we restricted ourselves to the two-dimensional
case.

C. Rescaled units and simulation parameters

We rescale lengths and velocities in our model in units of
the characteristic size of a microorganism, the disk radius a,
and its intrinsic speed v. Within the time unit t0 = a/v, the
walker moves half its body length.

For zero chemotactic field, the velocity direction diffuses
on the unit circle and its directional correlations decay
exponentially during the characteristic time τrot = q−1

ϕ , 〈ei(t) ·
ei(0)〉 = exp(−qϕt) [29]. Hence, the walker moves on an
almost straight path with persistence length sper = vτrot. We
define the persistence number α as the persistence length in
units of a:

α = sper

a
= v

aqϕ

= τrot

t0
. (9)

Since α can be rewritten as ratio of the rotational decorrelation
time and the translational drift time, it was also called rotational
Péclet number [41]. In the following we use α to parametrize
the noise strength qϕ . The rotational diffusion of ei(t) leads to
a translational diffusion with coefficient D = v2/(2qϕ) [29].
In units of D0 = a2/t0 = av, the diffusion coefficient reads
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TABLE I. Characteristic parameters for E. coli and Dicty [13,42–46]. Chemoattractants of E. coli are sugars or amino acids, their decay rate
k is estimated. The chemoattractant of Dicty, cAMP, is degraded by the enzyme phosphodiesterase with known rate k given in Refs. [13,46].
The directional correlation time τrot of E. coli is adjusted such that D = v2/(2qϕ) gives the measured diffusion coefficient. It equals the
duration of three run-and-tumble events. Other values are calculated from t0 = a/v, D0 = av, α = τrot/t0, and lc = √

Dc/k.

a (μm) v (μm/s) t0 (s) D0 (m2/s) τrot = q−1
ϕ (s) α

E. coli 1 20 0.05 2 × 10−11 3.3 66
Dicty 5 0.1 50 5 × 10−13 500 10

D (m2/s) Dc (m2/s) D/Dc D0/Dc k (1/s) lc/a

E. coli 6.6 × 10−10 10−9 0.66 0.02 0.4 50
Dicty 2.5 × 10−12 3 × 10−10 0.008 0.002 0.09 11.5

D/D0 = α/2, that is, a larger persistence number results in
enhanced diffusion.

In Table I we list characteristic values for E. coli and
Dicty and their chemoattractants. Since molecules of the
chemoattractant are much smaller than microorganisms, one
finds for the diffusion coefficient Dc of the chemoattractant:
D/Dc, D0/Dc 
 1. Based on the values from Table I, we
keep the reduced decay rate kt0 = 0.1 and the ratio D0/Dc =
0.005 constant during all simulations. During its lifetime k−1

a chemoattractant molecule diffuses a typical length lc =√
Dc/k [47]. In our simulations we have lc = 44.7a. Realistic

values for the persistence number α should be between 10
and 100 and we will set α = 25 in many simulations. Finally,
we introduce the dimensionless chemotactic coupling strength
[48]:

� = κha

D2
c γR

. (10)

We choose the delay time τdel, introduced in Eq. (4), as
small as possible and, therefore, choose it to be equal to the
time step of the simulation. Moreover, a rough estimate of τdel

justifies this procedure also from the biological perspective:
As the chemoattractant is emitted at the center of our model
microorganism, it takes a characteristic time tc for the chemical
to diffuse over the cell body, such that it can dock at the
receptors on the surface. This time tc should be comparable to
the delay time τdel. We use tc ∼ a2/Dc and express tc in units
of t0 as tc/t0 ∼ D0/Dc. For D0/Dc = 0.005 and a time step
of 10−2 t0, tc and τdel are thus of the same order of magnitude.

From now on we give all lengths, times, and velocities in
units of a, t0, and v, respectively. This holds in particular for
all figures.

III. ANALYSIS OF THE TWO-WALKER SYSTEM

The coupled dynamics of two autochemotactic walkers
is strongly influenced by the strength of their chemotactic
interaction. In this section we study typical trajectories of
two walkers that start close to each other and illustrate
some of them in Sec. III A. In particular, it is of interest if
two autochemotactic microorganisms can form stable clusters
where they are bounded to each other. Without chemotactic
coupling, � = 0, both walkers separate from each other due
to translational diffusion. A small chemotactic strength �

influences the walker’s trajectories, but the chemotactic field is
not strong enough to hold the particles together. For large �,
bounded states are observed. However, they will eventually

break up due to stochastic fluctuations. This is similar to
Kramers’ escape problem, where a particle leaves a deep
potential well after an average escape time which exponentially
grows with the barrier height. In Sec. III B we introduce a
state diagram as a function of chemotactic strength � and
persistence number α where we distinguish between free,
metastable, and bounded walker states. In the bounded state, all
the two-walker clusters stay bounded during the observation
time, whereas in the metastable state for medium values of �,
they coexist with free walkers. Finally, in Sec. III C we study
the mean lifetime of a two-particle cluster in more detail and
deepen the analogy to Kramers’ escape problem.

A. Typical trajectories

We discuss typical trajectories that illustrate the free and
bounded particle states. To generate these trajectories we put
two walkers close together at an initial distance d0 = 2.5 (in
units of disk radius) and with random velocity directions. For
small � 
 0.1, the chemotactic coupling is so weak that both
active Brownian walkers move independently from each other.
Of course, when we chose the initial distance much larger than
the range lc of chemotactic interaction, the walkers would also
simply separate in most cases. Figure 3 shows trajectories
for five values of � and fixed persistence number α = 25.

FIG. 3. (Color online) Typical pairs of trajectories of two
autochemotactic walkers for fixed persistence number α = 25 and
different chemotactic strength �.
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FIG. 4. (Color online) Trajectories (left column) and correspond-
ing particle speeds vi vs time (right column) for different parameters:
(a) � = 0.09, α = 25; (b) � = 0.5, α = 25; (c) � = 0.1, α = 1000.
The speed v = 1 corresponds to free walkers without contact to other
individuals.

At � = 0.09 and larger values, the chemotactic interaction
is so strong that the walkers are bounded to each other and
move strongly correlated. At � ≈ 0.1, they circle around
each other, are shortly in contact, and then separate again.
Occasionally, it looks as if one active walker hunts for the
second. Further increase of � reduces the “hunting.” The
walkers stop separating from each other and form a tightly
bounded cluster (� ≈ 0.5). In Fig. 4 we show closeups of the
trajectories for � = 0.09 and 0.5, together with the speed v

of the walkers. At � = 0.09, v varies between 1, where the
walkers are not in contact with each other, and smaller values,
which indicates collisions. The speed also becomes larger than
one, when one walker pushes against the other. In contrast, at
� = 0.5 the walkers are tightly bounded to each other and the
speed is always below 1.

To study the influence of the persistence number α, we
present trajectories for fixed � = 0.1 and different values
of α in Fig. 5. Small α means large stochastic noise and the
coupled trajectories resemble a random walk. For increasing
α, the trajectories become more compact. Ultimately, the
dynamics is nearly deterministic where the active walkers
circle around each other with very little contact. This is clearly
illustrated in Fig. 4(c).

In Fig. 3 the trajectory for � = 0.1 displays a big loop at the
right-hand side where one walker is clearly separated from the
other walker by a large distance. If such fluctuation-induced
loops become too large, the cluster of two walkers breaks
up which is indeed observed in simulations. So, in between
tightly bounded clusters for large �  0.1 and free walkers at

FIG. 5. (Color online) Typical pairs of trajectories of two auto-
chemotactic walkers for fixed chemotactic strength � = 0.1 and
different persistence number α.

� 
 0.1, we find a metastable state at � ≈ 0.1 where clusters
may break up into free walkers during simulations. As already
discussed, these clusters correspond to particles which escape
from a potential well. In the next subsection we investigate a
state diagram α versus � where we locate free, metastable,
and bounded states in specific parameter regions. From what
we said so far, it is clear that the concept of a bounded state
depends on the total observation or simulation time. If this
time is smaller than the mean lifetime of a cluster, then it is in
the bounded state.

B. State diagram

To generate the state diagram in the parameter space
persistence length α versus chemotactic strength �, we
recorded 100 trajectories for each parameter set. The walkers
started close to each other with an initial distance d0 = 2.5
and opposing velocity directions with r1(0) = (−1.25,0.01),
ϕ1(0) = 0.03, r2(0) = (1.25,0.01), ϕ2(0) = π − 0.0001. As a
consequence they collide shortly after t = 0 and without noise
and chemoattraction they would constitute a stable cluster for
all times. We choose these deterministic initial conditions to
compare only the influence of � and α on the cluster stability.

The simulation time was tmax = 104. In real units it
corresponds to typical experimental times of several hours,
for example, for Dicty we estimate tmax = 13.9 h using values
from Table I. If all clusters of walkers for one parameter set
(�,α) stay intact within tmax, we refer to them as bounded state.
In concrete, if the distances of the walkers at the end of each of
the 100 trajectories are smaller than a characteristic length, we
consider them as bounded clusters. We choose here the diffu-
sion length lc = √

Dc/k = 44.7 of the chemical during its life-
time k−1 since lc gives the range of the chemotactic interaction.
However, even using characteristic lengths 10, 20, or 40 does
not change the state diagram. Once walkers end up with a final
distance larger than lc at time tmax = 104, they are in the free
state. However, with a certain probability even noninteracting
random walkers will have a distance smaller than lc at tmax. In
the Appendix we estimate this probability to be 5% for α = 1
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FIG. 6. (Color online) State diagram for persistence number α vs
chemotactic strength �. The squares indicate free walkers, triangles
represent walkers in the bounded state, and circles represent walkers
in the metastable state.

and keep this value also for larger α. So in the state of free
walkers less than 5% of them have a separation smaller than lc.
Finally, in the metastable state at least 5% of bounded clusters
coexist with free walkers. The existence of three distinct states
was also reported in Ref. [49] where clustering of autochemo-
tactic walkers in one space dimension was investigated. We
stress once more that the concept of bounded and metastable
states always refers to the observation time tmax which in our
case equals a reasonable experimental observation time.

Figure 6 shows the resulting state diagram. The boundary
of the bounded state does hardly depend on α. Whereas for
large persistence number α the almost deterministic dynamics
results in a sharp transition at � = 0.07 between free and
bounded walkers, we obtain the metastable state for decreasing
α or increasing stochastic noise. This behavior is confirmed
by Fig. 7, where we plot the fraction of bounded clusters
versus � for different α. Increasing the chemotactic strength
�, a clustering transition occurs that is smooth for small α.
Therefore, stochastic noise favors the breakup of clusters, but

FIG. 7. (Color online) Fraction P (in %) of bounded clusters vs
chemotactic strength � for different persistence numbers α. For larger
α the sigmoidal shape converts into the step function.

FIG. 8. To form stable clusters, active walkers separating from
each other should turn around under the influence of the chemotactic
field generated by both walkers.

also means a small diffusion constant, as reviewed in Sec. II C.
As a result, walkers can again form clusters after breakup and
thereby clusters and free walkers coexist in the metastable
state. For α beyond 100, the transition becomes sharp as
illustrated by the step function. Due to negligible stochastic
noise, walkers only separate from each other when the intrinsic
speed v is large enough to overcome the chemotactic attraction.
The probability that they meet again via diffusion is small.

The clustering transition for large α occurs at a critical
chemotactic strength � ≈ 0.07. We present a rough estimate
for this value. Clusters are stable when the chemotactic
field generated by both walkers is strong enough to turn
their velocity directions around when they move away from
each other (see Fig. 8). In Ref. [29] we studied a single
walker in a constant chemotactic field E = Eex and found
that the direction of the walker relaxes towards E during the
characteristic time t∗ = γR/E. To form stable clusters, walkers
should not separate beyond the range of the chemotactic
interaction lc or vt∗ < lc. Using t∗ = γR/E ∝ 1/� we arrive
in reduced units at � > v/lc. With v = 1 and lc = 44.7 this
gives � > 0.02 which is in reasonable agreement with the
simulated value 0.07.

We finish this subsection with a remark. The state diagram
is insensitive to the details of the collisions between two
walkers and therefore primarily determined by the chemotactic
interaction. For example, if we vary the stall distance rst/(2a)
between 0.8 and 0.95 and thereby the elasticity of the walkers,
the state diagram basically does not change. This is even true
when we disregard collisions of the walkers and treat them as
point-like objects.

C. Mean lifetime

As already discussed, the two-walker system is in the
bounded state when the cluster lifetimes exceed the simulation
time. In this subsection we show that beyond the qualitative
connection to Kramers’ escape problem there is even a
quantitative correspondence by investigating the distribution
of lifetimes for parameter sets close and in the transition region
between the bounded and the free-walker states. We choose
the same initial conditions for two walkers as in the previous
Sec. III B and define the lifetime τ of a cluster as the time when
the walker separation exceeds the distance lc for the first time.

Figure 9 plots the distribution of lifetimes at α = 100 for
� = 0 (inset) and � = 0.07. For � = 0 we estimate the mean
lifetime 〈τ 〉 such that the mean-squared distance between
the active walkers, given for example in Ref. [29], equals
the characteristic distance l2

c : l2
c ≈ 4α2(〈τ 〉/α − 1 + e−〈τ 〉/α).

Inverting this relation for 〈τ 〉 gives

〈τ 〉 ≈ l2
c

4α
+ α[1 + W (−e−1−l2

c /(4α2))], (11)
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FIG. 9. (Color online) Probability distributions p(τ ) of lifetimes
for α = 100 as obtained from simulations. The chemotactic strength
is chosen as � = 0.07 and � = 0 (inset).

where W denotes the Lambert W function which is the inverse
function of zez. For α = 100 we obtain 〈τ 〉 = 33.3 which
agrees well with the simulated value 〈τ 〉 = 30.0. This time is
smaller than the directional correlation time α = τrot/t0 = 100
and therefore the distribution remains rather narrow. On the
other hand, the distribution function p(τ ) for � = 0.07 has
a mean lifetime of 〈τ 〉 = 581.8 well above α and it is very
broad. In fact, we checked that the graph in Fig. 9 is well
described by the inverse Gaussian distribution which gives the
distribution of the first-passage times for a one-dimensional
random walk [50]. The maximum of p(τ ) shifts to larger τ for
increasing � and ultimately reaches the total simulation time,
meaning the system is in the bounded state.

From the lifetime distributions for α = 1, 5, 20, 100 we
determined the mean value 〈τ 〉 as a function of � in the region
between the free walker and bounded state. Figure 10 presents
two plots for α = 5 and α = 100. They clearly show that the
mean lifetime grows exponentially in the chemotactic strength
�, 〈τ 〉 ∝ exp(�/�0), reminiscent of Kramers’ escape rate
when we identify � with the potential barrier. So, the mean
lifetime is very sensitive to variations in � which also means
that the value of the simulation time for defining the bounded

FIG. 10. (Color online) Mean lifetimes as a function of chemo-
tactic strength � for α = 5 and α = 100. The values with error bars
are obtained numerically. The solid lines are exponential fits. Inset:
The slope or “inverse temperature” 1/�0 vs persistence number α

obey the power law 1/�0 ∝ α0.58.

state is not very crucial. For example, when we interpolate in
Fig. 10 the straight line for α = 5 to 〈τ 〉 = 105, the bounded
state occurs at � ≈ 0.14 instead of � ≈ 0.104 at a simulation
time of 104.

In the exponential law 〈τ 〉 ∝ exp(�/�0), 1/�0 plays the
role of the “inverse temperature.” According to the inset of
Fig. 10, 1/�0 grows with the inverse noise strength α, as
expected, following the power law 1/�0 ∝ α0.58. For large α,
when the system tends toward the deterministic regime, 〈τ 〉 is
particularly sensitive to �. The transition from the free walker
to the bounded state becomes more abrupt, indicating that the
range of the metastable state shrinks to zero, as observed in
the state diagram of Fig. 6.

IV. PROPERTIES OF A MANY-WALKER SYSTEM

In the following we study a system consisting of 50 walkers
and qualitatively explore some of its properties. In particular,
in Sec. IV A we address different states of the system including
metastable and stable cluster states as in the two-walker case.
In Sec. IV B we investigate how an initially elongated cluster
relaxes toward its circular stationary shape. Then Sec. IV C
demonstrates how clusters or microcolonies merge due to
autochemotactic signaling. Finally, we show in Sec. IV D that
in a confined geometry clustering of microorganisms occurs
beyond a certain area fraction.

We briefly comment on the number of walkers in the
following analysis. Though we focus on systems with 50
walkers, we observe the same qualitative features for larger
systems of up to 500 walkers. Going beyond this order of
magnitude increases the computational effort considerably.

A. State diagram and cluster stability

In analogy to Sec. III B we investigate the stability of
clusters consisting of a large number of walkers. We place
them randomly, both in position and velocity, on a square
with a large area fraction of 0.5, so that they form a dense
cluster and let them evolve in time. Monitoring an ensemble
of roughly 10 clusters, we identify again three different states.
For sufficiently large chemotactic strength �, all the clusters
stay intact and we have the bounded cluster state. At small
�, all the clusters dissolve and a “gas” of free chemotactic
walkers results which hardly come into contact with each other.
In between, a metastable state occurs. The walkers leave and
join the cluster which itself fluctuates strongly. We therefore
call it a “hot cluster.” It can happen that the fluctuations
become too large. Then, the cluster suddenly dissolves into
free walkers. Figure 11 shows snapshots of such a scenario at
three different times. In the supplemental material we provide
the corresponding video which demonstrates how the cluster
suddenly dissolves [51].

The inset of Fig. 11 shows the resulting state diagram as a
function of the chemotactic strength � for constant α = 25.
We have already rescaled � by the number of walkers m.
Then the metastable state is situated in the same region around
�/m ≈ 0.1 as in the two-walker case where we found � ≈
0.1. We roughly confirmed the scaling for m = 50, 100, and
500. Each walker emits the chemical and thereby increases the
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FIG. 11. (Color online) A cluster of walkers in the metastable
state dissolves in time. Snapshots of the walkers at three different
times: t = 5 [blue (dark gray), disks initially distributed on a square
of side length 17.7], t = 1000 (black), and t = 1500 [red (light gray)].
Parameters are � = 0.002, α = 25, and initial area fraction 0.5. Inset:
State diagram recorded for m = 50 particles with α = 25.

autochemotactic field which mediates an attraction between
the walkers. This justifies the observed scaling.

We briefly mention the Keller-Segel model for chemotactic
aggregation (see, e.g., Refs. [52,53]). In its simplest form
it shows a “chemotactic collapse,” where microorganisms
collapse into a δ-peaked distribution when their density
exceeds a critical value. Equivalently, for constant density
the collapse occurs at a chemotactic strength � that scales
as the inverse of the number m of microorganisms, in full
agreement with our result. However, by taking into account
the finite extent of the walkers, we prevent the unrealistic
collapse and obtain stable clusters. Finally, we comment that
a sufficiently high temperature, connected to the noise in the
system, also prevents the chemotactic collapse as reported in
Ref. [54]. Note that a modification of the classical Keller-Segel
model also introduces a finite particle size [55]. Similarly, a
stability analysis of the uniform density in the Keller-Segel
model reveals a transition to pattern formation at a chemotactic
strength that scales again as 1/m [12,56].

B. Relaxation dynamics of stable clusters

The stable clusters of walkers are circular when m is
sufficiently large. To describe the size and shape of a walker
distribution in a disturbed cluster, we introduce the gyration
tensor Q. It is defined as

Q = 1

2m2

m∑
i, j=1

(ri − rj ) ⊗ (ri − rj ), (12)

where ⊗ specifies the dyadic product [57]. Diagonalizing Q
yields two eigenvalues λ1 � λ2 � 0. An ensemble average

over λ1 + λ2, which is the trace of Q, gives the square of
the radius of gyration, which is a measure for the size of the
cluster:

R2
g = 1

2m2

m∑
i, j=1

〈[ri(t) − rj (t)]2〉 (13)

= 1

m

m∑
i=1

〈[ri(t) − R(t)]2〉. (14)

Here we have introduced the position vector of the center
of mass, R = 1/m

∑m
i=1 ri . The cluster has a circular shape

when both eigenvalues are equal, λ1 = λ2. To describe devi-
ations from the spherical shape, we introduce the asymmetry
parameter 2 as the following ensemble average [58]:

2 =
〈

(λ1 − λ2)2

(λ1 + λ2)2

〉
. (15)

When all walkers align along one line, 2 = 1.
In the following we demonstrate that at large chemotactic

strength � = 0.02, a cluster of loosely packed walkers relaxes
exponentially toward a densely packed cluster with circular
shape. As Fig. 12(a) on the left demonstrates, we distribute 50
particles uniformly on an ellipse with asymmetry 2 ≈ 0.15
and area fraction 0.5, and randomly choose the velocity
directions. The picture on the right shows the densely packed
cluster after relaxing into the stationary state. In Fig. 12(b)
we show how the squared radius of gyration R2

g and the
asymmetry 2 smoothly relax toward the circular cluster
state with 2 ≈ 0. The ensemble average is taken over 100
different realizations of initial conditions and noise. After
substracting the respective minimum values from R2

g and 2,
the intermediate parts of the curves in the semilogarithmic
plots in Fig. 12(c) are nicely fit by an exponential decay with
relaxation times tg = 2.4 for the cluster’s size and ta = 3.4 for
its asymmetry [see red lines in Fig. 12(c)].

Note, whereas the cluster size decreases continuously in
Fig. 12(b), the asymmetry first increases due to restructuring
of the cluster and then relaxes toward zero. We recorded similar
curves for different persistence numbers α = 5 and α = 100.
In our simulations the initial concentration of chemoattractant
is zero. We also performed a few simulations where we initially
fixed the walker positions, let the chemotactic field establish
a stationary profile, and then recorded the relaxation curves
for R2

g and 2. They resemble the ones in Fig. 12(b). Finally,
as expected, reducing the chemotactic strength � results in
a weaker attraction between the walkers and thus in a less
compact cluster with larger R2

g .
The circular cluster on the right-hand side of Fig. 12(a) also

illustrates that the velocity directions of the walkers point radi-
ally inwards towards the cluster center where the concentration
of the chemoattractant and thereby the chemotactic attraction
is largest.

C. Microcolonies merge into a central cluster

So far we have shown that a uniform distribution of
chemotactic walkers at sufficiently large chemotactic strength
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FIG. 12. (Color online) (a) The initial ellipsoidal walker distri-
bution relaxes exponentially into a circular cluster for chemotactic
strength � = 0.02 (α = 25). The arrows indicate the velocity direc-
tions of the walkers. (b) Squared radius of gyration R2

g and asymmetry
2 plotted vs time. (c) To obtain the semilogarithmic plots, the
minimum values of R2

g and 2 have been subtracted, respectively.
The thick straight lines are exponential fits with respective relaxation
times tg = 2.4 and ta = 3.4.

� and initial area fraction forms a stable cluster, which we
view here as a microcolony. This can be interpreted as result
of communication between individual cells mediated by the
chemotactic field. On a higher level of aggregation, several
microcolonies also interact via autochemotactic signaling
and eventually merge into larger aggregates. The snapshots
in Fig. 13 illustrate the scenario of four microcolonies
merging into one central cluster for parameters � = 0.02 and
α = 25. Note that there is an analogy between the fusion
of autochemotactic clusters into larger aggregates and the
phenomenon of Ostwald ripening in nucleation theory, as
analyzed in Refs. [28,54].

The drift of single clusters in the previous example is
possible through an asymmetric arrangement of the walkers’
velocity directions within the cluster which add up to the
center-of-mass velocity of the cluster. Geometry is important
in the cluster’s drift velocity. Though the stable cluster shown
in Fig. 12 looks spherical, the small but nonzero value of the
asymmetry 2 generates a small drift velocity and the cluster
moves around. The importance of geometry and symmetry
becomes already clear for small clusters. Four walkers usually
pack into a rhomboid [Fig. 14(a)] with their velocity directions
pointing radially inward so that it hardly moves. Clusters of
five walkers pack into more asymmetric clusters, as illustrated
in Fig. 14(b), and exhibit a clear drift motion. Figure 15(a)

FIG. 13. (Color online) Four microcolonies, each with 25 parti-
cles, merge into a larger aggregate. The snapshots are for t = 50 (four
blue clusters at the edges), t = 300, 400, 500 and t = 600 (single red
cluster in the center). Parameters are � = 0.02 and α = 25.

on the right, to be discussed in detail below, presents another
example: The walkers coalesce quickly into a cluster whose
center-of-mass then moves along the thin line. Even though in
clusters consisting of many walkers the cluster velocity may
be several order of magnitude smaller compared to the speed
of a single active walker, it enables the cluster to explore its
environment.

For clarification, we point out that even two initially
perfectly symmetric clusters will merge into one aggregate
due to strong chemotactic attraction. While drifting toward
each other, the internal structure will change.

FIG. 14. (Color online) (a) A cluster of four walkers forms from
an initial configuration (light blue particles at the outer positions).
The cluster hardly moves since the velocities of the single walkers
cancel each other. (b) A cluster of five walkers is less symmetric
(see blow-up) and therefore shows a noticeable drift as its trajectory
shows. Both simulations were performed for the same time tmax = 103

and parameters � = 1, α = 25.
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D. Microorganisms in confined geometry with
fixed area fraction

Clustering of microorganisms in real systems due to
chemotaxis requires a minimal area fraction which is typically
of the order of 5%–10% and also depends on the type of cell.
At low calcium concentrations, granulocytes attract each other
over small distances and form clusters of actively moving cells
if the density exceeds a threshold of 150–300 cells/mm2 [31].
If we take the diameter of a granulocyte as 2a = 20 μm and use
the cell area of πa2, the critical density corresponds to a critical
area fraction of ρ = 4.6%–9.2%. Aggregation of Dicty cells
requires a minimum density of 400 cells/mm2 [32]. With an
estimate for an effective radius of a = 5.5 μm, this threshold
corresponds to ρ = 3.8%.

We will now show that our model reproduces the experi-
mental observation that clustering only occurs beyond a suf-
ficiently large area fraction of microorganisms. By adjusting
the parameters appropriately, in particular, the chemotactic
strength �, we find clustering at an area fraction similar to
experiments. We perform simulations with 50 chemotactic
walkers and several area fractions ρ = 0.01, 0.05, and 0.1 in
a circular area for which we implement a soft boundary with
the help of overlapping disks [Fig. 15(a)]. They are nonmotile,
nonchemotactic but repel the walkers with the harmonic force
law of Eq. (6). As for the chemotactic walkers, we assume
that the diffusion of the chemoattractant is not influenced by

FIG. 15. (Color online) (a) Simulations of 50 walkers in a circular
area with soft boundary for two area fractions ρ and constant � =
0.003 and α = 25. Left: ρ = 0.01, right: ρ = 0.05. Blue (dark gray)
and red (light gray) circles indicate, respectively, the initial and final
positions. The thin line shows the trajectory of the center of mass
of all walkers, R(t) = 1/m

∑m

i=1 ri(t). On the right-hand side R(t)
coincides with the center of the cluster. (b) Squared radius of gyration
R2

g of the walker system vs time for � = 0.003 and � = 0.002 (with
the same α = 25 and ρ = 0.05). Whereas the cluster with � = 0.003
forms shortly after the simulation is started, the walkers at � = 0.002
suddenly collapse into a cluster after some time.

the presence of the boundary disks. Initially, the walkers are
uniformly distributed over the circular area with area fraction
ρ and have random velocity directions.

The effective chemotactic strength � depends on the
parameters of the self-generated chemical field and on the
chemotactic sensitivity κ , but not on the density of mi-
croorganisms. It turns out by choosing, in particular, � =
0.003 and for example α = 25, we are able to observe the
clustering transition for experimentally relevant area fractions.
Figure 15(a) shows particle distributions for two different area
fractions ρ in the beginning and at the end of the simulations.
For ρ = 0.01 the system remains in the gas state [on the left of
Fig. 15(a)], whereas for ρ = 0.05 [on the right of Fig. 15(a)]
and ρ = 0.1 (not shown) the walkers form a cluster in a sudden
collapse shortly after the simulation starts [Fig. 15(b)]. Our
model thus reproduces the experimental finding that clustering
of microorganisms requires a minimal area fraction of the
order of 5%. Note that a sudden collapse into a cluster also
occurs for � = 0.002, but only after some time has passed
[Fig. 15(b)].

The state diagram in Fig. 11 has been obtained for an
open system where the area fraction cannot be fixed. In the
future it might be interesting to determine state diagrams with
specified boundary conditions that are realized in a petri dish
or microfluidic devices.

V. SUMMARY

In this article we proposed a model for microorganisms that
communicate via autochemotaxis. To do so, we extended our
previous work on autochemotactic walkers from Ref. [29] and
included a repulsive interaction between individual walkers by
modeling them as soft disks. Based on a linear relationship
between the harmonic repulsion force acting on a walker
and its velocity, we were able to treat collisions between the
autochemotactic walkers.

Already in a two-walker system, we find a rich variety
of trajectories depending on the chemotactic strength �.
They range from independent random walkers, to walkers
that hunt each other, up to strongly bounded clusters where
the walkers never lose contact with each other. A state
diagram in terms of chemotactic coupling strength � and
persistence number α contains the free-walker, the metastable,
and the bounded state, where the latter was defined relative
to the simulation time. We were able to estimate the critical
chemotactic strength where the clustering transition to the
bounded state occurs. To elucidate the metastable state and
the transition to stable two-particle clusters, we analyzed the
distribution of cluster lifetimes and showed that the mean
lifetime 〈τ 〉 in the metastable regime grows exponentially in
the chemotactic strength �, 〈τ 〉 ∝ exp(�/�0). The effective
“inverse temperature” 1/�0 follows a power law in the inverse
noise strength α. The exponential law for 〈τ 〉 is reminiscent
of Kramers’ escape rate of a trapped Brownian particle from
a potential well.

Many-walker systems show the same sequence of states
for increasing chemotactic strength �. At sufficiently strong
chemotactic strength, clusters or microcolonies have a circular
shape. Elliptically shaped clusters relax exponentially toward
the stable circular outline within a certain characteristic
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relaxation time. Small asymmetries of the cluster shape
result in a drift motion of the center of mass. Finally,
with our model we confirmed experimental observations that
clustering requires a minimal density of microorganisms. In
particular, we could adjust the chemotactic strength � such
that the clustering transition occurs around an area fraction
of 5%.

In conclusion, we formulated a minimal model to mimic
the essential physics of chemotaxis-induced aggregation of
microorganisms. For this reason, our model does not include
microscopic details of the chemotaxis sensory system. For
example, our model assumes an instantaneous reaction to the
chemical gradient without any threshold value for the absolute
concentration. We were able to show that even within this
simple model several walkers form microcolonies and that
already for two interacting walkers a variety of motional
patterns exists. Detailed experimental studies will help to
determine the relevant region in the parameter space of our
model and thereby test our predictions. Future theoretical
investigations should improve the modeling for the spreading
chemoattractant. In reality, it is emitted at the microorganisms’
surfaces, where it also binds to receptors [13]. Especially
in dense bacterial systems, the free diffusion of chemical is
influenced by the presence of the microorganisms and it would
be interesting to study how it influences the behavior of our
model system.
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APPENDIX: PROBABILITY TO FIND A PARTICLE
DISTANCE BELOW A GIVEN VALUE

We consider two independent, nonchemotactic walkers
with constant speed v and rotational diffusion of their velocity
direction. In the following we estimate the probability that
the particle distance d(t) =

√
[r1(t) − r2(t)]2 at time t > 0 is

below some value R.
For large times, 〈d2(t)〉 increases linearly in time and the

“diffusion coefficient” Ddist is twice the diffusion constant
D of a single walker [59]. We assume that both walkers
start their random walk at the origin. For large times we
thus approximate the time evolution of d(t) by simple two-
dimensional diffusion. The corresponding diffusion coefficient
Ddist is defined by Ddist = limt→∞〈d2(t)〉/(4t). The solution
of the diffusion equation ∂tP (r,t |r0,t0) = Ddist ∇2P (r,t |r0,t0)
with initial condition P (r,t0|r0 = 0,t0 = 0) = δ(r) is given by

P (r,t |r0 = 0,t0 = 0) = 1

4πDdistt
exp

(
− r2

4Ddistt

)
. (A1)

The probability Prob(r < R,t) that the particle distance r at
time t is smaller than R is calculated as

Prob(r < R,t) =
∫ 2π

0
dϕ

∫ R

0
dr rP (r,ϕ,t)

= 1 − exp

[
−

(
R√

4Ddistt

)2 ]
. (A2)

This result is intuitive as
√

4Ddistt corresponds to the root of the
mean-squared displacement at time t . For R 
 √

4Ddistt the
probability in Eq. (A2) vanishes, whereas for R  √

4Ddistt

it approaches one. In our rescaled model we have Ddist =
2D = α. For the simulation time tmax = 104 and the critical
distance lc = 44.7, we obtain Prob(r < lc,tmax) = 4.9% for
α = 1 and 0.5% for α = 10. We use the former value of
approximately 5% to determine the transition between free
walkers and metastable states in Sec. III B.
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