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We analyze theoretically complete wetting of a substrate supporting an array of parallel, vertical plates which
can tilt elastically. The adsorbed liquid tilts the plates, inducing clustering, and thus modifies the substrate
geometry. In turn, this change in geometry alters the wetting properties of the substrate and, consequently, the
adsorption of liquid. This geometry-wetting feedback loop leads to stepped adsorption isotherms with each step
corresponding to an abrupt change in the substrate geometry. We discuss how this can be used for constructing
substrates with tunable wetting and adsorption properties.
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I. INTRODUCTION

The scientific interest in wetting properties of liquids
at solid surfaces dates back to the 18th century. Several
reviews account for the progress in understanding such wetting
phenomena [1–4]. Recent important developments include the
wetting of rough surfaces and superhydrophobicity [5,6] and
the attempts to build “lab-on-a-chip” devices, in which liquids
are controlled at the microscale and nanoscale [7,8].

A large part of this recent development is concerned with
designing surfaces in order to obtain specific, tunable wetting
properties, leading to “smart surfaces.” In this spirit, nonrigid
substrates literally provide additional flexibility in tailoring
wetting properties. Recently, the usefulness of the interplay of
surface elasticity and wetting has been demonstrated in various
accounts [9]. They include capillary-driven self-assembly
[10–17], enhanced condensation properties [18], control of
surface color [19], measurement of pressure in nanochannels
[20], and a biomimetic proposal to achieve superhydrophobic
surfaces [21,22]. This last suggestion has been refuted [23],
but calculations indicate that a related effect might work [24].
Even at the macroscopic level, the interplay of wetting and
elasticity gives rise to rich phenomena [25–27].

Here we study an elastic surface structure which changes
its geometry upon adsorption. In turn, this change in the
topography of the substrate affects the adsorption properties.
Our goal is to give a bird’s-eye view of the influence of
elasticity on wetting and adsorption phenomena rather than to
calculate specific, detailed results. As such, we choose one of
the simplest possible examples of the influence of elasticity:
a surface decorated with rigid, vertical, planar plates which
can pivot elastically upon their base. This choice simplifies
the analysis, while still retaining the important elements of
the phenomenology. The adsorption isotherms exhibit jumps
at undersaturations at which the surface changes its geometry.
The different kinds of possible isotherms depend on elasticity,
geometry, and surface tension. We discuss how the use of this
kind of surface together with the application of an electric field
can lead to “smart surfaces” with “on-the-fly” tunable wetting
properties.

In the next section, we introduce the phenomenology of
wetting, filling, and capillary condensation and qualitatively
describe the wetting of flexible substrates. In Sec. III, we
present the results for our simple macroscopic model. We
close with discussions of the results (Sec. IV) and of their
implementation in order to obtain surfaces with tunable
properties (Sec. V).

II. QUALITATIVE ANALYSIS

Before we consider the wetting and adsorption properties
of elastic substrates, we first briefly review some of the most
important results for wetting of planar and patterned substrates
(such as wedge filling and capillary condensation), because we
rely heavily on these for our calculations.

In all situations, we consider a solid substrate in thermal
equilibrium with a bulk gas phase at a certain temperature T

and pressure P (or chemical potential μ), thus considering the
grand-canonical ensemble. Away from gas-liquid coexistence
in the bulk, a thin layer of liquid adsorbs on the substrate.
The adsorption isotherm is obtained by monitoring the excess
adsorption � upon increasing the pressure toward liquid-vapor
coexistence in the bulk at fixed temperature. The excess
adsorption can be measured experimentally with high accuracy
by using, e.g., microbalance techniques [28–32]. This is a
classical method and one of the easiest ways to characterize
the wetting properties of a substrate. In the present context,
we consider the number densities ρl and ρv of the liquid
and vapor phase, respectively, to be spatially homogeneous
so that the excess adsorption equals ρl − ρv times the volume
occupied by the liquid phase. Factoring out �ρ = ρl − ρv

and the linear extension of the system in the translationally
invariant direction, � is the area occupied by liquid in the
cross section (see Appendix).

For a flat substrate, there are two typical behaviors of the
adsorption isotherms (see Fig. 1): either the excess adsorption
� remains finite up to gas-liquid coexistence μ0(T ) or it
diverges as coexistence is approached [3]. The former behavior
is called partial wetting, corresponding to a contact angle
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FIG. 1. Characteristic adsorption isotherms of a planar substrate
as the chemical potential μ approaches bulk gas-liquid coexistence
μ0(T ) at constant temperature. � is the excess amount of liquid
adsorbed for partial wetting (a) and complete wetting (b). In (b) the
type of divergence of � reflects the asymptotic decay of the underlying
interactions in the system [3].

θ > 0◦ at gas-liquid coexistence, and the latter is called
complete wetting, corresponding to θ = 0◦. The character
of the divergence depends on the microscopic details of
the molecular interactions. For nonretarded van der Waals
interactions, the adsorption diverges as � ∝ (�μ)−3 [3],
where �μ ≡ μ0(T ) − μ � 0 is the deviation of the chemical
potential of the bulk gas phase from its value μ0(T ) at
liquid-vapor coexistence in the bulk.

Due to confinement, fluid will condense in a pore at a lower
value of the chemical potential, compared to bulk coexistence.
For the simplest possible pore, formed by two planar, parallel,
infinite plates a distance L apart, the comparison of the free
energies for the empty and the filled pore leads to the Kelvin
equation, which provides the value of the chemical potential
at which capillary condensation occurs [3]:

�μ = �μcc ≡ 2σ cos θ

�ρL
. (1)

Here σ is the surface tension of the liquid-vapor interface.
Another important element of our later analysis is the

adsorption at a wedged substrate with a tilt angle α [see
Fig. 2(a)]. Macroscopic thermodynamic arguments [33,34]
show that upon raising temperature, the filling of a wedge
precedes wetting of its walls and occurs when the contact angle
at the planar wall equals the tilt angle of the wedge, i.e., θ = α.
Insight into the wetting behavior of more complicated substrate
geometries can be gained by using a simple mesoscopic model
of adsorption [35].

With these prerequisites, we are now in a position to
qualitatively describe the adsorption of liquid at an elastic
substrate. To be specific, we consider a substrate decorated
with a periodic array of planar plates which are vertical if there

FIG. 2. A wedge (a) and a capped wedge (b) with tilt angle α.

is no liquid adsorbed (see Fig. 3). The underlying substrate is
rigid as well as the plates as such. However, the plates can
tilt elastically around their contact line with the underlying
substrate.

We consider also this substrate to be in thermal equilibrium
with a gas phase at a certain temperature T and chemical
potential μ characterizing the grand-canonical ensemble. If the
substrate is stiff (i.e., if elasticity can be ignored), the excess
adsorption isotherm � typically looks like the dotted line in
Fig. 4. For large undersaturations �μ, only a small amount
of liquid adsorbs at the walls, forming a microscopic wetting
film. The precise amount of that adsorbed liquid depends on
the microscopic details of the system and can be calculated
with the same methods used for a planar substrate [3]. At
�μ = �μcc, the adsorption isotherm exhibits a steep increase
at an undersaturation corresponding to the onset of capillary
condensation of liquid in the space between the plates. Unlike
capillary condensation between parallel walls, this increase is
actually smooth, albeit very steep, because the pore is a capped
capillary [36–39]. For even smaller undersaturations, the liquid
continues to adsorb on the topographically structured substrate
with the type of the corresponding divergence being controlled
by the range of the molecular interactions involved, similar to
a planar substrate [3]. For �μ < �μcc and �μ → 0, one can
identify several filling and wetting regimes [36,37].

We now consider elasticity, i.e., the plates can bend due
to the capillary forces of the adsorbed liquid. Starting from
large undersaturations, i.e., �μ � �μcc, upon decreasing �μ

the adsorption isotherms for the elastic substrate are de facto
the same as the ones for the corresponding rigid structured
substrate until capillary condensation occurs. (Concerning
flexible slit pores which, however, maintain their geometry, see
Refs. [40] and [41].) At the undersaturation �μcc correspond-
ing to capillary condensation, the liquid starts to fill the space
between the plates as before. However, if the elastic constant
for tilting a plate around its baseline is not too big, the ensuing
capillary forces can cause the plates to cluster together. This
can be rationalized by noting that a small deviation of a plate
from its vertical orientation causes the pore to be smaller on
one side and bigger on the other side; accordingly, these pores
form capped wedges [see Fig. 2(b)] with tilt angles α smaller
or larger than 90◦, respectively. In line with the behavior of
wedge filling [33,34,42], liquid condenses in the smaller pores
while it evaporates from the larger ones, relative to the upright
configuration α = 90◦. The condensation and evaporation of
liquid in pores of different sizes create an imbalance of forces
acting on their common plate due to the surface energies of
the interfaces involved. This imbalance triggers a clustering
cascade, in which the plates form clusters of two plates each
(Fig. 3), assuming that the plates are not too rigid. This first
plate clustering event occurs at the same undersaturation as
the aforementioned capillary condensation: �μ(0) = �μcc.

At the end of this process, the substrate consists of capped
wedges, with the plates clustered two-by-two. Between each
capped wedge there is a filled wedge upside down (Fig. 3).
Upon decreasing the undersaturation further, adsorption pro-
ceeds up to �μ = �μ(1), where the filling of these capped
wedges causes pairing in clusters of four plates by the
same instability mechanism as described above. In line with
experimental evidence [43–45], we assume that, once formed,
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FIG. 3. (Color online) Model elastic substrate. The rigid underlying substrate is decorated with rigid, planar, and equally spaced plates. The
substrate and the plates are considered to be formed by the same material. The plates can pivot elastically upon their linelike bottom, where
they are anchored at the underlying substrate, represented by a dark gray spot. An adsorption-induced collapse of plates triggers a chain of
clustering events. The arrows represent the concomitant movement of the liquid-vapor interface and of the plates. Subsequently, the clustered
plates can collapse into bigger clusters. The sketch exaggerates the thickness of the plates, which are considered to be thin enough, compared
to L, so that the thickness plays no role in our calculations but thick enough so that microscopic details, such as interactions between portions
of liquid adsorbed on different sides of a plate, are not important.

clusters cannot separate. In this case and at this stage, the
system consists of capped wedges with a smaller tilt angle
α, which will in turn collapse into clusters of eight plates (at
�μ = �μ(2)), etc. In our notation, upon decreasing �μ there
is a first-order transition between a cluster of order i (i.e.,
containing 2i plates) to a cluster of order i + 1 containing 2i+1

plates. The upright configuration corresponds to i = 0.
According to the above description, the adsorption prop-

erties change upon every clustering event, turning a smooth
adsorption curve into a series of adsorption steps which
coincide with the abrupt changes of the substrate geometry,
as sketched in Fig. 4. These collapses are limited by the
length of the plates or by the elastic energy associated with
the tilting of the plates, i.e., finally the clusters become too

FIG. 4. (Color online) Schematic sketch of the excess adsorption
isotherms � of a rigid, patterned substrate with the plates fixed
in an upright position (dotted red line) and of a flexible substrate
(continuous black line) with the same geometry if there is no
adsorption (i.e., �μ � �μcc). The latter exhibits jumps when the
substrate geometry changes, with the order i of the clusters indicated.
When the liquid completely covers the plates of the flexible substrate,
the plates can return to their original upright position and the
adsorption isotherm is the same for �μ → 0, or they can remain
clustered and the isotherm will be different. The plot corresponds to
the former case. The substrate material exhibits complete wetting by
the liquid (i.e., θ = 0). See the main text for a detailed discussion.

rigid. When no further collapses are possible, the adsorption
proceeds by filling of the capped wedges (see the smooth
increase of � in Fig. 4 below the last step) until the liquid
completely fills the space between the plates. Therefore, the
value of � at the bottom end of the last step (corresponding to a
filled capped wedge configuration) equals that at the upper end
of the steeply increasing dotted line corresponding to a filled
upright configuration. Further adsorption causes the liquid to
submerge the plates, and the surface tension of the liquid-vapor
interface no longer acts on the plates. The plates can remain
stuck to each other if van der Waals or other forces keep
them together. Alternatively, elasticity can be strong enough
to restore the plates to their upright configuration. In the former
case, further adsorption is similar to adsorption on a substrate
formed by capped wedges, whereas in the latter case, further
adsorption is the same as on the rigid substrate, with the plates
in the upright configuration; this is the case drawn in Fig. 4. In
either case, for the slope of this part of the adsorption isotherm,
elasticity no longer plays a role.

If the substrate is not perfectly periodic but there is some
randomness in the spacing of the plates, the adsorption will
proceed in a less orderly fashion [16]. For example, there can
be clusters of three plates, or clusters of different sizes within
the overall configuration. This will result in more steps in the
adsorption isotherm. In the next section, we present results for
a specific model system, substantiating the previous qualitative
reasoning.

III. QUANTITATIVE ANALYSIS

In order to underpin the previous qualitative description,
in this section we present calculations for a simple model
which still captures the most important features but avoids the
complexity of more realistic models.

As stated before, our choice of the substrate is idealized
in that it consists of stiff planar plates which tilt around their
line of contact with the underlying substrate. A more realistic
system would consist of elastic plates which can adopt also
nonplanar shapes. This would lead to much more difficult
calculations without adding essential new features. Moreover,
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the system we analyze is translationally invariant along one
spatial direction, thus being effectively two-dimensional. This
invariance is broken by studying systems with arrays of elastic
posts. Such an analysis would be rather challenging because
it requires one to solve the Laplace equation within a domain
with a complicated shape in order to obtain the equilibrium
configuration of the liquid-vapor interface. In the following, we
adopt this translational invariance and all extensive quantities
are taken to be divided by the length of extension in this
direction. For example, the expression for the free energy of
the system [see, e.g., Eq. (12)] denotes the free energy per
length.

For our simplified model, we introduce the additional
approximation that the top of the plates is always at a vertical
distance H from the substrate. This approximation is justified
if the height H of the plates is much larger than the distance
L between vertical plates and if the clusters do not involve too
many plates (c.f., Fig. 3).

In order to calculate the adsorption, we resort to a
macroscopic model, in which the liquid-vapor interface is a
section of a cylinder with its radius of curvature R given by
Laplace’s equation:

R = σ

�ρ�μ
. (2)

(A more sophisticated model would include a thin layer of
liquid adsorbed on the walls [35]. In a first approximation,
we neglect this.) Our macroscopic (thermodynamic) approach
implies that, for the nontilted plates, only at capillary con-
densation does the liquid meniscus form a part of a circle, the
radius of which is given by Eq. (2) and which meets the vertical
wall with the contact angle θ . Actually, this is precisely what
signals the occurrence of capillary condensation.

The free energy of the system for a given configuration
consists of a volume term (capturing that the system is off
liquid-vapor coexistence), surface terms, and the elastic energy
of tilting the plates. In principle, this free energy has to be
minimized in order to obtain the equilibrium configuration of
the system and, from this, the adsorption isotherms. However,
the implementation of this procedure is rather complicated.
Moreover, for these types of systems it is not obvious that they
are always able to reach the free energy minimum [43,46].
Therefore, we use instead a more ad hoc approach, in analogy
with Ref. [23].

Our aim is to determine the values of the chemical potential
for which the clustering of the plates occurs. In between these
values for the clustering events, we treat the substrate as rigid
and describe the adsorption without considering elasticity. To
be specific, we calculate the values �μ(0),�μ(1),�μ(2), . . . of
the chemical potential for which the first, second, third, and
so on clustering event occurs. The adsorption between these
values of the chemical potential is taken to be the same as
the adsorption on a rigid substrate with the plates fixed to be
clustered correspondingly, i.e., two-by-two, four-by-four, etc.

A. Criterion for clustering

The first step is to determine if the plates cluster at all.
According to the Kelvin equation [3], capillary condensation
between two parallel plates occurs at �μ = �μcc [see Eq. (1)].

FIG. 5. Comparing the free energy of the two configurations
renders an estimate for the criterion for clustering.

This equation is valid for condensation between two infinite
parallel plates. For a finite pore, i.e., for a capped capillary, the
condensation transition still occurs at the same undersaturation
�μcc but the transition changes from being first-order to
continuous (albeit with a very steep increase of the adsorption)
[38]. Once again, an accurate description of this transition
requires a more detailed model, but this is not relevant for the
present analysis. In the following we consider thin plates, the
thickness of which is much smaller than L, which allows us to
neglect its finite value. However, capillary condensation does
not occur in all pores simultaneously because as soon as one
pore fills, the surface tension pulls its confining plates together,
causing the neighboring pores to open and thus preventing
condensation in these. Therefore, in order to determine if the
plates cluster, one has to balance the elastic, the volume, and
the surface tension energies between two individual plates
filled by the liquid up to the top. Free energy minimization then
tells if the plates cluster or not, depending on the parameters
of the system. There is no basic difficulty to carry out this
procedure, as these calculations reduce to fairly elementary
geometric considerations. However, the resulting equations
to determine the bending of the plates are transcendental
equations involving trigonometric functions. A much simpler
method to estimate if clustering occurs is to compare the
energy of two configurations, one with the plates in the upright
position and the other with the plates clustered (see Fig. 5).

Within this macroscopic approach, up to constants, the free
energy of any configuration is given by

E = �ρ�μ × (volume of liquid)

+ σ × (area of liquid-vapor interface) + 2kδ2, (3)

where δ is the small angle between the plate and the vertical
(see Fig. 5), and k is an elastic constant which accounts for
the elastic energy associated with tilting the plates. Since we
are interested in calculating whether clustering happens at
capillary condensation, we consider as radius R of curvature
of the meniscus in Fig. 5 the value R = L

2 cos θ
, which follows

from Eqs. (1) and (2). Simple geometric considerations show
that the free energy per length of the configuration with the
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upright position is

E1 = 2σ cos θ

L

(
HL − R2β

2
+ R2 sin

β

2
cos

β

2

)
+ σRβ,

(4)

where β = π − 2θ (see Fig. 5). The free energy per length of
the clustered configuration is

E2 = 2σ cos θ

L

HL

2
+ 2k arctan2 L

2H
. (5)

The plates cluster if E2 < E1, leading to the condition that
clustering occurs if

2k arctan2 L

2H

< Hσ cos θ

[
1 + L

2H cos2 θ

(
π

2
+ cos θ sin θ − θ

)]
.

(6)

Since we always consider substrates with H � L, this result
reduces to the simple criterion

k � kc ≡ 2H 3σ cos θ

L2
. (7)

If the value of k is close to kc, this simple analysis is
insufficient to determine clustering, and a detailed analysis
of the free energy per length as a function of the angle δ of the
plates with the vertical is required. However, since typically
k � kc, such a detailed analysis is not required in order to
obtain the generic shape of the isotherms of an elastic substrate.

B. Adsorption

After this first clustering, the system consists of capped
wedges. If we assume that in this first step (i = 1) the plates
cluster pairwise, then by four plates (i = 2), followed by eight
(i = 3) plates, and so on, the outermost tilt angle after the
clustering of the ith order is

tan αi = 2H

(2i − 1)L
. (8)

Note that αi=0 = π
2 .

In the following, we first consider a system of fixed
clusters of order i. In order to obtain the corresponding excess
adsorption �i , we simply add the volumes �(i)

c and �(i)
w of

liquid in a cluster of order i and in the remaining wedges,
respectively, multiplied by the total number N (i)

c of clusters of
order i in the system with N plates, where N (i)

c = N/2i after
the ith collapse. We have

�(i)
c = H 2

tan αi

, (9)

which, within the present simple model, is independent of �μ.
Thus we consider the situation that fluid trapped within a pore
does not evaporate if �μ is increased. (To a certain extent, this
lack of evaporation upon increasing �μ mimics hysteresis.) A
more refined model would take this evaporation into account,
but this has no consequence for our main results. For �(i)

w we
have [see Eq. (2) and Eq. (A7) in Appendix]

�(i)
w = σ 2

(�ρ�μ)2

[
sin(αi − θ ) cos θ

cos αi

− (αi − θ )

]
− L2

4
tan αi.

(10)

The expression for �(i)
w vanishes for �μ ↗ �μ

(i)
− ≡√

4σ 2

(�ρL)2 tan αi
[ sin(αi−θ) cos θ

cos αi
− (αi − θ )]. This signals that for

�μ > �μ
(i)
− there is only a microscopically thin adsorbed film

which is not captured by the present macroscopic description.
Accordingly, the expression in Eq. (10) is augmented by
�(i)

w (�μ > �μ
(i)
− ) = 0.

A more convenient quantity is the adsorption per unit area,
i.e., per length if one divides by the extension of the system in
the translationally invariant direction:

�i

NL
= (

�(i)
c + �(i)

w

)N (i)
c

NL
= �(i)

c + �(i)
w

2iL
. (11)

C. Effect of elasticity

Now we consider flexible plates. The clustering events
occur if a configuration becomes linearly unstable. In order
to calculate the value �μ(i) of the chemical potential at which
a given configuration (i) leads to clustering of order (i + 1), we
check the stability of the system against a small perturbation
which tilts the clusters an angle δα toward each other. We
consider the situation in which the clusters tilt in pairs, so that

the total energy E
(i)
tot(δα) = N

(i)
c [Ei (αi+δα)+Ei (αi−δα)]

2 is given by
[see Eq. (A11) in Appendix]

2i+1E
(i)
tot(δα)

N
= σ 2

�ρ�μ

[
− cos θ

cos(αi + δα)
sin(αi + δα − θ ) − cos θ

cos(αi − δα)
sin(αi − δα − θ ) − L2

4
tan(αi + δα)

(�ρ�μ)2

σ 2

− L2

4
tan(αi − δα)

(�ρ�μ)2

σ 2
+ L

cos θ

cos(αi + δα)

�ρ�μ

σ
+ L

cos θ

cos(αi − δα)

�ρ�μ

σ

]
+ 2i+1k(δα)2 + C(i)(αi),

(12)

where the last contribution contains terms which do not depend
on δα and thus drop out upon varying δα.

For each i one has to check if the configuration δα = 0 is
linearly stable. By symmetry δα = 0 is always an extremum of

E
(i)
tot . If it becomes linearly unstable, the plates form clusters of

order i + 1. This loss of stability can occur smoothly, with the
plates tilting gradually toward each other, or abruptly, with the
plates clustering instantaneously. Numerically, we have always
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FIG. 6. (Color online) Adsorption isotherm of an elastic, patterned substrate (black line) and isotherms for substrates composed of rigid,
clustered plates (dashed lines) with clusters of the order i = 1, . . . ,5 from right to left at the top, and from bottom up at the right. The first three
configurations of the substrate are sketched, along with pointers indicating the �μ̄ intervals within which they occur. The clusters of order
i containing 2i plates are stable for �μ̄(i) < �μ̄ < �μ̄(i−1) (with �μ̄(−1) ≡ ∞ for i = 0). The collapse of the clusters of order i takes place
at �μ̄(0) = 2, �μ̄(1) = 1.990, �μ̄(2) = 1.928, �μ̄(3) = 1.663, �μ̄(4) = 0.901, and �μ̄(5) = 0.148. The first two collapses occur very close to
each other and consequently they are barely discernible in the isotherm. The systems are characterized by the dimensionless parameters L̄ = 1,
H̄ = 100, k̄ = 50, and θ = 0. See the main text for a detailed discussion.

observed an abrupt clustering of the plates. We emphasize that
this linear stability analysis amounts to following local minima
of the free energy, i.e., metastable states. As mentioned before,
it is observed experimentally that, once formed, the clusters
do not break apart [43–45]; therefore, the above approach is
appropriate.

We have not been able to determine analytically the point
at which the configuration with δα = 0 is no longer linearly

stable, i.e., d2E
(i)
tot

dδα2 |δα=0= 0. However, for given values of the
parameters, we can proceed numerically to determine both the
values �μ(i) of the chemical potential for the clustering events
and the isotherms.

Clustering and adsorption can proceed as long as the
wedges between clusters are not filled by liquid. For a fixed
cluster, this ceases if h − h′ = H (cf., Fig. 8), i.e., at

�μ = �μ∗
i ≡ σ sin(αi − θ )

�ρ(H/ tan αi + L/2)
(13)

with αi given by Eq. (8). For �μ < �μ∗
i , the liquid completely

covers the plates. In this case, the surface tension no longer
promotes the clustering of the plates because the liquid-vapor
interface is above the plates. Accordingly, the elastic forces
will break the clusters apart, unless other forces, such as van
der Waals forces, keep them together.

In is also worthwhile to point out that the above description
automatically takes into account the possibility that, beyond a
certain number of clustering events, the clusters are too rigid
to be bent by the surface tension. In such a case, this geometric
configuration never becomes unstable and the liquid adsorbs
until it completely covers the plates, as discussed at the end of
Sec. II.

IV. DISCUSSION

In order to translate the previous calculations into specific
results for the adsorption isotherms, it is convenient to

introduce dimensionless quantities, which we denote by an
overbar such as Ē. To this end, we measure the lengths in units
of L, the energy per length in units of σL (the translational
invariance of the system has been already taken into account),
and the chemical potential in units of σ

�ρL
. The elastic constant

is also measured in units of σL and the adsorption is measured
in units of L2. With this choice of units, we are left with the
parameters H̄ ≡ H/L, which defines the geometry, θ , and
k̄ ≡ k

σL
, which is a ratio of elastic and surface energies. It is

not easy to estimate k̄ for actual materials as we are assuming
that the plates tilt around their base. In any case, a large value
of k̄ signals a rigid substrate, for which the surface tension
is not capable of bending the plates. On the other extreme, a
soft substrate is described by a small value of k̄ such that
the surface tension forces cause extensive clustering. The
spectrum of actual materials spans the entire range of values, as
can be inferred from experimental results, according to which
clustering can either occur or not [9–15,19,47]. It is to be
expected that the interplay of elasticity and surface tension will
be most pronounced for intermediate values of k̄. Accordingly,
in Fig. 6 we present our results for the adsorption isotherms
(in dimensionless units as described above) for k̄ = 50, θ = 0,
and H̄ = 100. For these parameters, the necessary condition
for clustering of two individual plates to occur, k̄ � 2H̄ 3 [see
Eq. (7)], is fulfilled because 50 � 2 × 1003.

Figure 6 shows the adsorption isotherms for the first
few fixed cluster configurations (i = 1, . . . ,6) with �̄i/N =
2−i(�̄(i)

c + �̄(i)
w ), where �̄(i)

c and �̄(i)
w are given by Eqs. (8)–(10).

In line with the discussion after Eq. (10), these isotherms
are flat for �μ̄ � �μ̄

(i)
− with plateau values 2i−1

2i+1 H̄ → H̄ /2
as i → ∞. For decreasing undersaturation, the isotherms
increase up to �μ̄∗

i (θ = 0) = 21−iξi(1 + ξ 2
i )1/2, ξi = 2H̄

2i−1 [see
Eqs. (8) and (13)], where the wedges become completely filled
up and the cluster configurations dissolve; �μ∗

i→∞(θ = 0) =
4−i H̄ → 0. In Fig. 6, this latter feature occurs outside the
field of view [e.g., �μ̄∗

1 ≈ 1 and �̄1(�μ̄∗
1)/N > 60]. When
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the clusters dissolve, the adsorption jumps to the same value as
for the rigid substrate, as sketched in Fig. 4, because elasticity
no longer plays a role.

If the cluster configurations are not fixed but flexible,
at certain undersaturations �μ̄(i) [determined by the linear

stability analysis criterion d2E
(i)
tot

dδα2 = 0; see Eq. (13) above], the
substrate configuration undergoes a first-order transition be-
tween clusters of order i (i.e., containing 2i plates) and clusters
of order i + 1 upon decreasing �μ̄, with corresponding jumps
in the adsorption (see the black line in Fig. 6). In between
two jumps, the adsorption isotherm of the flexible substrate
follows the isotherm of the corresponding fixed cluster. This
leads to the steplike character of the black line in Fig. 6.

Due to the choice θ = 0, capillary condensation occurs at
�μ̄cc = 2 [Eq. (1)]. Thus for the present system clustering sets
in for this value of the chemical potential because, as stated
above, Eq. (7) is fulfilled. Therefore, one has �μ(0) = �μcc.
The significance of elasticity is highlighted by a comparison
of the black line in Fig. 6 with the adsorption isotherm
expected for the corresponding rigid substrate featuring the
same plates but fixed in an upright position, as sketched
in Fig. 4. At capillary condensation (�μ̄ = �μ̄cc = 2), the
adsorption for the rigid substrate jumps suddenly from a small
value to �̄/N = 100, which is outside the field of view of
Fig. 6, corresponding to the complete filling of the space
between the plates. Our macroscopic model does not take
into account the microscopic details of the fluid-solid and
fluid-fluid interactions and therefore it cannot describe the
precise shape of this isotherm, only the position of the jump
at capillary condensation, predicting for the present choice of
parameters constant values of 0 and 100 for the adsorption
below and above the capillary condensation. A more detailed
model (see, e.g., Refs. [35–38]) is required in order to be able
to determine the full shape of the isotherm.

The isotherms for elastic substrates differ qualitatively
from the isotherms of substrates composed of rigid clusters
of fixed order i with a tilt angle given by Eq. (8) (see also
Fig. 4). As expected, the adsorption isotherm of the elastic
surface exhibits abrupt jumps at each clustering event (i.e., at
�μ = �μ(i)), reflecting the change of the substrate geometry.
The first two clustering events occur at undersaturations �μ

very close to each other, because the large ratio H/L = 100
implies that the angles αi of the wedges formed in the first
clustering events are very close to 90◦, and thus in Fig. 6
the differences between these values of �μ(i) are barely
visible. Another notable feature is that for decreasing �μ

the adsorption is not necessarily monotonically increasing.
This counterintuitive behavior is due to liquid evaporating
(as indicated by the downward arrows in Fig. 3) from the
capped wedges, which form when a cluster collapses upon
decreasing �μ. An experiment in which the chemical potential
is increased slowly, in order to facilitate thermal equilibrium
and evaporation of liquid into the vapor phase, is expected to
pick up this peculiarity.

It is also informative to monitor the filling height h − h′ −
R[1 − cos(α − θ )] of the liquid in the center of the capped
wedges (see Fig. 8 in Appendix) as a function of the order
i of clustering (i.e., at �μ(i)). For i = 1 to 5, the heights in
units of L are 0.001,0.73,2.31,7.1, and 34.2 compared with

FIG. 7. (Color online) Liquid-vapor interface which does not span
the space between two clusters but which connects both plates with the
substrate surface. Our model does not take into account the adsorption
in the corners, but this is important for extremely flexible substrates.

the maximal value H/L = 100. The first few values are rather
small, reflecting the fact that k̄ = 50 describes rather flexible
substrates which cluster easily. For these low orders, the plates
cluster almost as soon as an interface is formed.

We also point out that our choice of k̄ = 50 was not
accidental. For a smaller value of k̄, the substrate is so flexible
that clustering occurs even before the interface spans the
space between two plates. The formation of the interface
associated with the liquid adsorbed in the corner formed
at the point of contact of the plates with the substrate is
sufficient to cause clustering. A signature of this feature is
that the filling height h − h′ − R[1 − cos(α − θ )] discussed
in the previous paragraph becomes negative if one applies
the approach described before. This shortcoming for small k̄

could be fixed easily by taking into account the adsorption
in the corners formed between the plates and the underlying
substrate (see Fig. 7). However, this extra step would not add
any qualitatively new feature and would complicate our simple
analysis unnecessarily.

We have only presented the adsorption for the case of
complete wetting (θ = 0◦), but it is not difficult to repeat the
calculations for a finite contact angle. If θ � 90◦, capillary
condensation does not occur, the plates will not cluster, and
the adsorption is similar to that on a fully rigid substrate. For
intermediate contact angles 0◦ < θ < 90◦, there are just a few
clustering events, until the tilt angle of the capped wedges is
smaller than the contact angle. This can be understood better
by discussing a specific example. Let us assume we have a
substrate and a liquid with a contact angle of, say, θ = 50◦.
There is the first clustering event at capillary condensation,
as before, followed by other clustering events. At a certain
stage, the tilt angle α of the capped wedges formed by the
cluster will be smaller than θ = 50◦. The physics of wedge
filling [33–35] tells us that this wedge does not fill, i.e.,
there is barely any further adsorption until the liquid-vapor
coexistence line is reached. This means that if the contact
angle is not zero, there are still stepped adsorption isotherms,
albeit with fewer jumps. Experimentally it will be interesting to
observe this effect, using a substrate-liquid combination which
exhibits a wetting transition at a temperature Tw. Above Tw,
the adsorption isotherm will show all possible steps, whereas
the further temperature moves below Tw, the fewer steps will
be observed, all with the same substrate.
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It is also natural to inquire about the desorption isotherms.
This is a more delicate problem, which is expected to require
knowledge of the dynamical details of the system, and an
equilibrium analysis will most likely fail. In order to see
why, we consider a fully wet substrate, with the liquid-vapor
interface well above the top of the plates. As liquid desorbs
and the interface reaches the top of the plates, these plates
are suddenly under the action of the capillary forces and
will cluster. It is well known that this kind of clustering is
not a quasiequilibrium event and it is much more similar to
aggregation phenomena or to the problem of the collapse of
lithographic patterns [9,10,12,13,16,19,20,23–27,43,45–50].
The scientific issues in these papers are closely related
to the problem we have tackled. Similar features include
the hierarchical collapse of the patterns and the dominant
influences of capillary forces and surface tension. However,
we emphasize that none of these papers tackled the issue of
adsorption on substrates (as we have done here), which is, in a
certain sense, the reverse problem of surface-tension-induced
pattern collapse (see Figs. 2 and 3 in Ref. [23]).

We point out that our goal is to provide a qualitative
picture of the shape of adsorption isotherms of patterned
elastic substrates. A simpler model would consider shifting
rather than tilting walls. Shifting walls could be a model for
adsorption on elastic pores [51]. Note, however, that the empty
pores decouple parts of the system, i.e., the adsorption steps
occur more or less at random, rather than in unison. This
will translate into a broad adsorption curve (composed of
many small adsorption steps) rather than a few well-defined
steps.

V. CONCLUSIONS

Our analysis shows how a responsive substrate and the
coupling between wetting and substrate geometry can lead
to new phenomena. For the specific system considered here,
the adsorption isotherms exhibit steps at undersaturations for
which the substrate changes geometry due to the adsorption of
liquid.

For these phenomena, adsorption isotherms are particularly
revealing in that they are directly accessible to experiments,
as already proven for geometrically patterned substrates [52],
and they provide an expressive characterization of the wetting
properties of substrates. Our choice of the substrate might not
be the easiest to be prepared experimentally, but in view of
great advances in the fabrication of patterned substrates [53],
it might be possible to fabricate such a substrate or a similar
one. A substrate with floppy plates could be created more
easily, but the corresponding theoretical analysis will be more
difficult, because in this case the bent plates will not form
straight wedges but rather more complicated shapes.

We have used a simple macroscopic model in order to
calculate the adsorption. It is likely that for a direct quantitative
comparison with possible experimental adsorption isotherms,
our simple model is insufficient. A more accurate model
should incorporate more realistic details such as van der Waals
interactions [52] and more realistic elastic features of the
patterned substrates. Such refined descriptions will be most
successful if they are tailored to specific substrates used in
actual experiments.

We end by mentioning a prospective application of our
results. So far we have considered “passive” substrates. The
geometry changes with adsorption and in turn this change
is determined by the amount of liquid adsorbed and by the
characteristics of the substrate fixed via its fabrication. One
can instead imagine a more “active” substrate by using, e.g.,
electric fields in order to control how the substrate structures
collapse. Indeed, electric [48] and magnetic fields [49] have
already been used for control of the collapse of elastic
substrates. In this setup, one could change externally the
effective stiffness of the substrate, and thus control its wetting
properties. Such controllable surfaces might find applications
in, e.g., “lab-on-a-chip” devices.
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APPENDIX: EXPRESSION FOR THE FREE ENERGY

Within our model, the calculation of the free energy for a
given geometric configuration and chemical potential reduces
to geometrical considerations. The free energy is the sum of
volume, surface, and elastic contributions:

E = �ρ�μ × (volume of liquid)

+ σ × (liquid-vapor surface area)

+ σls × (liquid-solid surface area)

+ σvs × (vapor-solid surface area)

+ elastic energy. (A1)

Equation (A1) assumes that the bottom of the cavity and the
plates consist of the same solid material so that both give rise to
the same surface tension σls. Figure 8 illustrates the geometry
of the problem and defines all relevant lengths and angles. In
the following, we omit the linear extension of the system in
the translationally invariant direction.

Within a harmonic approximation, the elastic energy of
a single bent plate forming an angle α with the horizontal
substrate is

Eel = k(π/2 − α)2, (A2)

so that the elastic energy of a cluster of the order i is

E
(i)
el = 2k

2i−1∑
j=1

(π/2 − αj )2. (A3)

Accordingly, the additional elastic energy required for
bending a cluster of the order i as a whole is

δE
(i)
el = k

2i−1∑
j=1

{[π/2 − (αj + δαj )]2 + [π/2 − (αj − δαj )]2}

−E
(i)
el = 2k

2i−1∑
j=1

(δαj )2. (A4)
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FIG. 8. Geometry of the problem depicting the relevant lengths
and angles. The gray area denotes the liquid. The actual surfaces are
indicated by thick black lines. One has l = R sin(α − θ ), h′ = L tan α

2 ,
and h = l tan α. Note that for a given geometry (i.e., α and L) and
given materials (θ ), the filling height h − h′ − R[1 − cos(α − θ )] of
the liquid in the center line of the pore is determined by the radius R

of curvature, which in turn is given by the undersaturation �μ [see
Eq. (2)].

The bending of a cluster as a whole leads to a displacement
of the top of the bundle, characterized by the corresponding
angular deviations δαj of the participating plates. As an
approximation we take δαj = δα, which is valid if the lateral
displacement of the top of the plates due to bending is small
compared with the height H of the plates. This leads to

δE
(i)
el = 2ik(δα)2. (A5)

Concerning the contribution to the volume terms of the free
energy, one infers from Fig. 9 that the volume of liquid (divided

by the linear extension of the system in the translationally
invariant direction) in a wedge after the ith clustering is

�(i)
w = lh − h′L/2

− [(αi − θ )R2 − R2 sin(αi − θ ) cos(αi − θ )]

= R2

[
sin(αi − θ ) cos θ

cos αi

− (αi − θ )

]
− L2

4
tan αi.

(A6)

Likewise the surface contributions follow from inspection of
Fig. 8. The surface area of the liquid-vapor interface is

S
(i)
lv = 2(αi − θ )R. (A7)

The surface area of the liquid-solid interface is

S
(i)
ls = L + 2

cos αi

[R sin(αi − θ ) − L/2]. (A8)

Finally, the surface area of the vapor-solid interface is

S(i)
vs = 2H

sin αi

− S
(i)
ls + L. (A9)

Adding these terms and using Laplace’s equation [Eq. (2)]
and Young’s equation,

cos θ = σvs − σls

σ
, (A10)

one obtains for the total free energy per number Ni
c of clusters

Ei = σ 2

�ρ�μ

[
(αi − θ ) − cos θ

cos αi

sin(αi − θ )

− L2

4

(�ρ�μ)2

σ 2
tan αi + L

cos θ

cos αi

�ρ�μ

σ

]
+ E

(i)
el .

(A11)

In Eq. (A11) we have omitted contributions which are
independent of αi and the contribution 2H

sin αi
to the vapor-solid

surface energy. This latter term is an artifact generated by
assuming a constant value of H for the position of the top
of the plates. Moreover, we have dropped the contribution
�(i)

c �ρ�μ from the above expression. These terms might seem
to be relevant as they depend on αi . However, the important
dependence resides in 1/ cos αi because we always consider
the values of αi to be close to π/2 and thus the terms we have
discarded are quantitatively unimportant. In the same spirit,
one could also drop the term proportional to αi − θ , which
will be canceled in further calculations anyway.

= – –

FIG. 9. Representation of the volume of liquid adsorbed.
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Matter 17, S639 (2005).
[23] N. R. Bernardino, V. Blickle, and S. Dietrich, Langmuir 26, 7233

(2010).
[24] M. L. Blow and J. M. Yeomans, Langmuir 26, 16071 (2010).
[25] J. Bico, B. Roman, L. Moulin, and A. Boudaoud, Nature

(London) 432, 690 (2004).

[26] C. Py, R. Bastien, J. Bico, B. Roman, and A. Boudaoud,
Europhys. Lett. 77, 44005 (2007).

[27] A. Boudaoud, J. Bico, and B. Roman, Phys. Rev. E 76, 060102
(2007).

[28] J. Krim, J. G. Dash, and J. Suzanne, Phys. Rev. Lett. 52, 640
(1984).

[29] A. D. Migone, J. G. Dash, M. Schick, and O. E. Vilches, Phys.
Rev. B 34, 6322 (1986).

[30] L. Bruschi, G. Torzo, and M. H. W. Chan, Europhys. Lett. 6,
541 (1988).

[31] G. Zimmerli and M. H. W. Chan, Phys. Rev. B 45, 9347 (1992).
[32] G. B. Hess, M. J. Sabatini, and M. H. W. Chan, Phys. Rev. Lett.

78, 1739 (1997).
[33] K. Rejmer, S. Dietrich, and M. Napiórkowski, Phys. Rev. E 60,
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