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Shape of adsorbed supercoiled plasmids: An equilibrium description
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Inspired by recent atomic force microscope (AFM) images of plasmids deposited on oppositely charged
supported lipid bilayers from salt free solution, we propose a model for strongly adsorbed supercoiled cyclic
stiff polyelectrolytes. We discuss how the excess linking number Lk of the deposited cycle is shared between
writhe Wr and twist Tw at equilibrium and obtain the typical number of self-crossings in the deposited cycle as a
function of surface charge density. The number of crossings at equilibrium is simply determined by the crossing
penalty which is a local quantity and by the excess linking number. The number of crossings is well defined
despite versatile plasmid shapes. For moderate numbers of crossings the loops are rather small and localized
along the primary cycle, as expected from entropic loops. In the regime of many crossings, the cycle takes the
shape of a regular flat ply ruled by local stiffness. The model allows for a semiquantitative comparison with the
AFM images of deposited plasmids which are strongly charged.
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I. INTRODUCTION

Double stranded DNA (hereafter dDNA) outside of nucle-
osomes are widespread in nature from bacteria to eukaryotic
cells. They are generically called plasmids and are often
circular, as considered here. Plasmids are intensively studied
and used to transfer genetic material. Historically they served
to create rat genetic disease models, nowadays they are
promising vectors in gene therapy. Large plasmids as used in
the experiments performed by some of us [1] comprise 2686
base pairs and make a contour length S of about 900 nm. As
dDNA in general, plasmids carry one (negative) elementary
charge e per base and are highly charged objects subject to
charge regulation. Being closed cycles, plasmids can bear some
extra turns which would be released upon opening the cycle:
Plasmids are supercoiled objects. The number of trapped extra
turns can to some extent be controlled during the preparation,
of order ten (negative) extra turns is typical. A sketch of
plasmid structure in solution and deposited on a surface is
given in Fig. 1.

Supercoiling in general got a lot of attention from physicists
[2], especially from the single chain manipulation community
[3,4]. When open dDNA molecules moderately stretched in
a magnetic (or optical) tweezers are subjected to extra turns
the formation of plectoneme is detected [4]. Plectoneme is a
“phone cable” -like supercoiled structure of dDNA in equilib-
rium with the stretched strands [see Fig. 1(c)] [5]. Modeling of
supercoiled structures is proposed by very different commu-
nities ranging from mechanics [6,7] to statistical physics [8,9]
including computer simulations [10–12]. The fascination of
theorists for closed dDNA comes in part from the conservation
of the link Lk and the various ways it can be shared between
writhe Wr and twist Tw. For a comprehensive review, see
Ref. [5]. The typical configuration in solution has nonvanishing
writhe and goes hence out of plane. In contrast, the deposited
plasmids are constrained to be planar almost everywhere by
the strong surface attraction and writhe only comes from
the self-crossings. In a full statistical physics model, each
plasmid configuration having the proper link is Boltzmann
weighted with an elastic energy comprising the bending (Eb)

and twist (Et ) contributions [8]. The elasticity of dDNA is
generally described by a bending modulus B = kBT lp with lp
the persistence length and a twist modulus C = kBT lt with lt
the twist length. In principle, the handedness of dDNA allows
a linear coupling between twist and curvature [13]. However,
this coupling is too weak to enter our current description.
The elastic moduli depend on external conditions such as
ionic strength. Electrostatic stiffening in dilute bulk solution
is described by the Odijk-Skolnick-Fixman theory [14], which
leads to the simple dependence lp = lp0 + lBρ2κ−2/4, where
κ−1 is the Debye screening length decreasing for increasing
ionic strength, as discussed later, lB = e2/4πεkBT is the
Bjerrum length, about 0.7 nm in water, and ρ the linear charge
density. At high ionic strength lp = lp0 = 50 nm. Below we
use thermal units where elementary charge is set e = 1.

Even in vitro, most studies on plasmids are conducted under
physiological conditions where the ionic strength is as high
as 0.15 mol/l. One obvious reason is to ensure biological
relevance. Going to low salt could also lead to denaturation of
the dDNA, which usually is not desired. From the theoretical
point of view the status of electrostatics at high salt remains
unclear in part because the relevant distances are very short and
the mean field theories like Poisson-Boltzmann theory fail. For
long the electrostatic interactions are neglected altogether or
represented by some ad hoc short range interaction. Recently
there were attempts to include electrostatics in the description
of plectoneme [15]. The Poisson-Boltzmann equation in the
presence of (moderate) salt has only recently been solved
analytically in cylindrical geometry [16]. This substantiates
the concept of effective charge often used to extend the validity
of the linear Debye-Hückel theory.

Plasmids away from physiological conditions are also
interesting objects for the physicist because of their versatile
structure. In solution, the shape (structure) of a (cyclic)
plasmid mainly depends on its supercoil density and on salt
conditions ruling electrostatics. In practice the polarization
of the dissolved salt at concentration cs entails the Debye
screening length κ−1 for electrostatics with κ2 = 8πlBcs (for
monovalent salt). In solution the effective interaction between
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FIG. 1. (Color online) Sketch of plasmids (a) in bulk solution
and (b) deposited on a planar membrane. (c) Supercoiled DNA:
plectonemic structure with a helical angle � and a helical radius R.

test charges is cut exponentially over the Debye screening
length. The underlying Debye-Hückel theory is a linear theory
which is often used for polyelectrolytes sometimes together
with the concept of effective charges mentioned earlier.
Qualitatively we expect the isolated plasmid in (almost) salt
free solution to be ruled by bare electrostatics and to adopt an
almost planar stretched configuration thereby almost all extra
link is stored into twist. In the opposite limit of strong screening
(high salt) the electrostatic interaction becomes a short range
repulsion which is not very relevant for intrinsically stiff
plasmids (with persistence length lp ∼ 50 nm). The plasmid
can then adopt a ply structure where most of the link is
stored into writhe and the stiff plasmid mainly pays curvature
(bending) energy [17]. The ply structure is documented by
a host of electron micrographs; these images are routinely
used to compute the excess linking number of plasmids [18].
Intermediate situations deserve more precise consideration.

It is not that easy to adsorb the negatively charged plasmids
(more generally DNA) from aqueous solution because sub-
strates usually also acquire a negative charge when they are
brought in contact with water. An often used trick is to fix the
DNA on the substrate using divalent cations (Mg2+). In a recent
work Witz et al. [19,20] show that under those circumstances
a plasmid behaves as locally stiff over the first few persistence
lengths (say five) and like a two-dimensional (2D) excluded
volume chain at somewhat larger distances (say above seven
persistence lengths). We expect a similar behavior to hold for
somewhat softer adsorption as is the case in our experiments. In
plasmid deposition experiments performed by some of us [1]
the surface is a supported lipid mixed bilayer. The nominal
surface charge concentration is controlled by the fraction of
charged lipids versus neutral (yet zwitterionic) ones. We do not
fully address peculiarities of such a substrate like its possible
inhomogeneity (in the absence of plasmid) and the possible
formation of cationic lipid/DNA complexes. In all examined
cases the plasmid lies flat on the surface and in that sense it
is “strongly adsorbed” without any sign of denaturation. We
actually checked with UV adsorption measurements that even
in the salt free solution at the same plasmid concentration there

FIG. 2. (Color online) Displacement of mobile surface charges
and bulk charges due to the presence of a test charge near the interface.

is no sign of double helix melting over more than 10 h at room
temperature. In contrast complete melting is observed over a
few tens of minutes at 80◦ C. Open DNA fragments are seen
to melt much easier than plasmids. Furthermore, as we report
below the recorded shapes are similar to those of plasmids
deposited on a neutral (dipolar) surface from a solution with
tens of mM monovalent salt. In the later case DNA melting is
not expected.

The main remaining question is to describe the adopted
plasmid shape which can be characterized by its number of
self-crossings. This is the main purpose of the present paper.
The shape after deposition from a (almost) salt free solution
depends on the surface charge density as also demonstrated
by experiment. We show below that the surface charge for
a deposited plasmid stands in a loose analogy with the salt
concentration for a plasmid in solution. The water-lipids
interface is polarizable because the ionic cloud of counterions
above the charged surface and the surface charges themselves
if they are mobile or the counterions trapped by the surface
in the strong coupling limit (yet without ion pairing or strong
in-plane correlations) can all be slightly displaced by a test
charge (see Fig. 2). We expect electrostatic interactions to be
screened due to the mobile charges. However, since only the
interface of limited thickness is polarizable, the tail of the
effective interaction decays only as a (high) power law [21], in
contrast to the free solution case where an exponential decrease
is predicted.

We try to describe supercoiled stiff cycles with prescribed
excess link Lk deposited from salt free solution and salty
solution on a charged or polar (zwitterionic) surface. The
excess link Lk is a topological invariant for a closed cycle;
it is the sum of the twist Tw and the writhe Wr,

Lk = Tw + Wr. (1)

Under given external conditions, the cycle can adapt its
conformation to minimize the free energy with conserved
link Lk. When the external conditions are changed, twist may
be traded against writhe or vice versa. In the remainder we
focus on cycles adsorbed on a oppositely charged surface. We
merely consider cycles with given uniform charge density ρ

and persistence length lp. Only in the final discussion do we
try to comment on the variation of ρ and lp with the surface
charge. Below we present precise analytical results obtained in
some linear approximation [22] which allow a semiquantitative
comparison with adsorbed plasmids.
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II. PLASMID DEPOSITED ON AN OPPOSITELY
CHARGED SURFACE

In this section we consider the self-crossing of a plasmid
adsorbed on the oppositely charged surface. The cross section
of a crossing is illustrated in Fig. 3. Below, we first estimate
the extension of the polymer sections not touching the
surface around crossings and show that crossings have only
localized effect. Another energy penalty arises from the mutual
interaction of electrostatic origin between (straight) polymers
at crossings and is of the type Fint = const./sinθ , with θ the
angle of crossing and an amplitude estimated from perturbation
theory. Then we estimate the writhe in the case of a plasmid
lying flat on the surface almost everywhere. With these
estimates at hand, we finally discuss the free energy of the
cycle as a function of the number of crossings.

A. Interactions near charged surface

Let us first consider a surface with a uniform (continuous)
quenched positive surface charge and assume infinite dielectric
contrast, as is reasonable for an aqueous solution facing a low
dielectric substrate. Whether the fluctuations are important
depends on the coupling parameter � = 2πZ3l2

Bσ , where σ

is the surface charge density and Z the valency of the surface
charge counterions [23]. For � < 1, the layer of counterions
can be described by the mean-field theory (Gouy-Chapman).
For monovalent surface charges (Z = 1), � = 1 corresponds
to an average distance

√
2πlB between surface charges. In the

experiment the charged surface is a bilayer with a fraction of
monovalent charged surfactants which corresponds typically
to � � 1. As the coupling constant � is rapidly increasing with
Z we specialize our mean-field description to Z = 1 below, as
is also relevant to experiment [1].

In the mean-field theory, half of the counterions of the
interface are (qualitatively) spread within a Gouy-Chapman

FIG. 3. (Color online) A self-crossing of plasmid under strongly
adsorbing condition. The centerline of upper filament is described by
h(x). For each crossing, there is some polymer section not touching
the surface which costs interaction energy; the upper strand bends
back to the surface at the expense of elastic energy.

(GC) length λ = 1
2πσ lB

from the surface. The coupling constant
� measures the strength of the Coulomb interaction between
two typical charges in the GC layer a distance λ apart. In the
case � > 1, the counterions condense on the surface until the
GC length goes back to lB . For valencies larger than unity, the
counterions are also expected to be ordered in the surface [23,
24]. Strong coupling results with emphasis on overcharging are
reviewed by Grosberg et al. [25] and Messina [26]. Lukatsky
et al. [27] and Lau et al. [28] also address correlation effects
in simple geometries.

Interactions between test charges immersed in the GC layer
are weakly screened. A test charge polarizes the surrounding
layer creating a dipole, the potential created by such a dipole
is not strongly screened because most relevant field lines stay
essentially out of the GC layer, in a region where counterions
are scarce. As a result the effective interaction ψ between
unit test charges (located at the same height, z) decays with
lateral distance r as a power law. The case of no dielectric
contrast at the interface was considered in detail by Netz [22].
The perturbation of the electric potential by a unit source
charge (Green’s function) reveals a very complex behavior.
Most strikingly, for a source charge and a test point at the same
height within the GC layer the perturbation decays with the
distance r as a power law ψ(z,r) = 2lBλ2

r3 (z < λ,r > λ) [22].
The power-law tail is given by the leading nonanalytic term
of the low-q expansion of ψ(z,q), with q being the conjugate
variable of r (see Appendix B).

Using linear perturbation of GC solution, we derive inter-
actions near charged surface for other experimentally relevant
cases. The detailed calculation is shown in Appendix B. To
account for the experimental situation of plasmids adsorbed
on a lipid bilayer in the fluid gel phase we considered high
dielectric contrast and annealed surface charges. In the case
of infinite dielectric contrast and a quenched surface charge
[denoted below by superscript (q)], we obtain a slightly
stronger power law decrease right at the interface (z = z0 = 0),
ψ (q)(0,r) = 18lBλ4

r5 (r > λ). It is worth noticing that a finite
(yet large) dielectric contrast restores the 1/r3 behavior [22]
with an amplitude divided by the dielectric contrast (the ratio
of dielectric constants, here of order 20). The true asymptotics
remains formally ∼1/r3. In the case of a annealed surface
charge [denoted below by superscript (a)] the electrostatic
potential at the surface of the substrate is nonuniform and
the surface charge is Boltzmann distributed. We find that the
amplitude of ψ (a) is smaller by a factor 9 as compared to the
quenched case ψ (q):

ψ (a)(0,r) = 2lBλ4

r5
(r > λ). (2)

The detailed derivation can be found in Appendix B. We
also provide details on the interaction between the source at
height z0 and a test charge at height z, ψ(z,r) = G(z,r), for
various relevant cases. In the annealed case the surface charge
is Boltzmann distributed following σ = σ0e

−ψ , where σ0 is the
nominal surface charge density measured at the unperturbed
surface infinitely far from the source. In the linear regime we
may compute δσ = σ − σ0 as δσ (q) = −ψ(z0,0,q)/(2πlB ),
an explicit expression can be obtained with the help of
Appendix B 3. The total excess charge induced by a unit test
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charge located at height z0 can be computed by setting q = 0:

δσ (q = 0) = −2

3

λ

z0 + λ
. (3)

A rod of charge ρ per unit length accumulates −2ρ/3 extra
surface charges per unit length underneath. This excess surface
charge partially compensates the image charge. The second
moment of the surface charge distribution shows that the width
of the perturbation crosses over from ∼λ for z0 < λ to ∼z0

for z > λ. This suggests that the perturbation starts failing for
ρ2πlB ∼ 1 for a filament close to the substrate.

Note that the efficiency of (any) screening depends on
the spatial dimension of the charged object. Screening only
marginally affects a 1D slender object like a rigid rod. In the
absence of salt (which is not realistic) the GC description
leads to an infinite electrostatic potential difference between
the surface and infinitely far away. Indeed, if the origin of the
potential is taken at the surface, the electrostatic potential at
distance z away from the surface can be written as ϕ(z) =
−2 ln z+λ

λ
. The volume charge density of the counterions

decays from c(0) = −σ/λ = −2πlBσ 2 as c(z) = c(0)( λ
z+λ

)2.
The concentration of counterions is essentially constant in
the GC layer and decays as a power law further from the
surface. A small quantity of otherwise irrelevant (negatively
charged) coions of the surface are depleted following the
inverse Boltzmann law. In the absence of any bulk screening,
none of them would be found at a finite distance from the
bilayer. In practice, there is some screening in the bulk solution
due in our case to the finite concentration of plasmids and their
counterions. The salt at infinity is composed of condensed
plasmids bearing a high effective charge (∼−1000e) and
their monovalent free counterions. Due to the high valency of
plasmids, a naive Debye-Hückel (DH) formula would lead to a
very short estimate of the screening length. The DH screening
volume would typically not contain any plasmid. The relevant
screening length is hence the average distance between plas-
mids (or the DH length due to water dissociation, whichever is
shortest). Due to the bulk screening, the electrostatic potential
does no longer diverge but saturates at a few screening
lengths from the surface ϕ(∞) = 2 ln κλ

2 for (κλ � 1). For a
comprehensive presentation of the GC theory, see the book by
Safran [29].

In the case of bilayers in the fluid phase and in the
so-called gel phase, the surface charges are free to diffuse
and rearrange. In this sense the surface charge is annealed
[30,31] and this allows additional polarization effects. The
image charge (here of the same sign as the test charge) favors
counterion condensation (localization). On the other hand, the
surface charge attracts the plasmid and repels its counterions,
resulting in counterion release. These competing effects are
considered in Ref. [32] for a charged rod. A discussion of
charge regularization and effective linear charge density is
postponed to Sec. III.

B. Crossings: Filaments shape and relative orientation

When a circular DNA is adsorbed on the membrane and
adopts a configuration with nonvanishing writhe, there are
approximately as many crossings as the writhe. At a given
crossing, we may define an upper strand and a lower strand.

One strand passes over the other strand lying flat on the
surface (see Fig. 3). The shape of the filament at crossings
results from the interplay between the interaction of the
upper filament with the surface, the bending energy of the
upper filament, and the interaction between the two crossing
filaments. The latter could lead the upper filament to float over
the lower one without contact. The mutual interaction between
two crossing lines near the charged surface is not singular.
Without any screening the (Coulomb) interaction would be
singular for infinite lines but the energy gain �E when
displacing one line to the height h is regular and only linear in
h. With right angle crossings, �E = lBρ2

∫ ∞
−∞{ −1√

x2+y2+h2
+

1√
x2+y2

}dxdy = 2πlBρ2h. This means that the difference in

interaction energy is dominated by a small section of the
filaments within a distance h from the crossing. Provided
the characteristic length � of the sought profile of the
upper filament is larger than h, the interaction energy with
the reference taken at z = 0 will depend on h only and
is independent of the profile of the upper filament in first
approximation. The associated interaction between filaments
may hence be represented by a repulsive point force f1→2 =
2πlBρ2 acting on the upper filament right at the crossing.
Relying on the separation of scales, we may hence solve
for the profile with the filament interaction entering through
the boundary condition only and calculate the floating height
h (yet h � �). We may also consider the case where the
upper filament is not floating but in contact (as seems to
be the case in experiments); the lower filament then exerts
a contact force (against interpenetration) on the upper one.
Contact is preserved as long as the repulsive force between
filaments does not cancel the contact force. This will determine
the minimum surface charge ensuring contact in a purely
mechanical picture (without thermal fluctuations). The Green’s
functions given in Appendix B do also allow to access the
self-energy of the rods (in the linear perturbation), which
depends on the distance to the surface. The image charge
effect entails a logarithmic divergence of the self-energy when
the height of the filament vanishes. Considering electrostatics
alone, the current approximation predicts filaments to float
over the surface [32], less so for annealed surface charge. In
Sec. III B we argue, following Ref. [32], that due to the induced
extra surface charge self-energies cancel to a large extend
for strongly charged filaments. The adsorption of strongly
charged plasmids on the annealed bilayer is then primarily
ruled by the interaction with the surface charge. According to
Ref. [32], this holds true for strongly charged filaments and
annealed surface charges, albeit counterion release takes place
and charge densities need to be renormalized. The calculation
presented below considers only direct interactions of the upper
filament with the lower filament and with the surface charge.

1. Filament shape

The aim of this paragraph is to show that the deformation of
the upper filament is localized and that the associated penalty
increases with the surface charge in the weak coupling limit
(� < 1). The mutual in-plane interaction, to be calculated
later, will turn out to dominate and to determine the number
of self-crossings over most of the regime � < 1.
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Here we assume that the upper filament is in contact with
the lower filament which is flat on the surface. The shape
of the upper filament is assumed to be described by that of
its central line. Let h(x) be the out-of-plane deflection of
the upper filament central line near a crossing as shown in
Fig. 3. The strong attraction to the surface by the linearized
GC potential ϕ(h) = 2h/λ constrains the filament to be on
the substrate but at crossings. The shape of the filament at
crossings is minimizing the free energy functional F [h(x)] =∫

lp(h′′(x))2dx/2 + ∫
2ρh(x)/λdx. The Euler Lagrange equa-

tion for h(x) reads lph(4) + 2ρ/λ = 0. The upper strand starts
parallel to the surface at height z = 3R. Let us consider the
upper strand to be of finite length. For a strong enough field,
it touches the surface with a finite angle. For a well defined,
somewhat higher attraction, the contact angle vanishes. For
even higher attraction the outermost part of the filament
just lies flat on the surface. This is the regime of interest
here. The function h(x) hence vanishes at a finite distance �

from the crossing and h′(�) = 0, h′′(�) = 0. Integrating the
Euler-Lagrange equation we obtain the profile

h(x)

R
= −6

(
x

�

)4

+ 16

(
x

�

)3

− 12

(
x

�

)2

+ 3, (4)

with �4 = 72
Rλlp

ρ
. (5)

Integrating up the penalty for going out of plane at the
crossing we obtain the optimal value of F [h(x)], Fh = 64

15
ρR�

λ
.

This contribution is decreasing with λ as Fh ∼ λ−3/4 [in
case of counterion condensation/release there is also some
dependence on λ (σ ) hidden in ρ].

In the experiments plasmids lie (almost) flat even on neutral
(dipolar) supported bilayers. This we attribute to some short
range interaction with the substrate not taken into account
above. Let μ be the associated gain of free energy per
unit length touching the surface, a simple scaling argument
balancing the bending energy lpR2/�4 and the contact energy
μ� gives �4

local ∼ lpR2/μ. It was implicitly assumed in Eq. (5)
that μ < ρR/λ for the charged surfaces of interest. In the
following we use the fact that deformations out of plane at
crossings are very localized compared to the size of the small
flat loops.

The obtained shape makes sense if the curvature of the
upper filament at the crossing is smaller than 1/2R for
right angle crossing (otherwise the upper filament has to
wrap around the lower one). This condition is fulfilled in
experiments due to the large value of lp, which is the only true
large scale in practice. The derivatives of free energy functional
F (h) with respect to h gives the force f required to sustain the
shape of the upper filament we obtain f = 2lph(3)(x = 0).1

This force should be the sum of the repulsive force f1→2 given
earlier and the contact force n1→2 exerted by the lower filament
on the upper one. By this force balance, we obtain n1→2 =
2lph(3)(x = 0) − f1→2. From the condition that the contact
force is repulsive (acts against interpenetration) and vanishes
in the marginal case, the force balance gives the criterion

1Alternatively one can calculate the energy of the filament as a
function of h(0) and take its derivative. To do so it is enough to
replace R with (h(0) − R)/2 in the expressions of � and Fh.

λ3l4
Bρ5

Rlp
� 1 for not floating. The criterion is satisfied whenever

the surface charge is high enough to observe crossings.

2. In-plane interaction between filaments at crossings

Let us assume that two filaments (the projections of their
central lines on the substrate) cross with a finite angle θ .
Because the interaction between projections is decaying fast
∼1/r3 at large distances (r > λ), we expect that the projections
can be approximated by infinite straight lines and further put
all charge on the central line. The interaction between straight
infinite filaments parallel to the surface can be written in the
form of Fint = V (q = 0,z)/ sin[θ ], where V (q = 0,z) is the
Fourier transform of the potential V (x,y,z) with respect to the
in-plane coordinates x,y (see Appendix A for details). This
expression holds provided the integral of V (x,y,z) over the in-
plane coordinates x,y is convergent. The sin θ in denominator
indicates that the filaments prefer to be perpendicular at
crossings (for repulsive potential V ). As the potential V (q,z) is
known perturbatively in various cases, we get explicit results
for the interaction. The interaction is calculated in the very
vicinity of the surface z ≈ 0. Calculating the potential as a
linear perturbation to the GC solution (see Appendix B 3)
yields for a quenched surface charge V (q = 0) = 4πlBλρ2

and we finally obtain F
(q)
int = 4πlBρ2λ

sin θ
(again a dependence on

λ is hidden in ρ). This expression can be justified because at
the crossing the projections change sign of curvature and are
hence locally straight. The same method can be used in other
more relevant situations. If the surface charge is annealed and
hence participates in the screening the interaction is reduced by
a factor of 3 (right at the surface), we obtain F

(a)
int = 4πlBρ2λ

3 sin θ
.

This shows that the surface charge screens more efficiently
than the diffuse countercharge in the GC layer. One can also
go to the very limit of a 2D plasma with charge densities
σ+, σ− for cations and anions respectively (Appendix B 2).
The surface charge vanishes in total but can be polarized.
The interaction energy is then weaker F

(pl)
int = 2πlBρ2λ�

sin θ
, with

λ� = 1/(2πlB(σ+ + σ−)). If only the counterions localized on
the surface (of density σ−) are mobile, σ+ must be set to zero.
These results are consistent with the fact that the screening
surface charge densities combine linearly in the interaction.
The diffuse GC charge counts half as much as the localized
(polarizable) surface charge. This in-plane interaction turns
out to rule over crossings; in summary,

F
(q)
int = 4πlBρ2λ

sin θ
, F

(a)
int = 4πlBρ2λ

3 sin θ
, F

(pl)
int = 2πlBρ2λ�

sin θ
,

(6)

where the superscripts (q), (a), and (pl) stand for quenched,
annealed, and plasma, respectively.

In the case of a neutral surface (discarding possible surface
dipoles) and in the presence of salt entailing a Debye length
κ−1, we obtain Fint = 4πlBρ2κ−1

sin θ
, right at the surface (see

Appendix B 1). This is twice larger than obtained naively from
the bulk Yukawa potential lB exp −κr/r , when the interacting
charged lines are entirely surrounded by salt, in the bulk or
infinitely away from the surface.

These simple values are obtained for charged lines very
close to the surface; a little bit away from the surface there is
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a power law correction in the reduce distance z/lch, with the
characteristic length lch being, λ, λ�, or κ−1, respectively.

These estimates rely on the linear perturbation of the
GC layer and of the surface charge by a test charge. In
this sense they are of the DH type. In Sec. III B, we argue
that the expression for the interaction remains valid with a
renormalized linear charge density. The latter results from
the competition between many effects (charge regularization,
counterion release, image charge, depletion of plasmid charge
at crossings) but remains of order ∼1/lB (the bare plasmid
charge is about 4/lB).

C. Writhe

We are mainly concerned with the calculation of the writhe
of the adsorbed plasmid. In general writhe can be calculated
by averaging directed writhe over all projections on planes.
For a projection the directed writhe is the sum of the signed
crossings [5]. If the configuration is almost in a plane P , the
writhe is close to the directed writhe Wrpr of the projection
on P . In other words, the writhe is close to 1 (−1) per
crossing. In general, there is nothing like a writhe density
which could be integrated along the plasmid contour. However,
the difference of writhe with respect to a close reference shape
can be (under rather soft conditions) expressed as an integral
along the reference contour [33]. In our case the reference
contour is the projection on the surface (corresponding to the
plane P). An upper bound for the error when counting writhe
unity per crossing can be written as |Wr − Wrpr | � 1

2π
(1 −

( Spr

S
)2)1/2(Spr

∫
C2

prdspr )1/2. The integral is running over the
projected contour of total length Spr and local curvature Cpr .
In our case the configuration is, ideally, taken to be in the
substrate plane everywhere but in a region of extension �

near crossings. A rough (over) estimate is obtained by further

replacing � with the DNA radius R, |Wr−Wrpr |
n

< θ
π

√
R

S/n
. Here

n is the number of crossings and S the plasmid contour length,
the large aspect ratio of the plasmid (actually of the strand
between crossings) makes the error negligible.

D. Equilibrium shape of the plasmid

As explained earlier, supercoiling at the surface which
results in self-crossings converts some of the twist initially
stored in the stretched cycle into writhe. Thereby, the elastic
twisting energy is reduced. At the same time, crossings cost
energy, some due to the loss of attractive interaction with
the surface, some due to the repulsive interaction between
filaments. Some extra elastic in-plane bending energy is
generally not dominant. Another slight complication arises
because at crossings the dDNA goes out of the surface and the
centerline of the filament can twist. A more general discussion
of the total energy is provided in Appendix C.

Here we give a simplified discussion designed to be
physically transparent. The main contributions to the energy
are the penalty for crossings and the twisting energy. Because
each crossing takes away one turn of twist the total twist
is Tw = Lk − n. The twist is distributed over the majority
length lying flat on the surface, where it is stored as material
frame twist and the small sections involved in crossings. As the
filament goes out of plane at crossings and the osculatory plane

turns by a finite angle there is high centerline twist which has to
be compensated by material frame twist to avoid extra energy
penalty. As a consequence, the twist is thought to be uniformly
distributed along the plasmid. The twist energy can hence
by approximated as Et = lt2π2(Lk − n)2/S. The penalty for
crossing has two main contributions: the interaction with the
surface Fh and the interaction energy between filaments Fint.
Retaining only these terms leads to the total energy F =
lt2π2(Lk − n)2/S + n(Fh + Fint). Optimizing this simplified
energy with respect to the number of crossings n results in
a first approximation to a linear decrease of the number of
crossings with the penalty for a crossing:

Lk − n = S

4π2lt
(Fh + Fint), (7)

where a weak dependence of Fint on n through crossing angle
θ has been neglected. The simple expression Eq. (7) merely
relies on the fact that the penalty for a crossing is local, not
sensitive to the overall shape. This feature is expected to be
rather robust and we can exploit it without further modeling.
Knowing the plasmid length S and twist length lt a measure of
n gives direct access to the total penalty for a crossing under the
given conditions. Assuming lt = 70 nm and S = 900 nm, the
data correspond to a penalty for crossing of 11kBT and 16kBT

for the area per surface charge 4 nm2 and 6 nm2, respectively.
We show later that these values correspond to effective filament
charges of order ∼1/lB , as expected. Let us first comment on
how Fh and Fint vary with experimental parameters.

At low surface charge, the right hand side of Eq. (7) is
dominated by Fint (in practice until close to the strong coupling
regime), which is a decreasing function of the surface charge.
At somewhat higher surface charge, it is dominated by Fh,
which increases with the surface charge. We hence predict a
nonmonotonic variation of the number of crossings with the
surface charge in the weak GC regime of the surface.

When the nominal surface charge exceeds 1/(2πl2
B), the

surface charge is regularized and the unperturbed interaction
of the filament with the surface is almost constant. On the
other hand, as more and more ions are localized in the
interface (and actually at the surface), the interaction between
filaments at crossings is now even more strongly decreasing
with the surface charge than in the GC regime and a steep
upturn of the number of crossings is expected. If it comes
to stable Bjerrum pairing [34], which certainly depends on
chemical details, the polarizability of the interface only slightly
increases with its nominal charge and sharp upturn is no longer
expected.

In a regime of low surface charge, only a few crossings are
expected. Let us assume that the contour length is distributed
evenly over the flat projected loops. The resulting loops
would be large and essentially flexible because the surface
screening is enough to avoid a dramatic electrostatic stiffening.
Consider, for example, a figure eight consisting of two equal
size loops in a flexible cycle. As it is unstable, the cycle will
be partitioned between the smallest possible loop and its large
complement [35,36]. The reason for localization is the strongly
singular return probability in 2D self-avoiding statistics and the
large vertex exponent σ4 = −19/16 (as any further crossing is
forbidden the projection is treated as self-avoiding) [36]. In our
case the smallest thermal loop [19] corresponds to about the
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FIG. 4. (Color online) (a) Typical AFM images (A)–(E) of
adsorbed plasmid on lipid bilayers. The fraction of cationic lipids
grows from 0 to 100%, as indicated. The distributions of the number
of crossings measured under given surface charge density are shown
below (F)–(J). (b) Experimentally measured average number of
crossings as a function of inverse surface charge density. Error
bars indicate the width of measured distribution. The straight line
represents the linear regime predicted by Eq. (8) for low surface
charge (� < 1). The dashed vertical line indicates the border between
weak and strong electrostatic coupling of the interface (� = 1).
The extrapolation of the linear regime to high surface charge
determines the extra link Lk = (−)7 confirmed by electrophoresis.
The extrapolation to zero crossings makes it possible then to asses
the effective plasmid charge (near crossings) in the moderate surface
charge regime.

persistence length lp. The overall shape of the plasmid is hence
a large loop decorated with small loops about one persistence
length in size (see Fig. 4). The electrostatic interaction at
crossings imposes right angle crossings.

At higher surface charge, there are more crossings and an
evenly distributed contour length leads to (short) stiff loops. We
hence expect a regular arrangement in an array of equal-sized
loops which we could call an open (as opposed to tight) ply. In
this regime the angle at crossing is somewhat smaller because
bending energy is competing with the direct interaction at
crossings. Recorded atomic force microscope (AFM) images
in Fig. 4 show that the variation of the plasmid shape with the
surface charge agrees with our expectations (for experimental
details and more data, see [1]). The measured average of the
number of crossings n taken over many images [Fig. 4(b)]
displays the predicted nonmonotonic behavior (despite the
error bars). It is tempting to exploit the “linear” variation of the
number of self-crossings with the area per surface charge at
moderate surface charge. In this regime we recast the number

of crossings n as

n = Lk

(
1 − σ0

σ

)
, with σ0 = S

6π2Lklt
ρ2. (8)

The suggested linear law supposes that the effective charge
density ρ has a smooth variation with σ in this regime. The
straight line extrapolates to a value L̄k = 7 ± 1. The value
of the link was since confirmed independently by a standard
electrophoresis technique [1]. This gives us some confidence in
the fitted linear regime. The extrapolated onset of crossing σ0

is around 1/7.5 nm2, about 0.4 of the surface charge 1/(2πl2
B)

corresponding to � = 1 [dashed vertical line in Fig. 4(b)]. The
largest measured value of n exceeds the theoretical maximum
|Lk|, which nonetheless is within the error bar. We may try
to assess the effective (apparent) charge per unit length ρ.
Assuming lt = 70 nm and S = 900 nm we obtain ρ ≈ 1.4/lB ,
which matches our qualitative expectation. It is difficult for
us to comment critically on the obtained value of ρ. In the
better documented salty bulk solution case the effective charge
of a rod is slowly increasing with the screening and is about
1.1/lB for κR = 0.1 and a nominal charge of 4/lB [16]. At the
interface counterions are massively released and replaced with
the somewhat distant (as compared to charge regularization in
the bulk) strong surface polarization. Also the high dielectric
contrast at the interface should enhance the interaction.

Unfortunately, the expected decrease of n at the edge of the
mean-field regime seems to occur at somewhat higher surface
charge, where � slightly exceeds unity. An upturn at high
charge fraction seems observed. It is fair to say that the quality
(homogeneity) of the bilayer deteriorates at these high charge
densities. Also, we cannot exclude a slight systematic error in
the estimated surface charge.

III. DISCUSSION OF SPECIFIC SURFACE EFFECTS

Some electrostatic effects known in the bulklike chain
stiffening need to be reconsidered at the interface. Interfacial
effects such as counterion release by a polyelectrolyte in the
surface field need to be discussed. These effects were already
introduced earlier but without a precise description.

A. Odijk stiffening

Repulsive intrachain interactions stiffen the filaments and
enhance the apparent persistence length. Let us first consider
the case of a quenched surface charge and no dielectric con-
trast. The tail of the interaction decays as 1/r3. Adapting the
Odijk calculation [14] initially performed for a Yukawa poten-
tial, we find a logarithmic divergence of the internal interaction
increase upon bending. For a filament of length S moderately
curved in the plane of the substrate with uniform curvature
C the interaction energy is increased by lBρ2λ2SC2

4 ln[S/λ],
which corresponds to an increase of the persistence length:
lp = lp0 + lBρ2λ2

2 ln[S/λ]. The apparent persistence length
logarithmically depends on the filament size. Similarly, the
persistence length should depend on the wave vector. In our
case of (virtually infinite) periodic arrangements of crossings
it is reasonable to use the distance between crossings instead of
S under the logarithm. In the experimental range, the stiffening
correction would go from negligible to order lp0. At infinite
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dielectric contrast the interaction decays as 1/r5 and there
is no divergence anymore. Nonetheless, for finite dielectric
contrast there is 1/r3 tail and hence a logarithmic divergence
but with an amplitude divided by the dielectric contrast (about
80/5 in our case). Also, the surface charge is annealed in our
case, which further divides the amplitude by 9. Altogether in
the experiment the amplitude of the logarithm is weaker by
about two orders of magnitude. The divergence is then pretty
formal and the regular part of the stiffening correction buildup
around r ∼ λ often dominates. This is much closer to Odijk’s
original result. It would be worthwhile to try to document the
sensitivity of the stiffening to the boundary conditions. The
calculation of stiffening is worth more precise consideration,
even in the bulk case where the standard calculation does not
rely on a perturbation of the newly obtained exact solution of
the Poisson-Boltzmann equation.

B. Charge regularization

In the flat adsorbed structures considered, the two strands
of the ply do not strongly interact except in the region close
to crossings. Far from crossings, charge regularization takes
place on the strands as on single (virtually infinite) strands.
Charge regularization is hence ruled by self-energy, interaction
with the unperturbed surface charge and counterion entropy.
As compared to an isolated rod, the self-energy favors extra
counterion condensation merely due to the image charge of
the rod (remember, image charge has the same sign as the
test charge). In contrast, the unperturbed interaction with the
interface is repulsive for the counterions and favors counterion
release. The case of an infinite rod has been considered in [32].
In the linear response, the self-energy (per unit length) is
directly related to the Green’s function G(q,z = z0) through
Fself = 1

2ρ2
∫ ∞

0
dq

2π
G(q,z = z0), where we took advantage of

the fact that G(q,z) also represents the potential created by
an infinite rod lying parallel to the x axis at height z0,
(x,0,z0), with 
q = qŷ. The self-energy integral needs to be cut
off at high momentum qc = 2π/R. The self-energy diverges
logarithmically at small distances from the surface merely due
to the repulsion by the image charge. Formally, it overcomes
the attraction 2ρh/λ (per unit length) and the rod would stay a
finite distance from the surface h ∼ lBρλ. On the other hand,
the linear response is only exact when lBρ → 0. For strongly
charged rods the nonlinear Poisson-Boltzmann equation needs
to be solved. In the case of annealed surface charge relevant
for deposition on mixed bilayers, a strong attraction of surface
charges under the rod (beyond linear response) occurs which
essentially screens the rod from its image charge and also
drastically reduces the interaction between charges on the
rod. As a result, the system is dominated by the unperturbed
interaction; we hence anticipate strong attraction between
the rod and the bilayer and counterion release [32]. At
crossings the two strands attract counterions and counterion
release should not be complete. This effect slightly further
favors direct contact between the rods. The interaction energy
between projections at crossings preserves its functional form.
Although counterions are released, they are replaced by the
surface charge accumulated under the rod. The effective charge
seen at large distances (as compared to the rod radius) should
qualitatively be of order 1/lB and could be roughly estimated
from an Oosawa type of argument [37]. The value ρ = 1.4/lB

obtained by fitting the data matches our expectations. Treating
the interaction between projections this way is close in spirit
to the often used DH asymptotics of the Poisson-Boltzmann
solution in bulk.

C. Plasmid deposited onto a neutral substrate
from salty solution

For a neutral surface, interfacial effects come only from the
polarization of the salt solution and from the image charge.
The self-energy per unit length obtained by integration of the
Green’s function G(z,q) takes the form [Eq. (B3)]:

Fself = 1
2 lBρ2K0(2κh), (9)

where K0 is a modified Bessel function and the self-energy
is set to zero infinitely away from the substrate. For a rod
approaching the bilayer surface the self-energy diverges as
Fself ∼ 1

2 lBρ2(−� − ln κh), where the reference is again taken
infinitely away from the surface and � is the Euler constant.
The logarithmically divergent repulsion at the surface must be
overcome by a local short range attraction to ensure adsorption.
Assuming some contact energy μ per unit filament length
on the substrate strong enough to enforce contact between
filaments at crossings leads to the penalty Fh ∼ μ3/4l

1/4
p R1/2,

where a correction due to the self-energy has been neglected.
The long range interactions between projected filaments near
crossings contribute Fint = ρ2 2πlB

κ sin θ
away from the surface

and twice as much right at the surface. In the absence of
surface charge the image charge induces extra counterion
condensation and the effective charge of the plasmid should
be somewhat weaker near the surface than in the far bulk salt
solution. For the same effective linear charge the interaction
between projections is thus the same as for a quenched surface
charge, where λ is replaced by κ−1/2 (away from the surface).
Experiments [1] show that for the same number of crossings λ

and κ−1 are proportional following roughly λ = κ−1/2. One
important difference between the two sets of experiments is
that plasmids are less adsorbed on the neutral surface and rather
float over the surface at an average height of 2–3 nm; the strict
2D nature of the conformations is not always obvious. For the
same effective linear charge we would expect λ/3 = κ−1/2
for an annealed surface charge in the linear approximation.
The experimental result suggests that the effective plasmid
charge on the charged surface is about

√
3 times that on

the neutral surface. Given that in the former case there is
counterion release and in the latter over condensation this
seems reasonable. The comparison between deposition from a
salt solution and onto a charged surface supports the general
idea that the number of crossings is controlled by screened
electrostatics.

IV. CONCLUSIONS

We discussed plasmids deposited from low salt solution
onto oppositely charged surfaces. In all cases the plasmids
were strongly adsorbed, lying flat on the surface almost every-
where. The electrostatic effects mainly provide attraction to
the surface. The main motivations of our work are experiments
where plasmids are deposited on mixed bilayers composed of
cationic and neutral (yet zwitterionic) lipids. The very fact that
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plasmids can be deposited on a bilayer composed of the neutral
lipid only and also adopt flat configurations, demonstrates
strong (short range) attraction between the plasmid and the
neutral substrate. We considered two limiting cases: deposition
on a charged substrate from salt free solution and deposition
on a neutral substrate from salty solution. In the former
case electrostatic is assumed to dominate the system while
in the latter case a short range attraction is introduced. As
the plasmids are flat on the surface in all cases examined,
what remains to discuss is how the plasmids distribute their
extra link between writhe and twist. Because the plasmids are
flat almost everywhere but in very localized regions around
crossings writhe is very simply linked to the number of
crossings. Each crossing contributes one turn to the writhe
and hence takes away one turn of twist. The situation here is
much simpler than for 3D configurations deposited without
strong adsorption (like on microscopy grids) where the writhe
depends on geometrical details (for the simple case of a helical
ply, on the helical angle). The number of crossings is obtained
by balancing the spared elastic twist energy upon crossing and
the interaction penalty at crossings. The penalty for crossing
consists of two contributions which are counteracting upon
increase of surface charge density. For moderate surface charge
density, the far (mutual) interaction dominates and right angle
crossings are expected. The number of crossings decreases
linearly with the area per surface charge. For somewhat larger
surface charge, a decrease of the number of crossings is
imposed by the now dominating loss of interaction energy
with the surface at the crossing. Eventually an upturn of the
number of crossings is expected when most of the counterions
of the bilayer condensate and the substrate turns into a highly
screening two-dimensional plasma. All these regimes are
observed in the experiments by some of us [1].

We provide some detailed calculations in the linear regime
equivalent to a DH approximation within the ionic interfacial
fluid. These are accurate for weakly charged molecules.
Plasmids are strongly charged and, at the mean-field level,
a full solution of the nonlinear Poisson-Boltzmann equation is
required which is at least in part numerical. We only have very
partial numerical solution of the relevant Poisson-Boltzmann
equations.

Based on this and on qualitative arguments following
Ref. [32], we assumed counterion release by the plasmid
close to the substrate and calculated the short range penalty.
Following [32], the charged plasmid is screened from its
(equal sign) image charge by the surface charge which
accumulates under it and the self-energy cancels to a large
extent. These semiqualitative arguments use the notion of
local screening which is not completely rigorous. This may
affect quantitatively (but not qualitatively) the conclusions of
Ref. [32], which we also used here. There is certainly room
for a quantitative theory of the adsorption of strongly charged
polyelectrolytes on an annealed substrate.

The far interaction is estimated from the tail of the actual
interaction valid at distances larger than the dDNA radius R.
This tail is following the law obtained from the linear theory but
with a renormalized linear charge density. The renormalized
charge density is expected to be of order 1/lB , but to date we
are lacking a more precise estimate. Fitting the experiments
we get 1.4/lB .

We also modeled the case of a salty solution facing a
neutral interface. The repulsive self-energy cannot be avoided
by a strong surface charge polarization. The plasmid is merely
repelled by its image charge. A strong enough “short range”
attraction is required for plasmid adsorption.

When the number of crossings is ruled by the far inter-
action at crossings there is an equivalence between bulk salt
concentration and surface charge through κ−1 = αλ when the
variation of the renormalized charges is neglected. Experi-
ments suggest that α ≈ 2; the linear theory rather predicts
α = 2/3 (annealed) or α = 2 (quenched). The surface charge
being annealed, the deviation of α from 2/3 may correspond
to an effective plasmid charge at the charged bilayer (where
there is counterion release)

√
3 times higher than on the neutral

bilayer where there is overcondensation.
Throughout, our estimates and the experiments show

quantitative agreement to some extent. Several reasons for
some disagreement are discussed below.

The actual neutral bilayer is composed of zwitterionic
lipids. The surface dipoles do organize/orient under the field of
the plasmid leading to extra attraction. It may not be enough to
describe this attraction by a contact interaction. We may try and
write a theory for a neutral surface composed of surfactant with
a finite separation between internal charges. We also should
keep in mind that electrostatics is not always enough to explain
the deposition mechanisms and the detailed chemistry plays a
role [38].

We neglected thermal fluctuations of both the bilayer (as it is
supported this seems fine) and the dDNA at short wavelength.
Even for stiff strands some extra short range repulsion arises
from the shape fluctuations normal to the bilayer. The case of
two fluctuating surfaces/membranes was examined by Hed and
Safran [39], who report “fusion” instabilities. Entropic loops
larger than the persistence length, which are fluctuating by
definition, were treated properly. Throughout we assumed the
plasmid is forced to be in a flat configuration. We proceeded
by assuming scale separation. In the experiment only lp is
larger (say by more than one order of magnitude) than the
other length scales. As always, the weak coupling regime of
the surface (� < 1) is rather narrow in σ . In particular the
domain where self-crossings are observed covers only a half
of a decade of σ . In the experiment crossing of dDNA seems
to occur with a decrease of total height, so likely either with
interpenetration or the lower strand is pushed into or deforming
the bilayer. In the case of interpenetration the crossing angle
should be affected (prescribed), which seems not to be the
case.

We essentially provide an approximate mean-field solution
and an estimate of the interaction restricted to the lowest
order in the coupling parameter. Some effects due to charge
correlations, beyond our current approximation, may need to
be considered. Mean field was worked out more carefully
in somewhat simpler geometries by Fleck [40], who also
examines fluctuation corrections on top of the mean field [41]
for the counterion density and gives expressions for the self-
energy and the effective pair potential. As to the self-energy
and pair potential our approach carries the same physics. In a
recent work Mamasakhlisov et al. [42] address surfaces with
annealed/partially annealed charges and show that in the mean
field charges are renormalized. Our approach is consistent
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with [42] in the sense that we introduce an effective DNA
charge density. New physics enters in the strong coupling limit,
where attraction between like charged surfaces is predicted
in some intermediate distance range, which is not possible
within mean field. According to simulations [23], the minimal
coupling parameter to get attraction is pretty large, close to ten
for planar equally charged surfaces. In our experiment, strands
cross each other at right angles and no signature of attraction
between plasmid strands at crossings is observed.

Besides any approximation there is the question of whether
the plasmid can equilibrate its shape in the experiment. There
is clear evidence that the shape can fluctuate and the plasmid
redistribute length between different loops. It is less clear
whether after adsorption the plasmid can add or release
crossings to equilibrate. There are only a few events recorded
where a small loop stands out of the bilayer and could flip
before (re-)adsorbing. This process could be helped by the
existence of less-adsorbing bilayer patches. It is appealing
to try to at least partially address the kinetics. This seems
easier for plasmids deposited from salty solution on a neutral
substrate (contact interactions and high salt). In the case of salt
where supercoiled plasmid shapes are expected in solution,
some slow degrees of freedom could be possibly tracked after
plasmid adsorption.

The actual charged substrate is a bilayer containing a
controlled fraction of cationic surfactants. DNA/lipid inter-
action was considered theoretically early by Dan [31] and
Schiessel [43]. There are examples in the literature that cationic
surfactants specifically interact with DNA and markedly
increase its persistence length. In the experiment [1] an
increase of apparent plasmid length by about 20% is measured
only at a charged surfactant fraction of 50%. We do not have
a clear evidence of surfactant DNA binding from experiments
at lower charge fractions. Very recently another fascinating
effect related to the very structure of dDNA was pointed
out by the Toulouse group [44,45]. These authors show that
the coupling of dDNA denaturation to curvature is relevant
in 2D. Their theory explains the presence of sharp kinks
localized at denaturation bubbles. Similar kinks are observed
for dDNA glued on mica by multivalent cations [46]. Under
conditions where the adsorbed plasmids can reshape and reach
equilibrium the soft denaturation bubbles could take some
link for free. The deposition mechanism considered in this
work [1] is somewhat softer and sharp kinks are rare but still
could be documented. For surface charges where crossings are
reported sharp kinks were never seen. Under slightly different
conditions it may be possible to demonstrate (anti)correlations
between the number of kinks and the number of self-crossings.
We may address kinked plasmid shapes in future work.
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APPENDIX A: PENALTY FOR CROSSING

We derive the simple form of the interaction between two
infinite rods located in the surface and cutting each other
under an angle θ . Consider two lines (1) and (2) located in a

plane directed by u1 and u2 with charge density ρδ(r1 − su1)
and ρδ(r2 − tu2), where s and t run over the reals, their
crossing is located at s = t = 0. The lines interact with the
potential V (r1 − r2), which leads to the interaction energy
Fint = ρ2

∫ +∞
−∞ V (su1 − tu2)dtds; a change of variables yields

the simple form Fint = (|u1 × u2|)−1
∫ +∞
−∞ V (x,y)dxdy. The

interaction is hence given by the in-plane Fourier transform at
q = 0 through

Fint = V (q = 0)

sin θ
, (A1)

where θ is the angle between the two lines.

APPENDIX B: EFFECTIVE INTERACTION—
CALCULATION AND GREEN’S FUNCTION

In this section, we provide some detail on the Green’s
functions introduced in the main text for: (i) the case of a
salty solution facing a substrate with low dielectric constant
(formally set to zero), (ii) the case of 2D plasma on top of a
low dielectric substrate, and (iii) the case of a charged surface
facing a salt free solution.

1. Salty solution

We are going to solve for the Green’s function G(z,z0,q)
of the linearized Poisson-Boltzmann equation Fourier trans-
formed with respect to the lateral position measured from the
source located a height z0 over the surface,

(
−q2 + ∂2

∂z2

)
G(z,q) − κ2G(z,q) = −4πlBδ(z − z0), (B1)

where κ2 = 8πlBcs . The boundary conditions are of von
Neumann type at both boundaries z = 0 and z = ∞. The
source imposes a discontinuity in the slope of G(z,q) at z = z0

whilst the Green’s function itself is continuous.
The solution is of the form G(z,q) = A exp(−Qz) for

z > z0 and G(z,q) = B exp(−Qz) + C exp(Qz) for z < z0,
where Q = (q2 + κ2)1/2. The condition at the surface and
the two conditions at z0 determine the three integration
constants, A,B,C, to be B = C = 2πlB

Q
exp(−Qz0), A =

2πlB
Q

(exp(−Qz0) + exp(Qz0)). Specializing to the case where
the source and the test point are at the same height, we
obtain

G(z0,q = 0) = 2πlB

κ
(1 + exp(−2κz0)). (B2)

For large DH length (κz0 < 1), the interaction reduces to 4πlB
κ

.
Note that the 2D integration of the bulk potential lB

r
exp(−κr)

leads to half that interaction and corresponds to the limit z0 →
∞ in Eq. (B2), as it should. It is easy to see that for z = z0 = 0,
the 2D Fourier transform inverts to G(0,r) = 2lB exp[−κr]/r

twice the interaction infinitely away from the surface. There is
no power law tail here.

The self-energy Fself can be obtained by integrating
equal height Green’s function G(z = h,z0 = h,q), Fself =
1
2ρ2

∫ ∞
0

dq

2π
G(h,h,q). The related integral has a form of
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modified Bessel function K0,∫ ∞

0

2π

(q2 + κ2)

1/2

e−2h
√

q2+κ2 dq

2π
= K0(2κh), (B3)

and we obtain Fself = 1
2 lBρ2K0(2κh).

2. Two-dimensional plasma

We now consider the instructive limiting case when all
counterions are localized at but free to move in the sur-
face. For convenience we consider a positive charge density
σ+ and a negative one −σ−, both living at the surface.
The total surface charge density is neutral on average. As
above, a unit source charge is placed at a distance z0 over
the surface and polarizes the surface charge. Consistently
with the general frame we treat the plasma in the DH
approximation. Away from the surface there is no space
charge (no salt) and the Green’s function satisfies the Poisson
equation (−q2 + ∂2

∂z2 )G(z,q) = −4πlBδ(z − z0). Since both
charge distributions are assumed to follow Boltzmann’s law,
this sets the boundary condition at the surface: ∂

∂z
G(z,q)|z=0 =

4πlB(〈σ+ + σ−〉)G(0,q), where the reference for G has been
taken in the surface infinitely away from the source. The
solution is of the form G(z,q) = A exp(−qz) for z > z0

and G(z,q) = B exp(−qz) + C exp(qz) for z < z0. It is con-
venient to introduce a length λ� = (2πlB(〈σ+ + σ−〉))−1 to
obtain C = 2πlB exp[−qz0]/q, B = C(qλ� − 2)/(qλ� + 2),
A = B + 2πlB exp[qz0]/q. Specializing to z = z0 = 0, we
get the interaction

G(0,q = 0) = 2πlBλ�. (B4)

If the cations are not mobile in the surface we drop their
concentration in λ�. Away from the surface when z = z0 = 0
we get G(z0,q = 0) = 2πlBλ�(1 + 2z0/λ

�) to lowest order in
z0/λ

�. The large r expansion of G(z,r) shows the power law
tail: G(0,r) ∼ lBλ�2

2r3 .

3. Gouy-Chapman Layer

We now consider the case of a source immersed in the GC
layer a distance z0 away from the surface. The Green’s function
is calculated as a perturbation to the GC solution. Under this
condition, the Green’s function G(z,q) obeys the equation(
−q2 + ∂2

∂z2

)
G(z,q) − 2

(z + λ)2
G(z,q) = − 4πlBδ(z − z0).

(B5)

This equation is supplemented with the von Neumann
boundary condition at infinity and ∂G(z,q)

∂z
|0 = 0 for quenched

surface charge or ∂G(z,q)
∂z

|0 = 2G(0,q)/λ for annealed
surface charge. The solution is of the form G(z,q) =
A exp(−qz)( 1

z+λ
+ q) for z > z0 and G(z,q) = B exp(−qz)

( 1
z+λ

+ q) + C exp(qz)( 1
z+λ

− q) for z < z0. In the quenched

case, C = −2πlB
exp(−qz0)

q3 ( 1
z0+λ

+ q), B = 2πlB
exp(−qz0)

q3

1−qλ+q2λ2

1+qλ+q2λ2 ( 1
z0+λ

+ q), A = B − 2πlB
exp(qz0)

q3 ( 1
z0+λ

− q). In the

annealed case, C = −2πlB
exp(−qz0)

q3 ( 1
z0+λ

+ q), B = 2πlB
exp(−qz0)

q3
3−3qλ+q2λ2

3+3qλ+q2λ2 ( 1
z0+λ

+ q), A = B − 2πlB
exp(qz0)

q3 ( 1
z0+λ

−
q). Specializing to the case z = z0 = 0, we obtain the

interaction Gq,a(0,q = 0) for annealed and quenched surface
charge condition, respectively:

Gq(0,q = 0) = 4πlBλ, Ga(0,q = 0) = 4πlBλ/3. (B6)

The results are consistent with the additivity of the polar-
izable surface densities in the interaction where a localized
density contributes twice as much as a diffuse one. The
power law tail of the Green’s function follows from the low-q
expansion as Ga(0,r) ∼ 2lBλ4/r5 and Gq(0,r) ∼ 18lBλ4/r5.
For two points at the same height slightly over the interface
there is no generic ∼1/r3 tail. We do not give here the
Green’s function for finite dielectric contrast, which can be
obtained following the same lines. In the latter case, there is
a generic ∼1/r3 tail with an amplitude inversely proportional
to the dielectric contrast εw/ε, Gq(0,r) ∼ 2(ε/εw)lBλ2/r3,
Ga(0,r) ∼ 2

9 (ε/εw)lBλ2/r3. In the text we did not consider
the finite contrast tail, with the noticeable exception of
the electrostatic stiffening where it provides a logarithmic
divergence of the persistence length; throughout this is a good
approximation as long as distances larger than

√
εw/ελ do not

matter. In our case ε ≈ 5εw/80. The integrated interaction used
in the main text is not affected by the finite dielectric contrast
as both Gq(0,q = 0) and Ga(0,q = 0) are independent of the
dielectric contrast.

APPENDIX C: MINIMIZATION OF FREE ENERGY
AND SHAPE

To get more insight, subdominant energy terms have to be
considered. There are mainly two of those, the bending energy
in the adsorbed plasmid sections and the shape dependent
correction to the intrastrand interaction energy beyond the
straight crossing line approximation. The bending modulus
includes electrostatic stiffening, which takes into account
intrastrand interactions. The contribution of the stiffening
to the energy and the intrastrand interaction have similar
dependence on the GC length and strand length between
crossings. Both these contributions become negligible at
somewhat higher surface screening, corresponding to high
number n of crossings separated by a strand length l = S/(2n).
In this regime, the bare stiffness prevails. We hence end up
with one subdominant energy term Eb = 1

2

∫ l

0 dslp( dθ1(s)
ds

)2 for
strand (1) and similar for strand (2). At this level the crossing
is a black box coupling to the flat strand (considered at larger
scale only) by the boundary angle θ = θ1 − θ2 at the crossing.
We calculate the optimal shape of the loose surface ply by
functional minimization. In the current approximation, we find
that the shape is an arc of a circle. The total energy can be
recast as

F = lp
θ2

S/(2n)
+ 4πlBλ

3 sin θ
. (C1)

The optimal angle obeys

θ sin θ2

cos θ
= ρ2

6σ

S

lpn
. (C2)

This applies when the bending energy is larger than the thermal
energy, which is typically for n � 5 in the experiment. In this

051804-11



LEE, SCHMATKO, MULLER, MAALOUM, AND JOHNER PHYSICAL REVIEW E 85, 051804 (2012)

regime the angle θ is small and only weakly depends on n. For
σ l2

B � 1, the surface charge is to be replaced by the constant
1/l2

B . The far field interaction between projected strands is
then no longer dominating the penalty for crossing but still
carries the angular dependence. Note that for small angles
θ the leading penalties also acquire an angular dependence.
The minimum curvature criterion to avoid wrapping becomes
h′′(x = 0) < sin θ2/R. Rather than wrapping, the strand may

adopt the minimum curvature. The profile can then be solved
without the condition h′′(�) = 0 and Fh is now dependent
on θ . The strands may also go out of contact at crossings
and indeed the localized repulsive force arising from mu-
tual interaction is to be divided by sin θ . Other solutions
could also be considered. Nevertheless, these refinements
rely on geometrical details too ill-controlled to be discussed
here.
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