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Effect of intralayer inhomogeneity on helical superstructures of liquid crystals
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A mechanism to form distorted helical structures in ferroelectric liquid crystals is presented. It is shown that
the deformation of helical interlayer structures of thin smectic systems can be considered as a direct consequence
of the surface-induced spatial inhomogeneity in the distribution of the azimuthal molecular orientation within
smectic layers. The intralayer azimuthal nonuniformity occurring in helical phases is argued to generate a local
depolarizing electric field of the strength varying not only in smectic layers but also between the layers. The
resulting modulation of the depolarization level in the direction of helical axes is shown to lead to a distortion
of helices. Using a simple model, including the depolarization interaction, it is demonstrated that the degree
of the helix deformation strongly varies as parameters of the model are changed. It is also shown that strong
deformations of extremely short helices, found for appropriate values of the parameters, reflect nonuniformity of
helicoidal superstructures of respective smectic subphases in real liquid crystalline systems.
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I. INTRODUCTION

The understanding of a large polymorphism of helical
ferroelectric liquid-crystal (LC) systems still remains one of
the most challenging problems in researches of the molecular
order of liquid crystals, a field of great importance in
modern display technologies. Investigations of helicoidal polar
ordering of smectic LCs have been stimulated by the discovery
of the helical antiferroelectric phase Sm C∗

A and then by
detecting other smectic subphases, especially by identifying
the antiferroelectric subphase Sm C∗

β and the ferrielectric
subphase Sm C∗

γ , displaying deformed three- and four-layer
helicoidal structures, respectively. Perhaps the most intriguing
subphase, undoubtedly detected, is the ferroelectric Sm C∗

α

phase, having a regular (undeformed) structure with a short
helical period, typically, close to six smectic layers [1]. It has
experimentally been shown that the pitch in this subphase can
evolve across a few smectic layers upon cooling, reaching
the value even less than three layers (but greater than two
layers) [2]. Generally, periods of helical structures of the
variant subphases are incommensurate (with the thickness
of smectic layers), although a distorted molecular smectic
structure with the commensurate six-layer periodicity has
recently been identified in freestanding LC film systems [3].

To explain the formation of complex structures of the smec-
tic subphases, the stability of these subphases, and sequences
of phase transitions between them, various phenomenological
(by necessity) models have been developed. These models
usually involve a local (in-layer) two-dimensional order
parameter characterizing the orientation of the molecular
director and, in general, a polar order parameter determined
by the spontaneous polarization of a smectic layer [4–13]. In
simplified models, the molecular orientation within a given
smectic layer is characterized solely by the azimuthal angle
[14–17]. In order to formulate a unified model that would
be valid for a wide range of helical periods, not only for
long periods but also for extremely short periods (typical,
e.g., for the Sm C∗

α phase) as well as for multilayer helical
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structures, the space variable in the direction perpendicular to
smectic layers has been treated as a discrete quantity. Then,
the free energy of helical smectic LCs has been determined,
in its most basic form, taking into consideration, in addition
to usual one-point Landau terms, the piezoelectric (one-point)
term, and two-point components corresponding to interactions
between molecules belonging to nearest neighbor (NN) and
next nearest neighbor (NNN) smectic layers [1], as well as
two-point contributions corresponding to couplings of even
more distant molecules [11,15]. The NN couplings reflect
dipol-dipol, steric, and van der Waals interactions (comprising
a possible chiral contribution), while the NNN component
reflects the flexoelectric effect [7,10], but also the dipol-dipol
coupling [15]. In contrast to the continuous models, which
anticipate the existence of only Sm C∗ and Sm C∗

A phases, the
discrete models additionally predict the appearance of other
subphases. Nevertheless, the discrete models suffer a serious
drawback since, to reproduce the nonmonotonic temperature
dependence of the helical period, experimentally observed in
various subphases, couplings inherent in these models should
also depend nonmonotonically on temperature.

An essential assumption commonly used to describe helical
LCs is that the bulk of LCs can be considered unaffected
by cell surfaces or interfaces confining LC substances. Then,
helical superstructures of smectic LCs can be modeled in one
dimension only, i.e., along the helical axis. However, this
assumption cannot be accepted in cases of LCs sandwiched
between plates of rather thin cells [18–20], i.e., when surface
anchoring interactions induce nonuniform distribution of the
molecular azimuthal angle in the direction normal to the
sample surfaces. Another mechanism of nonuniform orien-
tation of molecules emerges in freestanding LC film systems
[21]. As has been demonstrated, LC-air interfaces occurring
in such systems affect orientational states of molecules on
relatively large distances from the interfacial surfaces [22].
In this paper, the influence of the space nonuniformity of the
azimuthal orientation of molecules on the formation of helical
superstructures in ferroelectric chiral LCs with well-defined
smectic layers being perpendicular to plates confining cells is
investigated.

051702-11539-3755/2012/85(5)/051702(7) ©2012 American Physical Society

http://dx.doi.org/10.1103/PhysRevE.85.051702
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II. MODEL

The model considered in this paper concerns an idealized
geometry of LC systems with well-defined smectic layers
oriented perpendicular to cell plates bounding the LC material.
Due to the occurrence of surface anchoring interactions, the
orientational states of molecules are not uniform within each of
the smectic layers and, consequently, the azimuthal molecular
angle φ can then be assumed to vary continuously in the
direction, say, the x direction, normal to cell plates [19,20].
However, in the y direction, parallel both to cell surfaces
and smectic layers, no variation of φ is assumed. A possible
variability of φ, associated with the appearance of helices in the
z direction, normal to smectic layers, is described in a discrete
way. Hence, the orientation of a molecule located in the ith
smectic layer at the distance x from the bottom plate of a cell of
thickness d (i.e., at 0 � x � d) is determined by the function
φ = φi(x) with i = 1,2, . . . ,N , where N is the number of
smectic layers forming the system. (The basic geometry of the
studied system is schematically illustrated in Fig. 1.) As a result
of nonuniformity of molecular orientations inside smectic
layers, there appear local polarization charges that generate
local electric fields. Naturally, such induced internal fields
interact with electrical dipolar moments of molecules yielding
a depolarization contribution to the energy of LC systems
[23–25]. Consequently, to study the effect of nonuniformity
of the azimuthal molecular angle within smectic layers on
the helical structure of chiral smectics, the straightforward
(undistorted) clock model [1,26] is extended below to include
the depolarization self-interaction. Since surface interactions
promote, in general, some special orientations of molecules,
these interactions can affect the formation and stability of
possible helix superstructures. However, such surface-induced
effects are not investigated here. For simplicity, the dif-
ference φi+1(x) − φi(x), i = 1,2, . . . ,N , between azimuthal
angles of molecules placed in a neighboring smectic layer,
is assumed to be independent of x (though it may not
necessarily be true for real systems). Accordingly, φi(x) can be
expressed as

φi(x) = φ(x) + φi, i = 1,2, . . . ,N, (1)

with φ(x) being identical for all smectic layers and φi being
independent of x. In order to formulate a unified description
of various helical phases, complex n-layer helical structures

FIG. 1. Assumed simple cell structure with smectic layers being
aligned perpendicular to boundary plates of a cell of thickness d .
Smectic layer width l, vector of local polarization �PS , molecular tilt
angle θ , and molecular azimuthal angle φ are also shown.

(n = 2,3, . . .) will be treated here as single (one-layer) helical
structures with the period p = n, in cases of commensurate
(with the smectic layer width) helices, or with the period p ≈
n in cases of incommensurate helices. Hence, p ≈ 2,3,4 in
Sm C∗

A, Sm C∗
γ , Sm C∗

β subphases, respectively, and p ≈ 6 in
typical Sm C∗

α subphase. Accordingly, p is defined here as the
pitch length p̄ expressed in the unit of the smectic layer width
l, i.e., p = p̄/ l.

The resulting free energy of a tilted chiral smectic phase
exhibiting a helical superstructure is then determined by

F = 1

2

N∑
i=1

∫ d

0

{
Kx[∂xφ(x)]2 + Kzl

−2(δi − q0)2

+P 2
S

ε0
cos2 φi(x)

}
dx, (2)

where Kx and Kz are the intralayer and interlayer elastic
constants, respectively, l denotes the smectic layer width,
q0 = 2π/p0, with p0 being the period of an undeformed helix,
PS is the local polarization, and

δi = φi+1 − φi. (3)

The first two components in Eq. (2) represent the intralayer
and interlayer elastic energy, respectively, while the last term
describes the depolarization energy [23–25]. It should be
pointed out that both the elastic constants Kx and Kz contain
the factor sin2 θ , where θ is the molecular tilt angle. Clearly, the
difference δi between azimuthal angles of molecules placed
in adjacent smectic layers is identical for all i, i.e., δi ≡ q0

for all i, within the undistorted clock model, but, as will
be shown, can vary between successive pairs of layers when
the depolarization effect is taken into account. Note that q0

is related to the helical wave number and characterizes the
molecular twist from one layer to the next layer, originating,
e.g., in the chiral structure of molecules.

Inserting Eq. (1) into Eq. (2), one can separate the intra- and
interlayer contributions to the free energy. One must, however,
proceed with caution. Indeed, in the expression for F , there
arises a “mixed” term of the type

∫ d

0 sin 2φ(x) dx
∑N

i=1 sin 2φi

which is, in general, nonzero. Obviously, the sum in this term
is equal to zero in cases of undistorted commensurate helices
and is close to zero in cases of undistorted and distorted
incommensurate helices, provided that N � p. Thus, in such
cases, the mixed contribution to F is equal to zero, or is
negligibly small (in absolute value). Moreover, one can infer
that, owing to the form of the dependence of depolarization
interaction on the azimuthal molecular angle, the relation∑N

i=1 sin 2φi = 0 is also satisfied in the case of distorted
commensurate helices allowed within the studied model.
Consequently, the mixed term can be omitted, and then one
has

F = Nf0 + d fh, (4)

where

f0 = 1

2

∫ d

0

{
Kx[∂xφ(x)]2 + P 2

S

ε0
sin2 φ(x)

}
dx (5)
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corresponds to the intralayer part of the free energy, and

fh = 1

2

N∑
i=1

[
Kzl

−2(δi − q0)2 + cP 2
S

ε0d
cos2 φi

]
(6)

refers to the free energy contribution associated with the helix
formation. The second component of Eq. (6) comes from
the surface-induced depolarization. This component of fh

can be interpreted as a sum of fundamental depolarization
energy levels of successive smectic layers. The coefficient c is
determined by

c =
∫ d

0
cos[2φ(x)]dx. (7)

It must be stressed that the depolarization contribution to
the free energy F does not contain a balancing component
that corresponds to uniform distribution of the molecular
azimuthal angle within smectic layers and that compensates
the depolarization term [the third term in Eq. (2)] when
φi(x), i = 1,2, . . . , becomes independent of x. Consequently,
Eq. (2), and thereby Eqs. (5) and (6), are justified only if the
azimuthal angle is nonuniformly distributed in each of the
smectic layers. Thus, the coefficient c cannot be considered
as a depolarization strength, which tends to zero in the limit
of uniform distribution of the azimuthal angle. Clearly, c

can be equal to zero even if the molecular azimuthal angle
depends on x. It follows from Eq. (7) that the coefficient c

can essentially take values from the range [ −d,d ], but to
calculate this coefficient, a knowledge of surface-anchoring
interactions would be required [20]. Using Eqs. (4)–(7), one
can easily check that, if any helices do not appear, i.e., if q0 = 0
and φi ≡ 0, i = 1,2, . . . ,N , the formula for the free energy F

reduces to

F = 1

2

∫ d

0

{
Kx[∂xφ(x)]2 + P 2

S

ε0
cos2 φ(x)

}
dx, (8)

as it should be [24,25]. Minimizing the functional F

[Eqs. (4)–(6)] with respect to φi , one gets the following
iterative equation

δi+1 = δi − b sin 2φi, i = 1,2, . . . , (9)

where φi = �i
j=1δj and the nonlinearity parameter b is given

by

b = c l2P 2
S

2ε0Kzd
. (10)

It is seen that Eq. (9) does not involve q0. However, to solve
this equation, one has to choose appropriate initial values both
for δ1 and φ1 (in addition to a respective value of the parameter
b). It is natural to assume that δ1 = q0, while φ1 can be treated
as a free parameter or can be adjusted to minimize the reduced
component f̄h = 2l2fh/(NKz) of the free energy part. This
reduced contribution to the free energy, given by the relation

f̄h = N−1
N∑

i=1

[(δi − q0)2 + 2b cos2 φi], (11)

contains only one (dimensionless) coupling parameter b.

III. RESULTS AND DISCUSSION

The model is explored below for a value of material
parameter b being typical for Sm C∗ phases. Taking l =
2 × 10−9 m, PS = 10−5 Cm−2, Kz = 10−13 N, and assuming
that c = 0.5 d, one obtains b = 1.1 × 10−4. This value of
the parameter has been used to derive most of the results
presented in this section, but greater values of b have also been
adopted. Clearly, even if b is small, there can appear transitory
fluctuations in corresponding sequences of φi , determined
modulo 2π , for initial iterations of Eq. (9), starting with
arbitrarily chosen values of φ1 and δ1. Such transitory effects
have been eliminated here by neglecting long initial sequences
of φi , where i = 1,2, . . . ,N0 with N0 � 1. Next, subsequent
sequences φN0+1,φN0+2, . . . ,φN0+N1 with N1 � 1 have been
registered.

The variability of φi determined by using Eq. (9) is
shown in Fig. 2 for φ1 = 0 and for two different values of
δ1 = 2π/p0, related to p0 = 100 and p0 = 400. This figure
illustrates a general rule that the distribution of the molecular
azimuthal angle along the helix axis is uniform or, more
exactly, approximately uniform when δ1 is sufficiently small
and becomes increasingly nonuniform when δ1 decreases,
provided that φ1 remains unchanged. Moreover, the period p

of a distorted helix differs from p0 in a way that the resulting
absolute difference |p − p0| increases when p0 grows (at fixed
φ1), as demonstrated in Fig. 3 for p being rounded down
to nearest integers. The period p has been represented here
by integers in order to better visualize its dependence on
large values of δ1, for which p exhibits very large relative
fluctuations. Note that δ1 has been taken very densely in
the range of large values, and the function shown in Fig. 3
is single-valued. It should be pointed out that a growing

FIG. 2. Distribution of the azimuthal angle plotted modulo 2π

for b = 1.1 × 10−4, φ1 = 0, p0 = 100 (a), and p0 = 400 (b).
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FIG. 3. (Color online) Dependence of the helix period p (approxi-
mated by nearest integers) on p0 = 2π/δ1 drawn for b = 1.1 × 10−4

and for φ1 = 0, 0.1, 0.2, 0.3, 0.4, 0.5, from left to right. The inset
shows a magnified view of the graph fragment obtained for p0 � 300.

deviation of p from p0 is associated with increasing distortion
of respective helices. Similar to p, this deviation is determined
not only by δ1 but also by φ1 (see Fig. 3). It is remarkable that
the helix period p can take only finite values, as shown in Fig. 4
for typical values of the helical period 2 � p0 � 1500. More
precisely, there exists a critical line p0 = p(c)(φ1) (represented
by the dashed line in the bottom diagram of Fig. 4) that
separates the plane of initial values of δ1 and φ1 into subsets for
which φi [generated by the iterative relation Eq. (9)] exhibits
different asymptotic behaviors. It proves that p(c)(φ1) is finite
for all φ1 and that the studied model does not predict the
appearance of any helix when p0 > p(c)(φ1). It should be
noted, however, that a detailed analysis of the asymptotic
properties of φi as i → ∞ becomes difficult to carry out for
p0 close to p(c)(φ1) and for φ1 ≈ π/2, due to long transitory
effects. As shown in Fig. 4, the disappearance of helices as
p0 ↗ p(c)(φ1) at a given φ1 is not connected with an infinite
elongation of p. When p0 exceeds p(c)(φ1), the molecular
azimuthal angle displays, in general, oscillations along the
normal to smectic layers. The amplitude of these oscillations is
less than 2π and rapidly decreases as p0 grows. Consequently,
one can conclude that the self-depolarizing interaction, leading
to the nonuniformity of the distribution of the azimuthal angle
along the helix axis, influences the helix period and even
imposes an upper limit on the helical period.

To investigate how the depolarizing interaction affects the
stability of the studied model system, the reduced free energy
contribution f̄h due to the helix formation has been calculated
for various values of δ1 and φ1. The resulting dependence of f̄h

is presented in Fig. 5. A simple comparison of plots of Figs. 4
and 5 reveals that the disappearance of helices as δ1 and/or φ1

are appropriately varied is accompanied with a relatively large
increase of f̄h. It is important to note that f̄h rapidly changes
as p0 ↘ 2 (see the top diagram of Fig. 5). For p0 = 2 and, in
consequence, for p ≈ 2, f̄h reaches an absolute minimum as
φ1 tends to π/2. Thus, at this special value of φ1, the resulting

FIG. 4. (Color online) Dependence of the helix period p on p0 =
2π/δ1 and φ1, as determined for b = 1.1 × 10−4 and N0 = N1 = 106.
The lower diagram shows the respective contour map, where the
dashed lines represent the critical function p(c)(φ1) (see the text). The
region of the map associated with p0 = 2π/δ1 > p(c)(φ1) refers to
initial values of δ1 and φ1 for which sequences of φi have not any
helicoidal character.

Sm C∗
A phase is the most stable of all possible helicoidal phases

predicted by the studied model.
It follows from Eq. (11) that the deformation of the helix

is associated with an increase of the interlayer elastic part
f̄he = N−1 ∑N

i=1(δi − q0)2 of the reduced free energy f̄h and,
simultaneously, is connected with a respective change of the
depolarization part f̄hd = 2bN−1 ∑N

i=1 cos2 φi . Clearly, f̄he

is greater than zero not only when the system exhibits any
distorted helical superstructure but also when any helical
superstructure does not appear. Thus, f̄he can be considered
as a measure of the nonuniformity of distribution of azimuthal
angle of molecules in successive smectic layers only if the
system forms a helix superstructure. As concerns f̄hd , the
influence of the nonuniformity of the molecular azimuthal
orientation on this part of the reduced free energy appears to
be more complex than in the case of f̄he. One can expect,
however, that f̄hd decreases as p0 tends to p(c)(φ1), both as
p0 ↗ p(c)(φ1) and as p0 ↘ p(c)(φ1). The result of the interplay
between modifications of these two contributions to f̄h due
the helix distortion is graphically presented in Fig. 6 for p0 =
2, 6, 500, and for varying φ1. It is seen that, in the special case
of p0 = 2, the depolarization part of f̄h displays, in contrast to
f̄he, a relatively rapid increase as φ1 → 0 and as φ1 → π .
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FIG. 5. (Color online) Dependence of the reduced free energy part
f̄h, associated with the helix formation, on φ1 and δ1, as determined
for b = 1.1 × 10−4 and N0 = N1 = 106. The lower graph shows the
corresponding contour map. The dashed lines on this map represent
the critical function p(c)(φ1).

In consequence, the corresponding orientational states of
molecules become energetically unfavorable. Nevertheless,
f̄he, f̄hd , and, thereby, f̄h all possess a minimum at the
point φ1 = π/2. However, the minima of f̄hd and f̄h have
a global character, while the respective minimum of f̄he is
only local. As already discussed, possible helices appearing
for p0 being much less than p(c)(φ1) are nearly undistorted.
Then, f̄hd � f̄he and both the parts of f̄h are slowly varying
functions of φ1, as illustrated in the middle diagram of Fig. 6
for p0 = 6. It is rather surprising that the dependence of f̄he

on φ1 determined for p0 = 6 is not symmetric with respect
to φ1 = π/2. In cases of helices found for p0 > p(c)(φ1), the
functions f̄he, f̄hd , and f̄h all have, in general, two symmetric
minima (with respect to φ1 = π/2), but located at different
pairs of values of φ1, as demonstrated in Fig. 6 for p0 = 500.
Accordingly, the depolarization interaction strongly affects the
dependence of f̄h on φ1, leading even to a change of positions
of minima of f̄h, determined for sufficiently large p0.

In order to analyze the behavior of the reduced free energy
when δ1 changes, f̄h has been determined as a function of p0

for several values of φ1, as shown in Fig. 7. The inset plotted
inside this figure concerns the region of p0 � p(c)(φ1), for
which p ≈ p0. It follows from the figure that the dependence
of f̄h on p0 strongly changes its character as φ1 varies. This is
distinctly visible in cases of φ1/π = 0, 0.2, 0.4. For φ1 = 0, f̄h

has a shallow minimum at a very small value of p0. In the case

FIG. 6. (Color online) Dependence of f̄he, f̄hd , and f̄h = f̄he +
f̄hd on φ1, obtained for p0 = 2, 6, 500 (from top to bottom). The
dotted line in the middle diagram of the figure corresponds to f̄h. All
plots have been drawn using the data of Fig. 5.

of φ1/π = 0.4, f̄h also possesses a minimum within the region
of small values of p0, such that p0 � p(c)(2π/5), but this
minimum displays only a local character. Note that a pertinent
global minimum of f̄h occurs at p0 = p(c)(2π/5). In contrast,
f̄h, determined for φ1/π = 0.2, exhibits, within a region of
relatively small values of p0, an existence of a maximum rather

FIG. 7. (Color online) The reduced free energy as function of
p0 = 2π/δ1 for φ1/π = 0, 0.1, 0.2, 0.3, 0.4, 0.5, determined on the
basis of the data of Fig. 5. The inset shows a magnification of the
diagram, in which typical behaviors of f̄h are presented for 2 � p0 �
100. The curves shown both in the main diagram and in the inset are
marked with respective values of φ1/π .
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FIG. 8. (Color online) Contour diagrams showing the dependence
of the helix period p on p0 = 2π/δ1 and φ1, determined for N0 =
N1 = 106 and, respectively, for b = 0.0011 and b = 0.011. Blank
regions of the diagrams are associated with values of δ1 and φ1 for
which any helix does not appear.

than any minimum. Indeed, the only minimum that f̄h reveals
for φ1/π = 0.2 is located at p0 = p(c)(π/5). Consequently, the
model under considerations permits the occurrence extremely
short-period helix structures, which are stable with respect to
deviations of φ1 from its special values.

It is clear that the function p0 = p(c)(φ1) depends on the
material parameter b. Since the parameters Kz and PS can
rapidly vary as temperature is changed, also the parameter b

can considerably vary with temperature [see Eq. (10)]. This is
the case, e.g., when temperature tends to the critical value, at
which the Sm C∗− Sm A∗ or Sm C∗

A− Sm A∗ phase transitions
take place [27,28]. To investigate the influence of the variation
of the parameter b on the helical structure, the helix period p

has been determined as a function of p0 and φ1 for b = 0.0011
an b = 0.011. Resulting contour maps are shown in Fig. 8.
These maps, together with the contour diagram of Fig. 4,
evidently demonstrate that, at any fixed φ1, the maximum value
of p0 = p(c)(φ1) at which a helix can exist and, hence, also the
maximal helix period p rather rapidly decrease as b grows.
Indeed, when φ1 = 0, one finds that the maximal value of
the helix period p is equal to 988 (for b = 0.000 11), 227 (for
b = 0.0011), 61 (for b = 0.011), and 11 (for b = 0.11). On the
basis of the above discussion, it is obvious that, for large values
of the parameter b, the considered model admits the occurrence
of both regular (or, more precisely, nearly undistorted) and
distorted stable helices of short periods, although distorted

helix structures of extremely short periods can arise only
if the parameter b is sufficiently large. Consequently, the
model yields a simplified description of helicoidal smectic
superstructures, which are encountered in various helical
subphases, including the newly discovered smectic phase
exhibiting a strongly distorted helical structure with six-layer
periodicity [3].

As follows from Eq. (10), the parameter b is inversely
proportional to the sample thickness d. This suggests that
helical structures with larger periodicity are preferred in LC
samples of larger thickness (associated with smaller values of
b). In fact, such a size effect has experimentally been found
by measuring the helical pitch of the same liquid crystalline
material, but confined in cells of different thickness [29,30].
It should be pointed out that the dependence of the helical
period on the sample thickness is an evident sign of a large
role of the surface interactions and, thereby, the intrasmectic
layer inhomogeneity of molecular orientations in forming and
stabilizing helical superstructures in smectic LCs.

It is also worth noting that local dielectric and/or magnetic
anisotropy contributions to the free energy (when constant
electric and/or magnetic field are applied to LC cells) display
the same functional dependence on the molecular azimuthal
angle as the local depolarization energy [31]. Thus, the effect of
the distortion of helical superstructures, similar to that induced
by depolarization interactions, can also be expected when
constant electric and/or magnetic fields are present. However,
depending on the sign of electric and magnetic anisotropies,
electric and magnetic fields can enhance or suppress the helix
distortion caused by depolarization interactions.

Finally, the physical meaning of φ1, i.e., the initial azimuthal
angle value needed to solve Eq. (9), should be explained. In
contrast to the second initial value parameter, δ1, the initial
azimuthal angle φ1 has been treated here as an arbitrary
parameter, which does not have any direct connection to a
definite helical structure. However, in consequence of the
symmetry breaking character of the depolarization interaction
(incorporated in the considered model), the resulting free
energy of a given system distinctly depends on φ1, even when
any helical superstructure does not appear. Essentially, one
would assume that a “proper” value of φ1 is the one at which
the reduced free energy f̄h reaches a minimum (for a given
δ1). It should be stressed, however, that the discussed model
does not explicitly involve the surface interactions. These
interactions can yield a significant contribution to the free
energy of thin LC systems [18], and then the proper value
of φ1 would be that value for which the total free energy
(containing the surface anchoring contribution) possesses a
minimum. Obviously, an extension of the model to include the
surface anchoring interactions would require the knowledge
of additional parameters, being rather difficult to determine.

IV. CONCLUDING REMARKS

The results presented in this paper show that the surface-
induced inhomogeneity of the space distribution of azimuthal
orientations of molecules within smectic layers are of great
relevance for the formation and stabilization of helical su-
perstructures with very different periods. Perhaps the most
striking result obtained is that the process of depolarization
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(stimulated by surface anchoring interactions) leads to the dis-
appearance of helices of appropriately large periods. Although
the model presented here concerns LC systems with smectic
layers oriented perpendicular to surfaces of thin confining
cells, one can expect that the results derived by using the
model will turn out to be helpful for investigating possible
mechanisms to form complex helical structures occurring
in other confining geometries, for which the orientation of

molecules within smectic layers is distinctly inhomogeneous.
In particular, this may concern LCs in the freestanding film
geometry.
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