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Mode-coupling approach to polymer diffusion in an unentangled melt. II. The effect
of viscoelastic hydrodynamic interactions
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A mode-coupling theory (MCT) version (called hMCT thereafter) of a recently presented theory [Farago,
Meyer, and Semenov, Phys. Rev. Lett. 107, 178301 (2011)] is developed to describe the diffusional properties
of a tagged polymer in a melt. The hMCT accounts for the effect of viscoelastic hydrodynamic interactions
(VHIs), that is, a physical mechanism distinct from the density-based MCT (dMCT) described in the first paper
of this series. The two versions of the MCT yield two different contributions to the asymptotic behavior of the
center-of-mass velocity autocorrelation function (c.m. VAF). We show that in most cases the VHI mechanism is
dominant; for long chains and prediffusive times it yields a negative tail ∝−N−1/2t−3/2 for the c.m. VAF. The case
of non-momentum-conserving dynamics (Langevin or Monte Carlo) is discussed as well. It generally displays
a distinctive behavior with two successive relaxation stages: first −N−1t−5/4 (as in the dMCT approach), then
−N−1/2t−3/2. Both the amplitude and the duration of the first t−5/4 stage crucially depend on the Langevin friction
parameter γ . All results are also relevant for the early time regime of entangled melts. These slow relaxations of
the c.m. VAF, thus account for the anomalous subdiffusive regime of the c.m. mean square displacement widely
observed in numerical and experimental works.
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I. INTRODUCTION

It is commonly accepted that the dynamics of polymer
chains in unentangled melts is well described by the clas-
sical Rouse model [1,2], a single-chain theoretical approach
assuming Fickian diffusion dynamics of the monomers and
neglecting excluded-volume interactions of chain segments.
However, recent experimental and computer simulation studies
[3,4] show that certain dynamical phenomena in unentangled
polymer melts cannot be explained within the Rouse paradigm.
One of the puzzling observations is the anomalous diffusion
of the center-of-mass (c.m.) of a polymer chain at pre-Rouse
times t < tN , where tN ∝ N2 is the Rouse relaxation time of
a polymer coil of N monomer units (see Refs. [3–9] and the
introduction in the preceding paper [10] of this series).

The anomalous c.m. diffusion and previous attempts to
explain it are analyzed in part I, where we developed a density-
based mode-couplingtheory (dMCT) [10]. This approach
yields a partial success: While the dMCT accounts for the
observed anomalous time dependence (t−5/4 tail) of the c.m.
velocity autocorrelation function (c.m. VAF) of systems ther-
malized with a Langevin or Monte Carlo dynamics, the theory
seems to strongly underestimate the magnitude of the effect.

Nevertheless, we are confident that the dMCT of Ref. [10]
describes correctly the physical features implicitly assumed
by the choice of the so-called relevant decay channel in the
memory kernel. This statement may seem to be surprising,
since normally it is difficult to draw a definite conclusion
concerning the quantitative validity of a MCT. However, in the
present case we are assisted by the fact that another approach,
based on the general theory of near-equilibrium dissipative
systems and outlined in Appendix B of part I [10], yields results
identical to the dMCT. Moreover, the validity of this dynamic
perturbation theory approach can be assessed more easily
(we neglect inertial effects in this discussion for simplicity):
Apart from the fluctuation-dissipation theorem (FDT) and

time-reversal symmetry arguments (both of which are rigor-
ous), the approach hinges on the following approximations:
(1) The velocity of a polymer segment is proportional to
the molecular force f acting on it; (2) the force f can
be represented as a sum of a regular force f n defined by
the coarse-grained molecular field conjugate to density and the
random white noise ψ : f = f n + ψ ; (3) the molecular force
f n is assumed to act only perturbatively on the single-chain
properties. The third assumption is fully justified by the
strong overlap of polymer coils in the melt state (a large
number of mutually overlapping chains) leading to nearly
Gaussian chain size (the Flory theorem) and nearly Rousean
chain relaxation time, with a small correction ∝1/

√
N (see

Ref. [10]; the relative correction is proportional to 1/
√

g

for a blob of g monomers). The second assumption reflects
the standard physical separation of variables into two groups
(corresponding to f n and ψ): slow low-q components of the
density field (with length scales 1/q � b, where b is the
monomer size) and fast high-q fluctuations of the molecular
field (on microscopic length scales providing relaxations of
monomer momenta) leading to Markovian dynamics of the
whole system configuration. As for the first assumption, it
is justified, but only partially, by the weakness of the inertial
effects and by the absence of topological constraints (the chain
segments can cross each other). To strictly ensure the validity
of the first hypothesis we have to modify the physical model
by introducing an artificial quiescent medium (thermostat)
providing a friction force −ζ1v on each monomer moving
with absolute velocity v. (Note that the white noise fluctuation
force like ψ(t), which is responsible for partial stochastization
of monomeric motion, always comes, according to the FDT,
together with its dissipative counterpart, the friction force ffr;
however, the direct relation of ffr with the absolute velocity
is an assumption, albeit a standard one.) Therefore, we may
question the assumption (1) as such a thermostat is normally
not present in reality.
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Indeed, in real polymer melts the friction force on a
monomer results from the difference of its velocity with
respect to that of the surrounding polymer matrix, which
can itself be in motion (in other words, it is a function of
the relative velocity of the monomer with respect to the
local hydrodynamic velocity field only). Such a collective
continuous (“hydrodynamic”) flow of the polymer matrix
was totally neglected in the preceding part I [10] and in all
other theoretical studies on anomalous c.m. diffusion in melts.
As we show in this paper, the collective flow effect is very
important: It provides the dominant contribution to the anoma-
lous pre-Rouse c.m. dynamics (while the effect of density
fluctuations analyzed by the dMCT can be neglected in most
cases).

To this end, we devise a new version of the MCT taking into
account the collective flow (hydrodynamic interactions) effects
and we refer to it as hMCT below. An equivalent alternative
approach based entirely on the concept of hydrodynamic
interactions, appropriately generalized to take into account
viscoelastic hydrodynamic effects inherent in polymer melts,
has been developed and briefly described in Ref. [11].
Still another derivation using a fluctuating hydrodynamics
approach is given in Ref. [12].

The newly proposed hMCT mechanism (based on the
coupling of the c.m. velocity to the hydrodynamic flow)
is studied in Sec. II. As in Ref. [10], we focus on the
c.m. VAF, Cc.m.(t) = 〈Vx(0)Vx(t)〉 (Vx is the x component
of the c.m. velocity of the tagged chain), rather than the
mean-square displacement (MSD) of the c.m. of a tagged
chain, hc.m.(t) = 1

6 〈[Rc.m.(t) − Rc.m.(0)]2〉 [Rc.m.(t) is the c.m.
position of a tagged chain]. The two quantities are closely
related [Cc.m.(t) = ḧc.m.(t)], but the anomalous effect in Cc.m.

is much more visible due to the absence of the Fickian
diffusion contribution. We first review (Sec. II A) the existing
MCT theory for the hydrodynamic coupling in simple fluids,
which accounts for long-time tails ∝t−3/2 in the VAF. As an
interesting intermediate example of hydrodynamic coupling,
we study the c.m. VAF of a single polymer in a � solvent
in Sec. II B. In particular, we show that the hMCT predicts a
diffusion coefficient proportional to N−1/2, in accordance with
the Zimm theory, and a two-step relaxation of the VAF, a fact
which is then analyzed in terms of the polymer scaling theory.
This section precedes the hMCT study of the c.m. motion
in a melt (Sec. II C), where the hydrodynamic interactions
are intermingled with a viscoelastic response. We show that
the resulting viscoelastic hydrodynamic interactions (VHIs)
lead to a power law tail proportional to −N−1/2t−3/2 of the
c.m. VAF for prediffusive times. This VHI effect largely
dominates over the correlation hole effect (described by the
dMCT) as long as the microscopic dynamics conserves the
total momentum.

Then, we also study (Sec. III) the widespread situation of
a melt driven by non-momentum-conserving dynamics (like
in numerical simulations under Monte Carlo or Langevin
dynamics) and show that the loss of the conservation law
modifies the velocity relaxation of the c.m., although the
VHIs still make a strong contribution to the c.m. motion. We
also discuss the special case of Monte Carlo simulations [13],
where the actual monomeric friction may be so high that the
dMCT-predicted regime (−N−1t−5/4) for the c.m. VAF could

be recovered, reflecting a weighed combination of correlation
hole and VHI effects.

II. HYDRODYNAMIC RELAXATION
MODE-COUPLING THEORY

The dMCT for simple fluids, as sketched in Ref. [10],
is relevant for situations where the density is high enough
to substantiate the concept of a steric cage from which the
particle must “escape” to enter the diffusion regime (the term
“escape” does not account perfectly for the actual scenario;
one should rather speak of a concerted dissolution of the cage).
For intermediate densities, this physical picture is no longer
valid, as testified by the absence of negative correlations in the
VAF at these densities [14]. On the contrary, the prominent
physical feature of this regime is an efficient coupling of
the velocity of the tagged particle to the hydrodynamic flow
of the surrounding molecules, leading to the well-known
positive long-time tails and a noticeable increase of the
diffusion coefficient with respect to the Enskog value [15–20].
An alternative mode-coupling approach has been devised to
account for such long-time tails in the VAF [21], and this
MCT (termed hMCT hereafter) is briefly described in the
following section. We see that quite unexpectedly, this version
of the mode-coupling theory is also relevant to describe the
anomalous subdiffusive regime of the c.m. diffusion of dense
melts, for both momentum-conserving as well as dissipative
dynamics.

A. Simple fluids at intermediate densities

Since the seminal work by Alder and Wainwright [16],
it is well known that the decay of the VAF in a fluid at
intermediate densities displays a so-called long-time power
law tail with an exponent −3/2 in three dimensions. It
was soon been recognized by many authors (see [14] and
references therein) that this positive long-time tail reflects
the coupling of the initial velocity fluctuation of the tagged
particle to the global hydrodynamic flow: The rotational part
of the initial velocity field fluctuation diffuses with a diffusion
coefficient ν = η/(nm) (η is the dynamic shear viscosity, n

the number density of molecules, m the mass of a molecule).
By conservation of momentum, this imposes the long-time tail
∝ t−3/2 for the tagged particle velocity relaxation [21]. The
mode-coupling implementation of this physical picture works
as follows: One makes explicit the hydrodynamic coupling
between the tagged velocity and the hydrodynamic flow by
projecting out the tagged velocity over the set of bilinear
variables Cα,k = e−ik·rjα(k), where r is the position of the
tagged particle and jα(k) = ∑N0

j=1 vα,j exp(ik · rj ) is the αth
component of the microscopic velocity field (k is the wave
vector, the sum extends over all N0 particles of the fluid). This
MCT approach leads to the following prediction of the particle
VAF C0(t) = 〈vx(0)vx(t)〉:

C0(t) � 1

6π2n

∫ ∞

0
dkk2Fs(k,t)[CL(k,t) + 2CT (k,t)], (1)

where k2dk/(6π2) = (1/3)d3k/(2π )3, Fs(k,t) =
〈exp(ik·[r(t) − r(0)])〉 is the self-intermediate scattering
function of the tagged particle, and CL(k,t) and CT (k,t)
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are, respectively, the longitudinal and transverse current
correlation functions:

jL(k,t) =
N0∑
j=1

vj · k
k

eik·r j = j (k,t) · k
k
, (2)

jT (k,t) = j (k,t) − jL(k,t)
k
k
, (3)

CL(k,t) = 1

N0
〈jL(−k,0)jL(k,t)〉, (4)

CT (k,t) = 1

2N0
〈 jT (−k,0) · jT (k,t)〉. (5)

Using the hydrodynamic expressions Fs(k,t) ∼ exp(−k2Dt)
and CT (k,t) ∼ v2

T exp(−k2νt), valid for small k and large t

(here v2
T = kBT /m, so vT is the characteristic thermal velocity

of the particle), one gets the long-time tails from the transverse
part of the expression Eq. (1). It has been shown that the
predicted prefactor is very accurate as verified by numerical
simulations in three dimensions [20].

The validity of Eq. (1) is restricted to the long-t domain.
The so-called “velocity field approach” developed in Ref. [22]
extends this formula to the short-time domain by inserting a
“gate factor” f (k) into the integral. However, the applicability
of this formula, even in its extended form, is restricted to a
density domain where the long-time tails are fully developed.
When the density is increased, the viscosity also increases,
and the prefactor of the long-time tail of the VAF decreases
to small values, whereas a negative excursion of the VAF
develops (decaying as t−5/2). In that case, the (necessarily
positive) long-time tail becomes an ultimate regime relevant
for very large times only, and with a negligible magnitude.
There is a matching density domain where the velocity field
approach and the density fluctuation approach should be both
alone insufficient to account for the properties of the VAF.
This crossover domain is studied in detail in Ref. [23] using
the so-called generalized kinetic theory [24]. This somewhat
complicated theory succeeds in having in the same formula
contributions arising from density fluctuations relaxations and
coupling to the hydrodynamic field; such a result would be
impossible to get at the level of the simple MCT approach
because the different symmetries of the global fields involved
prevent a general description of their combined effect.

To conclude, let us stress again that for a dense simple fluid,
the above hMCT describes an effect which is, in principle, at
work, but has tiny consequences on the VAF and the diffusional
properties of the particles.

B. A single polymer in a θ solvent

We are primarily interested in polymer melts, but it is
instructive to study first a single polymer in a θ solvent and
the motion of its c.m. It is well known that the hydrodynamic
interactions, which are typically long-ranged, yield a diffusion
coefficient ∝ 1/

√
N [2,25]. It is also interesting to see the

spreading out over time of these interactions by looking at
the c.m. VAF Cc.m.(t) of the polymer. Having in mind the
preeminence of hydrodynamic coupling we are led to adapt
the hMCT for simple liquids to the c.m. motion, even if the
monomeric density is high (we stay, however, in the liquid
range to keep a well-defined time scale separation between

the microscopic and mesoscopic regimes). Roughly speaking,
the reason for that is that momentum fluctuations are lost very
rapidly by diffusion for a single particle, but these fluctuations
are “recycled” by other monomers for the polymer c.m.

The hydrodynamic-based MCT adapted to the polymer
c.m. is quite simple: One projects the c.m. velocity Vx onto
the bilinear variables Dα,k = ρ0(−k)jα(k), where ρ0(k) =∑N

j=1 exp(ik · rj ) is the density fluctuation of the polymer
chain for wave vector k. In analogy to Eq. (1), one gets the
following result for the c.m. VAF:

Cc.m.(t) � 1

3nN

∫
d3k

(2π )3
F (k,t)[2CT (k,t) + CL(k,t)], (6)

where n is the number density of solvent molecules, F (k,t) is
the dynamical form factor of the polymer chain,

F (k,t) ≡ 1

N
〈ρ0(−k,0)ρ0(k,t)〉,

and CT and CL are the current correlation functions for the
solvent. The long-time regime is obtained by considering
the integral for small k and large t . We can thus use the
hydrodynamic limit of CT (k,t) which is given by

CT (k,t) � v2
T exp(−k2νst), (7)

where v2
T ≡ kBT /m and νs = ηs/ρs is the kinematic viscosity

of the solvent [21,24] (ρs = nm is the solvent mass density). As
regards the dynamical form factor F (k,t), one should apply the
results of the Zimm theory [2], which predicts a scaling of the
form F (k,t) = F (k)ϕZ(Ak3t) (the scaling function ϕZ differs
from that of the Rouse theory, termed ϕ in Ref. [10]). The
precise form of the scaling function ϕZ does not matter because
the decay of Cc.m.(t) is governed by the time dependence of
CT (k,t). The longitudinal component CL(k,t), on the other
hand, gives negligible contributions and can be discarded.

On using the Gaussian static form factor for F (k) [2],

F (k) = NfD(Nb2k2/6), (8)

fD(x) = 2

x2
(e−x − 1 + x), (9)

we get two regimes for Cc.m.(t) (Rg =
√

Nb2/6 is the gyration
radius of Gaussian chains [2]):

Cc.m.(t) �
⎧⎨⎩

2
π3/2

v2
T

Nnb2
√

νs t
if νst � R2

g,

1
12π3/2

v2
T

n(νs t)3/2 if νst � R2
g.

(10)

These results have also been obtained in Ref. [26].
The physical interpretation of this result is quite simple:

Following Onsager’s regression hypothesis [27] a typical c.m.
velocity fluctuation recedes like the mean relaxation upon
a small uniform velocity initially given to each monomer
of the chain [11]. (Note that this statement also rigorously
and naturally comes from the FDT.) Within this picture,
one interprets the first regime as a stage where the vorticity
induced by the initial fluctuation spreads among the monomers
and the solvent comprised inside Rg . More precisely, the
hydrodynamic diffusion length s(t) ∼ √

νst defines roughly
the length scale over which the momentum is spread at time
t . One can thus sketch the chain as a necklace of N/g

dynamical blobs of radius s(t) with g ∼ s(t)2/b2 units in
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each blob, so that the momentum fluctuation, initially located
on the chain, is shared at time t among N (t) = (N/g) ns(t)3

solvent particles. As a result, Cc.m.(t) ∼ Cc.m.(0)N/N (t) ∼
1/Nns(t). The first regime stops when the dynamical blob is
so large that it encompasses the whole chain: s(t) ∼ Rg . The
second regime corresponds to the usual long-time tail: One has
Cc.m.(t) ∼ Cc.m.(0)N/(n3

s ) = 1/n(νst)3/2 because the initial
fluctuation is now shared by n3

s particles [21].
Upon integration of Cc.m.(t) over time one recovers a

diffusion coefficient ∝1/
√

N in agreement with the Zimm
prediction. Let us mention also that if the dynamics is
not momentum-conserving, as for instance with a Langevin
dynamics, all previous conclusions no longer hold. At the
mode-coupling level, this is embodied by a factor exp(−γ t)
(where γ is the Langevin friction constant) which decorates
the transverse current correlation function; physically the
momentum diffusion is screened beyond a length scale

√
νs/γ ,

and the actual c.m. motion is Rouse-like at t � 1/γ . This may
seem obvious, but interestingly, as we see below, it is no longer
true for polymeric melts (see Sec. III).

C. Polymer c.m. diffusion in a melt

For a tagged chain diffusing in a melt the hydrodynamic
effects highlighted in the preceding section are profoundly
modified by the viscoelastic properties of the melt.

1. c.m. VAF relaxation

The starting point is Eq. (6), but by contrast with the
polymer in a solvent, the transverse current correlation
function CT (k,t) is that of a polymer melt. This is readily
seen by inspecting the relationship between CT (k,t) and E(t),
the hydrodynamic limit (i.e., k → 0) of the shear modulus
[24]. For small values of k, one has (as in Ref. [10], the
carets represent the Laplace transform of the corresponding
functions)

∂CT (k,t)

∂t
= − k2

nm

∫ t

0
dt ′E(t ′)CT (k,t − t ′), (t > 0) (11)

ĈT (k,z) = v2
T

z + k2

nm
Ê(z)

, (12)

where n is now the monomer number density of the melt, v2
T =

kBT /m, and m is the monomer mass; note that CT (k,0) = v2
T ,

as follows directly from the Gibbs statistics. For a polymeric
melt described by the Rouse model, the shear relaxation
modulus E(t) is given by the following relation:

E(t) � nmv2
T√

2π2Wt
, t1 � t � tN . (13)

This formula is valid for times longer than the monomer time
t1 = 2/(π3W ) and smaller than the Rouse time tN = N2t1.
(We define the time constant W−1 by postulating that in this
regime the monomer MSD is 6h0(t) = b2

√
Wt , where b is the

statistical segment length [10].)
Using Eqs. (11)–(13) we find the following scaling form

for the transverse current correlation function valid for t1 �

t � tN [28]:

CT (k,t) = v2
T ζ (a2/3k4/3t), (14)

ζ̂ (z) =
√

z

z3/2 + 1
, (15)

where a = v2
T /

√
2πW . Disregarding once more the longi-

tudinal current (its contribution is always subdominant and
vanishes in the incompressible limit), we get

Cc.m.(t) � 2v2
T

3nN

∫
d3k

(2π )3
F (k)ϕ(Ak4t)ζ (a2/3k4/3t). (16)

Note that here we used the following approximation for the
dynamical form factor valid for t1 � t � tN (see Ref. [10]):

F (k,t) = F (k)ϕ(Ak4t), A = πb4W

144
(17)

where

ϕ(y) = √
y

∫ ∞

0
du exp[−√

yH (u)], (18)

H (u) = u + 2

π

∫ ∞

0

dx

x2
(1 − e−x2

) cos(xu). (19)

By construction, Eq. (16) addresses the long-time regime
(t � t1), characterized by the relaxation of large structures.
As a result, only the small-k region (defined by the ζ factor
in the integrand) is relevant in the preceding equation: k ∼
a−1/2t−3/4. Hence, Ak4t ∼ b4W 2/(v4

T t2) � 1 (since t � t1
and vT t1 � b), so that the ϕ factor in Eq. (16) can be replaced
by ϕ(0) = 1.

A qualitative analysis of Eq. (16) is useful, as it shows
the important features of the MCT prediction. For large
enough y = a2/3k4/3t � 1, we have ζ (y) ∼ −y−3/2/(2

√
π )

[see Eq. (15)]. As regards the form factor, the scale-free
intrachain regime of low k is given by F (k) = 12/(kb)2. Then,
we get that Cc.m.(t) ∝ N−1t−3/2

∫
k�1/Rg

dk/k2 ∝ N−1/2t−3/2,
where the lower bound of the integral for k is defined by the
chain size Rg . Thus, an intermediate prediffusive regime is
predicted which dominates largely (due to the factor N−1/2)
both the Rouse behavior and the dMCT result [10]. This
analysis emphasizes the dominant role played by the typical
lengths ∝√

N comparable to the chain size.
To go into more detail, we find using Eq. (16)

Cc.m.(t) � v2
T

nb3N3/2

√
24

π
f0(t/τ ), (20)

τ =
(

π

18

)1/3(
Nb2

√
W

v2
T

)2/3

, (21)

f0(X) = 2

π

∫ ∞

0
dyζ (Xy4/3)

e−y2 − 1 + y2

y2
, (22)

where t/τ = a2/3tR
−4/3
g ∼ tN−2/3 emerges as the scaling

variable. The above equation is valid for t1 � t � tN . Two
limiting behaviors are obtained in the limits t/τ � 1 and
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FIG. 1. (Color online) Comparison between the theoretical scal-
ing function |f0(X)| (solid line, positive part; dashed line, negative
part), and the simulation data for N = 64, 256, and 512 (squares,
circles, and triangles, respectively), for model (A) (described in
Ref. [10]) under momentum-conserving dynamics; the simulation
curves represent nb3N 3/2π |Cc.m.(t)|/(

√
24v2

T ) as a function of t/τ .
The vertical arrow indicates the predicted sign inversion at X � 0.24.

t/τ � 1:

Cc.m.(t) �
t/τ�1

+ 25/4

�
(

1
4

)
π3/4

vT bW

Nnb3
(Wt)−3/4, (23)

Cc.m.(t) �
t/τ�1

− 4

(3π )3/2

W 2b2

nb3

(Wt)−3/2

√
N

. (24)

This is the main result of this section.

2. Comparison to numerical simulations

To get the whole temporal evolution, one inverts the relation
(15) and gets

ζ (y) = 4

3
e−y/2 cos

(√
3

2
y

)
− 1

π

∫ ∞

0
due−uy

√
u

u3 + 1
, (25)

whence we numerically compute f0(X), plotted in Fig. 1. Note
that Cc.m. > 0 for X < X0 ≈ 0.24 (i.e., t < t0 ≈ 0.24τ ) and
Cc.m. < 0 for t > t0. Thus, when comparing with numerical
or experimental data, one would take advantage to represent
the data according to the somewhat unexpected scaling
N3/2Cc.m.(t) vs t/N2/3 suggested by the result (20).

The theoretical curve in Fig. 1 is compared with computer
simulation data obtained with momentum conserving dynam-
ics. One can observe a perfect agreement of the scaling of
the different chain lengths in the long time regions which is
responsible for the subdiffusive motion in the c.m. as shown
later in Sec. II C4. The agreement with the theoretical curve
is very good apart from some mismatch at the sign inversion
time t0, but this mismatch tends to diminish as the chain length
N is increased. The bead-spring chains have increased bond
length b0 = 1.5σLJ to be able to test the theory for arbitrarily
long unentangled chains. Details about the model (A) used
for these simulations can be found in the first part of this
series [10]. Let us stress, however, that here we used a large

box (L ≈ 83σLJ for N = 256 and L ≈ 105σLJ for N = 512)
with 1536 chains to avoid significant box-size effects which
occur for smaller systems. The simulation is run with a weak
pair-friction introduced in the context of dissipative particle
dynamics together with the full repulsive LJ potential as
discussed in Ref. [29]. This serves essentially for the long-time
stability of the numerical integration.

3. Physical interpretation

Let us comment on the physical meaning of the obtained
scaling function. It reflects the effect of hydrodynamic interac-
tions including both the inertial and the viscoelastic responses
of the melt. As in Sec. II B and in Ref. [11], Onsager’s
regression hypothesis (or the FDT) is helpful in drawing a
physical picture of the MCT results (we recall that the FDT
also makes it possible to derive the same quantitative results
we derived here via the hMCT; see [11] for details on the FDT
derivation): The c.m. VAF is proportional to the velocity field
evolution (averaged over initial conformations of the chain) of
the c.m. of a tagged chain after an instantaneous pushing force
p0δ(t)δ(r − r i) applied to every monomer r i of the tagged
chain:

〈V c.m.(t)〉 = N

kBT
Cc.m.(t) p0. (26)

The dynamics of the velocity field is given by the generalized
incompressible Navier-Stokes equation (linearized because we
are by definition close to equilibrium),

ρ∂tv = −∇P +
∫ t

0
dt ′E(t − t ′)�v(t ′)

+ p0δ(t)
N∑

j=1

δ[r − rj (0)], (27)

∇ · v = 0, (28)

where ρ = nm is the mass density of the melt. The viscosity
term in this generalized Navier-Stokes equation is an integro-
differential term accounting for the viscoelastic properties of
the fluid [30]. Doing so, we consider the tagged chain as
being an ordinary element of the melt and treat the external
force as being applied to the whole viscoelastic medium.
This extrapolation is commonplace in liquid-state physics,
where it is well known that hydrodynamics is still valid
at fairly short length scales. It is worth stressing that such
a procedure would not apply to the relaxation of a single
monomer of a tagged chain (to get by the same method the
monomeric VAF relaxation) because the intrachain forces in
that case are obviously not negligible (the negligible effect
of hydrodynamic flow on the monomer motion is examined
in Sec. V). By contrast, for the c.m. motion, the intrachain
forces sum up to zero by virtue of the Newton’s third law,
and one can expect that the connectivity plays a negligible
role. In addition, it is important that the diffusion of the chain
elements with respect to the main hydrodynamic flow can
be neglected because the momentum diffusion is much faster
than the monomer motion, a fact embodied by the irrelevance
of the time dependence of F (k,t) in Eq. (16). As a result,
there is no important coupling between the hydrodynamic
flow and the structural relaxation of the tagged chain, and the
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MCT assumption of the factorization of four-point dynamic
correlators is actually not required.

The solution of Eq. (27) is by linearity the sum of the
flows induced by the individual kicks. Qualitatively, these
individual flows correspond to the spreading of the initial
momentum carried by an initial kick. For a Newtonian fluid,
this spreading is simple and can be summarized as in Sec. II B:
The momentum is homogenized at time t over a diffusion spot
of typical size s(t) ∼ √

νst .
For a polymeric melt this spreading is much more complex:

First, the momentum diffusion length (t) is influenced by the
growth in time of the effective viscosity η(t) = ∫ t

0 E(t ′)dt ′ ∼
kBT n

√
t/W . In that case, a natural guess for the diffusion

length is (t) = (2π )−1/4√η(t)t/ρ = vT [2πW ]−1/4t3/4 (the
numerical prefactor is here for sake of coherence with the
following development). We see that the momentum “superdif-
fuses” because of the gradual increase of the viscosity. Second,
the momentum distribution inside the diffusion spot [of size
(t)] is strongly heterogeneous, in marked contrast with the
Newtonian fluid. We can see this as follows. Suppose that
a kick p0δ(t)δ(r) is given at the origin r = 0 to a polymer
melt. A physically relevant observable is the momentum
density at distance R at time t , averaged over all directions.
From Eq. (27) we find that this observable can be written as
Qmelt(R,t)(t)−3 p0, with [31]

Qmelt(R,t) = 1

3π

(
(t)

R

)13/3

Q0([(t)/R]4/3), (29)

Q̂0(z) = (1 + z3/4)e−z3/4
. (30)

From the scaling variable we recover exactly the growing
momentum diffusion length, (t) = (2π )−1/4√η(t)t/ρ, intro-
duced above. For a Newtonian fluid the same orientation-
averaged momentum density is given by Qfluid(R,t)s(t)−3 p0

with

Qfluid(R,t) = 1

2π

(
s(t)

R

)5

Q1([s(t)/R]2). (31)

Q̂1(z) = (1 + √
z)e−√

z. (32)

In Fig. 2 the scaled averaged momentum densities Qmelt(R,t)
and Qfluid(R,t) are shown as a function of their respective
scaling variables R/(t) and R/s(t). One can clearly see
that the momentum distribution inside the diffusion spot is
positive and rather homogeneous for a Newtonian fluid, in
accordance with the traditional picture of a normal diffusion
and rather flat repartition of momentum inside the spot of size
s(t). On the contrary, the momentum repartition within (t)
for the melt is strongly inhomogeneous: It displays a central
core of negative momentum surrounded by an external shell
of positive momentum. The central negative shell comes from
the fact that the advancing front of momentum diffusion shears
the melt and leaves a storage of some elastic free energy due
to nonoptimal (sheared) conformations of the local chains.
This stored energy is afterward released by the recoiling of
the stretched chains, which induces a negative remnant in
the momentum distribution in the “aged” regions within the
diffusion spot. Note that the recoiling of the central core leads
necessarily to an enhancement of the positive momentum
stored in the outer shell (with respect to the total momentum
transferred to the melt). This phenomenon is analogous to the
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FIG. 2. (Color online) Orientation-averaged scaled momentum
distribution inside a fluid [viscoelastic melt, Qmelt(R,t), solid line;
Newtonian fluid, Qfluid(R,t), dashed line] after an initial localized
kick (see text for details). Note the different definition of the abscissa
in both cases: R/(t) for the melt and R/s(t) for the Newtonian
fluid. Note also that Qmelt(R,t) ∝ (t)/R near R/(t) = 0.

so-called elastic recoil in the classical rheological properties
of polymeric fluids [32], where the cessation of a shear flow
in a complex fluid is typically followed by a flow reversal.

If we go back to the physical interpretation of Eqs. (23)
and (24), the above analysis and the FDT lead to the following
picture: In the time range t1 � t � 0.24τ , the tagged chain
can be seen as a necklace of N/g(t) dynamic blobs of size (t)
with nearly uniform velocity [g(t) is related to (t) by g(t) ∼
(t)2/b2]. The fraction of initial momentum still borne by the
chain at time t is thus Cc.m.(t)/Cc.m.(0) ∼ N/(n N

g(t)(t)3) ∝
N0n−1t−3/4, in agreement with Eq. (23). Of course, we
emphasized above that the momentum distribution within the
dynamic blob is not “nearly uniform.” However, in the first
time regime this inner structuring of the diffusion blob may be
neglected (because the distribution of the blobs along the chain
backbone leads to a spatial averaging over the distance R).
This initial regime (23) ceases as soon as (t) reaches the
chain size Rg ∼ b

√
N : This corresponds to the typical time

τ ∼ N2/3. For t � τ , the whole chain is henceforth included in
the recoiling remnants of the N initial kicks. However, now the
velocity field due to each kick is not nearly uniform at length
scales less than or comparable to the chain size. For large t we
have Qmelt(R,t) ∼ −(t)/R, whence we get from Eq. (26) a
final relaxation Cc.m.(t) ∼ −N−1 N

n(N3/2b3)
b2N

[(t)2] ∼ − 1
n
√

Nb(t)2 ,
which is Eq. (24) up to a numerical factor. Note that the
nonuniform momentum distribution Qmelt(R,t) ∼ −(t)/R in
the recoil zone is directly related to the exponent t−3/2 in
Eq. (24). This last point stresses the relative complexity of
the viscoelastic relaxation even in the second stage where the
screening length (t) is, however, larger than the chain size.

Here it is worth stressing that one must not confuse this
viscoelastic recovery regime (negative tail with an exponent
−3/2) with the ordinary long-time tail in a simple fluid as
exemplified by the second regime of Eq. (10) (positive tail
with an exponent −3/2), the common exponent being rather
accidental. In the simple fluid, the factor 3 comes from the
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space dimension d; the exponent, −3/2, in the polymer melt
comes entirely from the stress relaxation law E(t) ∝ 1/

√
t

which is unrelated to d.
An alternative and complementary interpretation of the

results of Eqs. (23) and (24), based on an analysis of the
mobility of the chain and on a time-dependent generalization
of the Oseen tensor, is given in Sec. IV.

4. c.m. mean-square displacement

To conclude this section we determine the c.m. MSD of the
tagged chain

hc.m.(t) = 1
6 〈[Rc.m.(0) − Rc.m.(t)]2〉 (33)

by using the general relation Cc.m.(t) = ∂2

∂t2 hc.m.(t), which
follows directly from the definition of the functions hc.m.(t)
and Cc.m.(t). Using these relations and the results obtained in
this section we get in the regime τ � t � tN :

hc.m.(t) � b2

[
π

12

Wt

N
+ 16

(3π )3/2

1

nb3

(
Wt

N

)1/2 ]
. (34)

Here the first Fickian term represents the Rouse result, while
the second term is due to the VHIs. It is clear that the
cooperative flow (VHI) contribution dominates the c.m. MSD
for short times, that is, for

t � 4.5

(nb3)2

N

W
≡ t∗∗. (35)

Therefore, roughly speaking hc.m.(t) ∝ √
t for t � t∗∗ and

hcm ∝ t for t � t∗∗. Note that the crossover time t∗∗ scales as
the geometric average of monomer time t1 and Rouse time tN :
t∗∗ ∼ √

t1tN . The apparent dynamical exponent z = ∂ ln hc.m.(t)
∂ ln t

,
therefore, changes from 0.5 to 1, the average value (on the
long-time scale) being z̄ � 0.75, which is rather close to what
is actually observed in numerical or experimental works [3–8]:
z ≈ 0.75−0.85.

The asymptotic exponent z = 0.5 will be rarely visible
on the MSD, not only because of the superposition with the
Fickian term at long times, but also because of the crossover
from the superdiffusive regime at early times. Figure 3
summarizes the results by showing the c.m. MSD for the whole
time domain, superposing different chain lengths of model
(A) (data obtained with momentum conserving dynamics).
In the initial ballistic regime, Nhc.m.(t) ∼ t2. Then, the first
relaxation regime of the c.m. VAF [Eq. (23)] leads to a
superdiffusive regime Nhc.m.(t) ∼ t5/4 until the viscoinertial
spreading of momentum goes beyond the chain size at t0 ≈
0.24τ ∼ N2/3. Then, the second relaxation regime due to
viscoelastic recovery Eq. (24) leads to the subdiffusive motion
described by Eq. (34). Note that the acceleration during the first
superdiffusive regime is canceled by the second subdiffusive
regime, so that at the end, the prediction of the Rouse model,
hc.m.(t) ∼ t/N , is recovered.

Figure 4 shows the same representation for a bead-spring
model with conserved topology (again the data were obtained
with momentum conserving dynamics and with 1536 chains
per system). At early times, the same behavior is found with
a first superdiffusive regime followed by the subdiffusive
regime. The situation becomes different around the entangle-
ment time τe ≈ 3000. The short chain, N = 64, enters the
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FIG. 3. (Color online) MSD of the c.m., multiplied by the chain
length N , for model (A) of Ref. [10] (chains can cross each other
because of the increased bond length b0 = 1.5σLJ; these are the
same data sets as used for the inset in Fig. 1 of Ref. [11]). In this
representation, the curves superpose for early times and in the final
diffusive regime. In the intermediate time, the curves split up: The
first superdiffusive regime caused by the spreading of momentum lasts
until τ ∝ N 2/3. After the c.m. VAF has changed sign, the subdiffusive
signature is strongest, crossing over continuously to the free diffusion
beyond the Rouse time.

free diffusion here, whereas the longest chain, N = 1024,
continues with hc.m.(t) ∼ t0.5 as expected from the tube theory
for entangled motion [8]. The c.m. VAF shown in the inset
has exactly the same signature as for the unentangled model.
The results derived in this section are thus fully applicable
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directly to free diffusion, whereas the longest chain, N = 1024, enters
the entangled regime for which tube theory would predict a power law
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function |f0(t/τ )| (black line) and the simulations.
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to entangled melts in the early time regime, at least as long
as τ < τe, which appears to be the case for a wide range of
loosely entangled melts.

III. C.M. DIFFUSION IN A MELT UNDER
NON-MOMENTUM-CONSERVING DYNAMICS

The preceding considerations highlighted the prominent
role played by the viscoelastic properties of the melt for
the c.m. relaxation, which have been captured solely by the
hMCT. A slightly paradoxical consequence of this finding is
that the hMCT is relevant also for non-momentum-conserving
dynamics. Let us consider first melt systems whose dynamics
is defined by a coupling with a Langevin thermostat providing
the Langevin friction force f L = −γmv on each monomer
moving with velocity v (and the corresponding white noise
force). The case of a Monte Carlo dynamics is discussed later.

A. hMCT for Langevin dynamics

1. Analytical expressions

The hMCT in this case is still embodied by Eq. (6), although
the physical relevance of this equation may be questioned,
since the transverse current is no longer a conserved quantity.
For instance, we already mentioned that for a single polymer
in a low-molecular solvent, the transverse current correlation
function recedes exponentially with a rate γ corresponding
to the Langevin friction. However, this is no longer true for
k �= 0 in polymer melts. In fact, to define CT (k,t) in this case
we employ Eq. (11) modified with the friction term (this can
be justified by considering a Mori-Zwanzig theory applied to
the stochastic Kramers propagator):

∂CT (k,t)

∂t
=
t>0

− k2

ρ

∫ t

0
dt ′E(t ′)CT (t − t ′) − γCT (k,t). (36)

Applying a Laplace transform, we get

ĈT (k,z) = v2
T

z + γ + k2

ρ
Ê(z)

. (37)

Note that here we neglect the k dependence of the relaxation
modulus E (see Appendix A).

Let us consider the most important regime, when the time
is longer than the Langevin relaxation time γ −1 (the results
for γ t ∼ 1 are outlined in Appendix B). Then, the transverse
current correlation function has the following scaling form:

CT (k,t) = −Av2
T

γ γ 2 k4C1(Ak4γ −2t), (38)

γ = mγ

ζ1
, (39)

Ĉ1(z) = −
√

2z√
2z + 1

, (40)

C1(y) = 1√
2πy

− 1

2
erfcx(

√
y/2), (41)

where ζ1 = 12
π

kBT b−2W−1 is the effective monomer friction

constant, erfcx(y) = ey2 2√
π

∫ ∞
y

du e−u2
, and A is defined in

Eq. (17). The limiting behavior of C1(y) is (2πy)−1/2 for
y � 1 and (2πy3)−1/2 for y � 1. The parameter γ is just

the ratio of the Langevin friction constant mγ to the overall
effective monomer friction constant ζ1; therefore, γ < 1 by
definition. Note also that γ = π

12
b2Wγ

v2
T

. Hence, alternatively,

γ −1 can be viewed as the ratio of the Langevin diffusion coef-
ficient v2

T /γ to the “dressed” monomeric diffusion coefficient
D1 = NDN = πb2W/12 emerging in the long-time diffusion
regime.

As a result, the scaling behavior of CT (k,t) is substantially
altered by the Langevin friction, but not wiped out. The scaling
form Eq. (38) shows moreover an important feature: If γ �
1, only small values of Ak4t yield non-negligible values of
CT (k,t). This implies that the dynamical form factor F (k,t) =
F (k)ϕ(Ak4t) can be replaced by the static value F (k) in Eq. (6).
A second major consequence of the assumption γ � 1 is that
in that case, the ansatz E(k,t) � E(t) is automatically valid
(see Appendix A; note that the case γ � 1 encompasses the
conserving dynamics of Sec. II C, equivalent to the limiting
case γ = 0). We restrict the discussion in the next section
to such systems with γ � 1 (other cases are considered in
Sec. III B).

2. c.m. VAF for small dressed Langevin friction γ

The simplifications afforded by the hypothesis γ � 1
induce in Eq. (6) a rather simple scaling behavior for Cc.m.(t)
provided t � γ −1:

Cc.m.(t) = − b2W 2γ −3

4
√

6nb3N7/2
f1[πγ −2Wt/(4N2)], (42)

f1(y) =
∫ ∞

0
dxx6fD(x2)C1(yx4). (43)

For γ � 1, the relaxation of Cc.m.(t) displays two regimes
beyond the time ∼γ −1: For small times, we get

Cc.m.(t) � − (Wt)−5/4

N

b2W 2

nb3
ξ (γ ), (44)

ξ (γ ) �
γ�1

�(1/4)

29/4
√

3π5/4︸ ︷︷ ︸
�0.1052

γ −1/2. (45)

Let us remark here that this power-law regime is identical to
that predicted by the dMCT, apart from the prefactor, a pure
constant �0.037 for the dMCT (cf. Eq. (27) of Ref. [10]),
a larger constant ξ (γ ) depending on the Langevin friction
in the present case. However, this formal similarity does not
mean that the physical ingredients implemented by the two
versions of the MCT are the same. In the hMCT approach, the
−N−1t−5/4 scaling regime lasts as long as the relevant length
scale k−1 is smaller than the chain size.

For large times, Wt � (Nγ )2, the reduced transverse
current correlation function is given by C1(Ak4γ −2t) ∝
γ 3k−6t−3/2 for all k spanned by the form factor, and we rather
have

Cc.m.(t) �
N2�Wt�(Nγ )2

− 4

(3π )3/2

W 2b2

nb3

(Wt)−3/2

√
N

, (46)

that is, the same formula as Eq. (24). Let us stress here that
this regime can be well developed before the Rouse time only
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FIG. 5. (Color online) Plot of the scaling function f1(y) [Eq. (43),
thick solid line] together with Langevin dynamics simulation
data for the negative c.m. VAF of different systems to high-
light the universality of the theoretical prediction. The asymptotic
behavior of f1(y) is also indicated. For small y it is given
by 2−1/4�(5/4)y−5/4 (dashed line); for large y it is given by
3−1

√
8y−3/2 (dotted line). The simulation data are scaled according
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√
6nb3N 7/2Cc.m.(t)/[b2W 2γ −3]. All simulation data refer to N =

256. The open symbols correspond to model (A) with increased bond
length and the plus signs correspond to model (B) with softened
excluded volume of Ref. [10]. For model (B), one data set is shown
with the bare friction constant γ = 0.5; the other data sets correspond
to model (A) with different friction strength (from left to right,
γ = 2.0,0.5,0.2,0.1; the figure indicates the corresponding dressed
friction coefficient γ ).

if γ � 1 (which is the case considered in this section). A
well-defined crossover time (for γ � 1) between the regimes
(44) and (46) is t∗ ∼ 3W−1(Nγ )2. This crossover is visible in
Fig. 5 showing the function f1(y), together with the numerical
simulations described in Ref. [10]. One clearly sees that the
matching between theory and simulation is always very good,
although there is a systematic overestimation by a factor �0.7
in the small-y region. Let us stress, however, that this slight
discrepancy is by no means comparable with that found in
Ref. [10], where a definitely subdominant mechanism was
considered (see also Sec. III B).

3. The Langevin screening length

To understand the physical content of Eqs. (44) and
(46), we follow the same lines as in Sec. II C. For a
simple fluid, the Langevin friction, which makes the initial
momentum fluctuation disappear within a characteristic time
γ −1, prevents also the spreading of the initial disturbance
over large distances: The maximum length for the diffusion
of momentum is given by the screening length

√
η/(ργ ) [33]

(note, however, that in any case, the incompressibility of the
fluid creates instantaneously a flow not strictly local after the
initial, localized, kick).

This behavior is significantly altered in the case of a
viscoelastic melt. Qualitatively, this is due to the fact that
the instantaneous viscosity η(t) = ∫ t

0 dt ′E(t ′) evolves in time.
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FIG. 6. (Color online) Scaled orientation-averaged momentum
distribution inside a viscoelastic melt under Langevin dynamics
(with γ � 1) after an initial localized kick (see text for details).

As a result, the screening length r̃(t) now grows with time,

r̃(t) = (2π )−1/4
√

η(t)/ργ = b

(
Wt

2π

)1/4

γ̄ −1/2. (47)

(As in Sec. II C, the numerical factor is here for the sake of
consistency with the subsequent analysis.) Thus, one expects
the fluid to be out of rest within a domain which increases
with t . This is somewhat counterintuitive because the total
momentum is destroyed by the Langevin friction within a
typical time γ −1: The spreading corresponds to a sort of
sluggish anomalous propagation of the initial shear, not driven
by the diffusion of momentum, but by a slow release of elastic
conformational energy. To picture this idea in more detail
we compute the same quantity as in Sec. II C, namely the
momentum density at distance R and time t after an initial kick
δ(t)δ(r) p0 (averaged over all directions). It can be written as
Qlgv(R,t)(γ t)−1̃r(t)−3 p0 with

Qlgv(R,t) = 1

4π

(
r̃(t)

R

)7

Q2([̃r(t)/R]4), (48)

Q̂2(z) = √
z exp(−z1/4). (49)

We remark first that the length r̃(t) defines properly a screening
length associated with the spreading of an initial localized
percussion. The sketch of Qlgv(R,t) as a function of R/̃r(t) is
plotted in Fig. 6. What is not obvious from inspection of the fig-
ure is the fact that the total momentum inside the fluid is strictly
zero (apart from exponentially small terms) for t � γ −1

(this can be verified explicitly by summing up R2Qlgv(R,t)
over R). Thus, the weak external positive momentum density
exactly compensates the inner backflowing momentum. A
second feature of this scaled spreading is that the (unscaled)
momentum density r̃(t)−3(γ t)−1Qlgv(R,t) in the innermost
region, where the asymptotic behavior Qlgv(R,t) ∼ −[̃r(t)/R]
is observable, is exactly equal to that of the conservative
dynamics (t)−3Qmelt(R,t); this is due to the fact that in
that “aged” region, the local forces are dominated by the
integro-differential term, that is, the viscoelastic term, and
the influence of the friction becomes negligible. Notice that the
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average momentum comprised inside this innermost region is
∝− p0(γ t)−1.

Let us consider now the c.m. VAF of a tagged polymer
chain as the average velocity of its c.m. after a perturbative
instantaneous kick on each monomer of the chain [see
Eq. (26)]. As in Secs. II B and II C the screening length
r̃(t) allows us to think of the tagged chain as being made
of N/g(t) subchains of length g(t) ∼ [̃r(t)/b]2. For each
subchain one can consider that the g(t) initial kicks have
evolved enough to encompass all monomers within the asymp-
totic innermost region of the viscoelastic relaxation, where
Qlgv(R,t) ∼ [̃r(t)/R]. As a result, each monomer of each
subchain bears a typical momentum −g(t) p0(γ t)−1/ñr(t)3.
Thus, the c.m. VAF behaves as ∼v2

T N−1(γ t)−1/[nb2̃r(t)],
which is the prediction (44) up to a numerical factor. This
behavior can only be observed as long as r̃(t) < Rg . After
a characteristic time t∗ ∼ γ 2tN , defined by r̃(t∗) ∼ Rg , the
whole chain resides within a region of purely asymptotic
viscoelastic relaxation where the friction term is no longer
relevant (see above): As a consequence, the c.m. VAF returns
to the γ -independent behavior Eq. (24), characteristic of
momentum-conserving dynamics: Cc.m.(t) ∝ N−1/2t−3/2 for
t∗ � t � tN , in agreement with Eq. (46).

The results presented in this section are rederived in Sec. IV
using the notion of a time-dependent Oseen tensor by probing
the time-dependent mobility of a tagged polymer chain under
a constant drag.

B. High versus low friction Langevin dynamics

The first regime of the c.m. VAF for a Langevin dynamics
Eq. (44) relies on the parameter γ , which is the ratio
of the bare Langevin friction constant γm to the dressed
monomeric friction constant ζ1. The preceding discussion
showed how such a ratio emerges from a balance between a true
microscopic dissipative mechanism (the Langevin friction)
and a mesoscopic dissipative mechanism (the relaxation of
internal Rouse modes). The typical value of the parameter γ

strongly depends on the monomeric density n and the Langevin
friction γ . For low values of the Langevin friction and rather
dense melts, one expects γ to be small (for instance, typical
values γ ∼ 10−2 are obtained for the simulations presented in
Ref. [11]) because W−1 is dominated by the cage effect which
imposes large diffusion times fairly independent of small γ .

It is useful to discuss also the case where the Langevin
friction γ is high with respect to what one would obtain
for the monomer friction ζ

(0)
1 /m = (πb2W (0)/12)−1v2

T for the
same system but with γ = 0 (recall that W depends on γ in
a Langevin-driven system). In this case one expects that γ is
not small; for diverging γ , γ should tend to a constant value
(this can be understood by recalling that the reaction rate of an
overdamped Brownian particle in a well is ∝γ −1× Arrhenius
factor [34]). The limiting value of γ = γ ∞ depends on the
density, with γ ∞ � 1 for moderate densities.

The influence of γ on the c.m. dynamics is twofold. First,
only small values of γ make it possible to observe a well-
defined time window where the purely viscoelastic recovery
regime, Cc.m. ∝ −t−3/2/

√
N , is observable. For high γ ∼ 1,

this regime would mix with the crossover to the free diffusion
(at the Rouse time). Second, it has a quantitative impact on

Eq. (44). For low values of γ , we obtained ξ (γ ) � 0.1052/
√

γ

[see Eq. (45)] using the ϕ � 1 approximation [see Eq. (17)].
This point highlights the fact that for γ � 1, the VHI screening
length r̃(t) ∼ γ −1/2b(Wt)1/4 is far larger than the diffusion
blob size r∗(t) ∼ b(Wt)1/4: The length scales mainly respon-
sible for the recovery behavior (Cc.m. ∝ −t−5/4) at a given time
t can be considered as pertaining to a nonmoving polymer.

In the high friction limit γ � 1, the relevant screening
length r̃(t) and the diffusion blob size r∗(t) ∼ b(Wt)1/4

are comparable, and the competing diffusion of the tagged
polymer contributes to diminish the factor ξ (γ ) with respect
to the asymptotic value for low γ [Eq. (45)]. Moreover, the
same argument invalidates the hydrodynamic approximation,
E(k,t) � E(t), for the shear modulus. Hence, we have to
use a k-dependent expression for E. To stay at a rather
qualitative level we introduce the following ansatz for E(k,t)
[inspired by a comparison of the general expression for E(k,t),
Eq. (A3), with the analogous expression for the form factor
F (k,t) = ∑N

i,j=1〈exp[ik · (rj (t) − r i(0))]〉/N]

E(k,t) � E(0,t)
F (k,t)

F (k)
= E(t)ϕ(Ak4t), (50)

which accounts roughly for the decay of the elastic response
at a given length scale due to the diffusion of the chain blobs
of comparable size.

Within this approximation, one can evaluate the effect of
the blob diffusion on Cc.m.(t). The resultant modification of the
theory does not alter the formula Eq. (44), only the constant
ξ (γ ) is modified to

ξ (γ ) = γ −1

√
6π5/4

∫ ∞

0
du u1/4ϕ(u)Jγ (u), (51)

Ĵγ (z) = β̂(z)−1

β̂(z)−1 + γ −1 , (52)

β̂(z) = 1√
π

∫ ∞

0

dy√
y

ϕ(y)e−yz. (53)

The function ξ (γ ) and the comparison with the asymptotic
behavior Eq. (45) are plotted in Fig. 7.

We see that the diffusion of the relevant blobs, when
efficient, drives the response toward a weakening of the
viscoelastic effect: The diffusion of the “elastic elements” and
of the blobs of the tagged chain contributes to a partial blurring
of the recovery effect. Also shown in the plot is the constant
0.037 representing the correlation hole effect [10].

As already mentioned, for high values of γ , the dMCT
and hMCT yield identical predictions for Cc.m.(t), the sole
difference being the prefactor. It is obvious from this figure
that for moderate values of the friction, the viscoelastic
relaxation mechanism remains largely dominant, the density-
based contributions being negligible. This dominance is,
however, dispelled at high friction, where both effects seem to
be comparable. Such a situation is typically provided by Monte
Carlo simulations where the effective friction is expected
to be large. For the Monte Carlo dynamics, the dMCT or
hMCT alone should be insufficient to account quantitatively
for the t−5/4 tail, and one should envisage mixing the two
approaches together. The simplest way would be to add the
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FIG. 7. (Color online) Prefactor ξ as a function of γ . The solid
line indicates the full theory the including approximate wave-vector
dependence of the shear modulus Eq. (51). The thick dash-dotted line
shows the asymptotic behavior of ξ for small γ Eq. (45), and the thin
dash-dotted line the constant value of ξ expected from the dMCT
approach of Ref. [10].

two contributions [35], but the legitimacy of this ansatz is a
priori questionable [23].

IV. GENERALIZED OSEEN TENSOR
AND CHAIN MOBILITY

The anomalous diffusion effects considered in this paper
physically hinge on the VHIs inherent in polymer systems.
The VHIs can be expressed in terms of the generalized time-
dependent Oseen tensor κκκκ(r,t) defining the collective flow
response, v(r,t), to a perturbative external force with density
f ext(r) applied to the medium at t > 0 (the external force is
zero for t < 0):

v(r,t) =
∫

κκκκ(r − r ′,t) · f ext(r ′)d3r ′. (54)

An alternative approach, which complements the theory
presented in the preceding sections, is to consider the response
of the polymer c.m. to a constant drag force. The c.m. velocity
response is closely related to the generalized Oseen tensor.
From this Oseen tensor, which can be viewed as the resolvant
of the generalized Navier-Stokes equation (27), we extract
the isotropic part κ(r,t) = 1

3 Tr κκκκ(r,t) (the Oseen response
function), the truly important quantity for our purpose. One
can show by the linear-response theory [21] that this function is
related to the transverse current correlation function CT (k,t) by

CT (k,t) = 3

2
nkBT

∂κ(k,t)

∂t
. (55)

In simple fluids and in the limit of large times, the Oseen
function is well known [1,2]:

κ(r,∞) = 1

6πηsr
, (56)

where ηs is the fluid viscosity. In the transient regime, that
is, for finite t , the hydrodynamic interactions have a finite

range s(t) characterized by the vorticity diffusion length
s(t) ∼ √

tηs/ρs , where ρs is the fluid mass density:

κ(r,t) ∼
{ 1

ηsr
if r � s(t),

exponentially small if r � s(t).
(57)

(Here and below we omit numerical factors for simplicity.) In
the case of a simple fluid coupled to a Langevin thermostat,
another screening length r̃ is emerging [33], r̃ = √

η/ργ . In
this case κ(r,t) ∼ 1/(ηsr) if r � s(t) and r � r̃ .

This simple qualitative picture can be easily generalized
to account for viscoelastic effects in polymer melts. The
only important difference is that there the stress relaxation
is slow. Hence, the macroscopic viscosity η in the transient
regime must be replaced by the effective transient viscosity
η(t) = ∫ t

0 dt ′E(t ′): We have then η(t) ∼ kBT n
√

t/
√

W in the
t range between the monomer relaxation and the Rouse times,
t1 � t � tN . The generalized viscoelastic (polymeric) Oseen
response function therefore is

κ(r,t) ∼ 1/(η(t)r), r � (t), r � r̃(t), (58)

where (t) ∼ √
tη(t)/ρ and r̃ = √

η(t)/γρ. While the rig-
orous justification of these inductive formulas comes from
Eqs. (55) and (12), it is worth noticing here that (i) the 1/r

dependence of κ(r,t) comes from the gradient expansion
of the viscous force ∝∇2v, which remains valid in the
relevant regimes also for polymer melts; (ii) the validity of
the replacement η � η(t) is a direct consequence of the slow
(power law) behavior of E(t); (iii) as noticed in Sec. III, the
Langevin screening length r̃(t) is now time dependent.

This concept of generalized Oseen flow-to-force response
function and VHI can be used to derive the main results of
this paper (as presented in Ref. [11]). We suppose that a weak
external force F is applied to each unit of the tagged chain
at t > 0. The general linear response of the c.m. velocity,
V c.m.(t), can be written as

〈V c.m.(t)〉 = Fχ (t). (59)

The FDT imposes a rigorous relation between the response
function χ (t) and the c.m. velocity correlation function
Cc.m.(t):

Cc.m.(t) = kBT

N

∂χ (t)

∂t
. (60)

The response function χ (t) has two main contributions: χ (t) =
χ0(t) + χh(t) coming from the Rouse velocity relative to the
polymer matrix, χ0(t) = 1/ζ1, and the cooperative velocity
v(r,t) of the matrix induced by the external forces, χh(t)F =
1
N

∑N
i=1〈v(r i ,t)〉, where r i denote the positions of tagged chain

units. The first term χ0 is constant and does not contribute to
Cc.m.(t). The cooperative term can be calculated using the
generalized Oseen function:

χh(t) = 1

N

∑
i,j

κ(rij ,t) ∼ 1

Nη(t)

∑̃
i,j

1

rij

, (61)

where rij = |r i − rj | and the second sum includes only such
pairs (i,j ) of tagged chain units that rij � (t) and rij � r̃(t).

Equations (60) and (61) make it possible to easily get
all the principal results for the c.m. VAF. Let us start with
the momentum-conserving dynamics (γ = 0, r̃ = ∞). If the
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momentum diffusion length (t) exceeds the chain size,
(t) � Rg , the

∑̃
in Eq. (61) is constant (∼N2/Rg); hence,

we get

Cc.m.(t) ∼ kBT

Rg

∂

∂t

1

η(t)
∝ −N−1/2t−3/2, tN � t � τ (62)

in agreement with Eq. (24). Here the crossover time τ is defined
by the condition (τ ) ∼ Rg readily leading to τ ∝ N2/3, in
agreement with Eq. (21). The simple physical arguments
outlined above thus explain all the main features of Cc.m.(t)
in this regime: The N dependence Cc.m. ∝ 1/

√
N (rather

than 1/N as follows from the dMCT [10]) is defined by the
chain size as Cc.m. ∝ 1/Rg and Rg ∝ √

N ; the t−3/2 power
law comes directly from the time behavior of the transient
viscosity, η(t) ∝ √

t ; the sign of Cc.m. is negative since η(t) is
increasing in time.

For shorter times, t � τ , the diffusion length (t) is shorter
than Rg; hence, the

∑̃
in Eq. (61) becomes time dependent,∑̃

∼ Ng(t)/(t) ∼ N(t)/b2, (63)

leading to

Cc.m.(t) ∼ 1

N

∂

∂t

N(t)

Nη(t)b2
∝ N−1t−3/4, t1 � t � τ. (64)

The correlation function Cc.m.(t) in this regime significantly
depends on the visco-inertial diffusion length (t); Cc.m. > 0
since (t) is increasing faster than η(t): (t) ∝ t3/4, η(t) ∝ √

t .
The main results for the Langevin dynamics can be

understood on the same footing. If γ is not too low, the
Langevin screening length r̃(t) takes the control for t � 1/γ

[i.e., r̃(t) < (t) in this time regime]. So the crossover time
t∗ between the two main dynamical regimes is defined by
r̃(t∗) ∼ Rg; that is, η(t∗)/(ργ ) ∼ Nb2 leading to t∗ ∝ N2γ 2,
in agreement with equations of Sec. III A. The screening
is important for shorter times, 1/γ � t � t∗, where

∑̃ ∼
Nr̃(t)/b2 [cf. Eq. (63)]; hence, for γ −1 � t � t∗ we have

Cc.m.(t) ∼ 1

N

∂

∂t

Nr̃(t)

Nη(t)b2
∝ −N−1t−5/4γ −1/2. (65)

The t−5/4 time behavior in this regime thus comes directly from
r̃(t) ∝ t1/4 and η(t) ∝ √

t scaling laws. In addition, Cc.m. ∝
γ −1/2 following the similar dependence of the screening
length. For long time, t � t∗, no screening is relevant, so
we recover the behavior for γ = 0.

V. ON THE VALIDITY OF THE APPROACH

We are now in a position to summarize the main ap-
proximations involved in the theory. To this end, it is useful
to have in mind the Oseen function (VHI)-based approach
outlined above. Two assumptions were made. (i) We neglected
monomer displacements (time dependence of rij ) in Eq. (61).
This is equivalent to neglecting the relaxation of the dynamical
form factor F (k,t), that is, to setting F (k,t) = F (k). (ii) We
neglected the wavelength dependence of the transient viscosity
η(t), that is, equivalently, disregarded a k dependence of the
relaxation modulus E(k,t).

Both assumptions can be justified in the same way. With
the Rouse dynamics the typical monomer displacement during

time t is r∗(t) ∼ b(Wt)1/4. On the other hand, the characteristic
length scale k−1 ∼ (“relevant” rij ) is defined by one of
three lengths: It is either the chain size Rg , or the diffusion
length (t), or the Langevin screening length r̃(t). Obviously,
r∗(t) � Rg in the pre-Rouse regime. It can be also easily seen
that r∗(t) � (t) for t beyond the monomer time t1 [actually
r∗(t) � (t) for any t since momentum diffusion is always
much faster than monomer diffusion]. The two observations
show that assumption (i) is always valid for γ = 0 since

k−1 � r∗(t). (66)

The new characteristic length scale emerging with Langevin
dynamics is k−1 ∼ r̃(t) ∼ γ̄ −1/2r∗(t). Therefore, the condition
Eq. (66) is valid as well if γ̄ ≡ mγ/ζ1 � 1. The validity of the
assumption (ii) is ensured by the same condition (66) since one
can easily see that r∗(t) is simultaneously the typical size of
an elastic element (chain fragment or dynamical blob) whose
relaxation time is comparable to t . The condition (66) therefore
says that the relevant elastic elements are much smaller than
the characteristic length scale k−1; hence, the k dependence of
E(k,t) is indeed negligible.

The two effects disregarded by assumptions (i) and (ii)
bring in a correction to the basic (asymptotically exact) result
for the c.m. VAF. Our analysis of the Langevin dynamics
(see Sec. III B) shows that the relative correction is negative
and is proportional to

√
γ̄ in the regime 1/γ < t < t∗. The

VHI correction term is therefore comparable with the density-
fluctuation (dMCT) contribution (although the VHI correction
has a larger magnitude and the opposite sign).

Let us now turn to a central assumption that has been hidden
so far. Indeed, we assumed that the monomer displacement
dynamics is Rouse-like, that is, is nearly not affected by the
VHI effects. It can be easily justified. First, we use the FDT
relation between the MSD of a monomer i on a tagged chain,

h(t) = 1
6 〈[r i(0) − r i(t)]2〉, (67)

and the velocity response to a weak force F applied (at t > 0)
to this monomer:

〈vi(t)〉 = F
kBT

∂

∂t
h(t). (68)

For t � t1 the external force F induces a concerted motion of a
relevant dynamical blob (chain fragment of g units with relax-
ation time t1g

2 ∼ t). The blob Rouse friction constant is gζ1,
so the Rouse prediction is 〈vi(t)〉0 ∼ F

gζ1
∼ Wb2 F

kBT

√
t1/t .

The cooperative flow (VHI) contribution is 〈vi(t)〉h ∼ F
η(t)rg

∼
W
bn

F
kBT

(t1/t)3/4, where rg ∼ b
√

g is the blob size. Summing
the two terms 〈vi(t)〉 = 〈vi(t)〉0 + 〈vi(t)〉h, using Eq. (68) and
integrating, we get

h(t) ∼ b2
√

Wt

[
1 + const

nb3

(
t1

t

)1/4 ]
,

where the second term in the square brackets represents the
cooperative flow effect. This term is always small for t � t1;
hence, the VHI effect for the monomer diffusion is indeed
negligible.

There is another subtle point associated with the one
above, which we broached briefly in Sec. II C. In all the FDT
reasonings we made throughout this paper, the external forces
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were applied to volume elements while we considered them
as acting on all monomers of a tagged chain. We therefore
assumed that the external forces applied to the tagged chain
were fully transferred to the surrounding matrix. This is a
natural assumption because the tagged chain can be considered
as a part of the matrix, and the chain fragments are strongly
overlapping there, so the elastic forces due to the “deformed”
tagged chain cannot provide but a minute contribution to the
global elastic forces of the whole matrix.

All in all, the analysis presented above drives us to the
conclusion that the theory developed in this paper yields
asymptotically exact results in the declared parameter range
(i.e., for N � 1, t1 � t � tN , γ̄ � 1).

VI. DISCUSSION AND CONCLUSIONS

In this paper, we showed that a relevant mode-coupling
approach (referred to as “hMCT”) can be devised to study
the c.m. diffusional properties of a tagged polymer in an
unentangled melt. This approach is in accordance with a
polymer-based theory presented in Ref. [11] and shows that
in most cases the subdiffusional initial regime of the c.m.
diffusion, not predicted by the Rouse theory, reflects transient
VHIs in the melt: The motion of a tagged chain couples to
the collective velocity field (hydrodynamic flow) of the melt,
which diffuses due to the viscoelastic response of the melt.
This VHI driven diffusion of momentum is used to calculate
the c.m. VAF (Sec. II C) and c.m. MSD (Sec. II C4), leading
to a rich relaxation behavior of the c.m. velocity [see, e.g.,
Eqs. (23) and (24); the simpler case of a diffusing
polymer chain in a monomeric fluid is also analyzed
in Sec. II B].

The physical picture outlined above is encapsulated in our
“hydrodynamic MCT (hMCT)” approach where the “relevant
decay channels” [36] are the collective (hydrodynamic) current
fields. For momentum-conserving dynamics this mechanism is
always dominant over the correlation hole effect [11], which
was analyzed in part I through a dMCT assuming that the
subdiffusive c.m. motion can be fully traced back to the
coupling of the c.m. dynamics to the (collective and chain)
density fluctuations of the melt [10].

The theoretical predictions of this paper are universal for
long chains (of many Kuhn segments). Local interactions, such
as bond-orientation potentials, merely renormalize the input
parameters like the statistical segment and the monomer relax-
ation time. Although our theory was developed for unentangled
melts, it is also relevant for the early time regime (t < τe) of
entangled polymer melts (Fig. 4). A more detailed comparison
of the theory with simulations of different parameters, such
as density, chain rigidity, or chain crossability, will be given
elsewhere [37].

We also studied the case of non-momentum-conserving
dynamics, widespread in numerical simulations where Monte
Carlo or Langevin algorithms are often used to accelerate
and stabilize the dynamics. In these cases, although the
momentum diffusion seems to be less important, the hMCT is
paradoxically still relevant, for it takes into account the slow
decay of the viscoelastic relaxation of the melt. For small
values of the Langevin friction and/or high densities (leading
to low monomer mobility), we find the VHI effects to remain

the dominant mechanism (Sec. III). In the strong-friction and
low-density regimes, however, we noticed in Sec. III B that the
correlation hole effect gains in strength compared to the VHI
effect and both mechanisms could have a comparable impact
on the c.m. dynamics.

All the results obtained within the hMCT were physically
interpreted along the lines of a linear response formalism,
wherein the average response of a tagged polymer to an
instantaneous force equally distributed over all monomers
of the chain is directly proportional to the c.m. VAF by
virtue of the FDT. In this way, we highlighted the complex
relaxational dynamics of the c.m. driven by the viscoelastic
response of the melt. In Sec. IV, a complementary approach
was presented, also based on the linear response formalism,
which emphasizes the VHI-mediated flow-to-force relation
within the melt. The notion of a time-dependent Oseen tensor
was introduced and discussed, and the results of the paper were
recovered by computing the time-dependent mobility of the
tagged chain under constant force. We showed that the actual
notion of a “dynamical hydrodynamic screening” in melts is
quite involved for observables addressing a delocalized object,
like the c.m. of a tagged polymer.

Our conclusions about the importance of VHIs in polymer
melts may seem to contradict the common view that hydrody-
namic interactions are almost totally screened in concentrated
polymer systems [2,38–42]. Noteworthy, this classical view
comes from theories considering the solvent motion with
respect to the polymer matrix which, however, is assumed
to be immobile. This concept cannot be applied, not even
formally, to polymer melts where there is no solvent. Hence,
we took into account the polymer matrix flow and showed that
it gives rise to important long-range viscoelastic hydrodynamic
effects.

Our study also shows the ability of the MCTs to predict
accurately the fluctuation dynamics of complex fluids in the
liquid range, but at the same time, it highlights a crucial
point: The choice of the relevant decay channels is of primary
importance, and physical arguments must lead the way. This
paper shows that this choice is not always obvious and
sometimes can even be counterintuitive.

A relevant challenge would be to develop an MCT for-
mulation which could account for viscoelastic effects and
a connectivity signature in the dynamical structure factor
starting from a microscopic basis, that is, without assuming (as
we did in Ref. [10]) Rouse or dRPA expressions for F (k,t) and
S(k,t). As a matter of fact, the MCT, more precisely the dMCT,
has been extensively applied to the dynamics of supercooled
regime, where its nonlinear structure predicts dynamical arrest
in the vicinity of the MCT glass transition [36,43]. A natural
perspective resulting from the present work would thus be
to explore the relevance of the viscoelastic recovery in the
supercooled regime of polymer melts.
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APPENDIX A: k-DEPENDENCE OF THE SHEAR
RELAXATION MODULUS

In Eqs. (11) and (36) we assumed that the shear modulus
E(t) has its hydrodynamic (macroscopic) limiting value (for
k → 0) predicted by the classical Rouse model Eq. (13). Let
us analyze this approximation. For pair potentials the exact
expression of the microscopic stress tensor is given by Ref. [24]

σxz(k = kez) =
∑

i

⎧⎨⎩−mvi,zvi,x + 1

2

∑
j �=i

xij

rij

φ′(rij )

× 1 − exp(−ikzij )

ik

⎫⎬⎭ eikzi , (A1)

where xij = xi − xj , r ij = r i − rj , and φ(rij ) is the inter-
action potential of particles i and j . If one keeps as usual
only the dominant intrachain potential interactions φ(ri,i+1) �
3kBT

2b2 r2
i,i+1 [2] and considers only small k such that kb � 1, we

can simplify the preceding expression to

σxz(k = kez) � 3kBT

b2

∑
a

N∑
j=1

za
j (j+1)x

a
j (j+1)e

ikza
j , (A2)

where a is the label of the ath polymer of the melt. The
relaxation modulus is related to the stress correlation function
by virtue of the FDT:

E(k,t) = (kBT V )−1〈σxz(−kez,0)σxz(kez,t)〉.
For uncorrelated chains the above expression transforms to

E(k,t) = 9kBT n

Nb4

〈
N∑

i,j=1

zi(i+1)(0)zj (j+1)(t)

× xi(i+1)(0)xj (j+1)(t)e
ik[zj (t)−zi (0)]

〉
. (A3)

Thus, we see that the relaxation modulus keeps a k dependence
which follows the motion of monomers. As a result, we can
neglect the k dependence in the relaxation modulus E(k,t)
provided that we consider, for a given t , modes with length
scale k−1 significantly larger than the dynamical blob size
r∗(t) ∼ b(Wt)1/4: k−1 � r∗(t). This condition amounts to
Ak4t � 1. [Note that r∗(t) is the characteristic size of an elastic
element (chain section) whose relaxation time ∼t .]

For the momentum-conserving dynamics, we have seen
that the relevant scale k−1 in the short-time t−3/4 regime is
∝t3/4, whereas the relevant k−1 ∼ b

√
N in the second regime

(t � τ ). It can be easily seen that in both cases the condition
k−1 � r∗(t) is always valid (in the range t1 � t � tN between
the monomer and the Rouse time). Therefore, in this case we
can indeed neglect the space dispersion of E: the assumption
E(k,t) � E(t) is fully justified. In a similar way it is easy to
show that this assumption is also valid for non-momentum-
conserving (Langevin) systems provided that γ � 1.

APPENDIX B: c.m. VAF FOR LANGEVIN DYNAMICS—THE
SIGN INVERSION BEHAVIOR

Here we consider Cc.m.(t) for a polymer melt with Langevin
thermostat in the regime of low Langevin friction γ̄ =
mγ/ζ1 � 1. On the other hand, we assume that the Langevin
friction is still significant [in particular, for the regime where
Cc.m.(t) changes sign], that is, that γ τ � 1 [here τ , defined
in Eq. (21), sets the sign-inversion time scale for the real
momentum-conserving dynamics].

With Langevin friction the c.m. VAF sign inversion regime
corresponds to t ∼ 1/γ and can be analyzed in a straightfor-
ward way using Eqs. (6), (36), and (37). The results are

Ĉc.m.(z) � A′ z1/4

(1 + z/γ )1/2 , (B1)

A′ = 2

π

vT

b2Nn

(√
2πW

γ

)1/2

. (B2)

The corresponding real-time c.m. VAF is

Cc.m.(t) � A′γ 5/4fγ (γ t), (B3)

t1 � t � t∗ ∼ γ̄ 2tN , (B4)

1/τ � γ � ζ1/m, (B5)

where

fγ (y) = − 1

π
√

2
y−5/4

∫ ∞

0
dy ′ |1 − y ′/y|1/2

1 − y ′/y
y ′1/4e−y ′

. (B6)

The function fγ (y) shows the following asymptotic behavior:

fγ (y) � 1

π
√

2

{
�(3/4)y−3/4, y � 1,

−�(5/4)y−5/4, y � 1.
(B7)

Thus, for γ t � 1 the c.m. VAF follows Eq. (23) for the short-
time momentum conserving dynamics, while for γ t � 1 the
above equation agrees with Eq. (44). The sign-reversal time
is t0 ≈ 0.78/γ ; that is, it is defined solely by the Langevin
friction in this regime.
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