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Surface-tension-induced flattening of a nearly plane elastic solid
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We report direct measurement of surface deformation in soft solids due to their surface tension. Gel replicas of
poly(dimethysiloxane) masters with rippled surfaces are found to have amplitudes that decrease with decreasing
gel modulus. Surface undulations of a thin elastomeric film are attenuated when it is oxidized by brief exposure
to oxygen plasma. Surface deformation in both cases is modeled successfully as driven by surface tension and
resisted by elasticity. Our results show that surface tension of soft solids drives significant deformation, and that
the latter can be used to determine the former.
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I. INTRODUCTION

The presence of an interface between two phases results in
a change in free energy compared to the bulk [1–3]; resulting
equilibrium properties of an interface are its surface energy
γ and surface tension σ . The surface tension is the isotropic
part of the surface stress in the surface layer [4]. The surface
energy, by contrast, is the work necessary to form a unit area
of surface by a process of division; surface energy and tension
are related by an expression provided by Shuttleworth [5] and
subsequently generalized by others [6,7].

Although surface tension can potentially drive significant
deformation in soft solids such as hydrogels and elastomers,
little attention has been paid to investigating these phenomena
or to the problem of measuring surface tension. For example, a
neonatal infant’s lungs fail to inflate and collapse unless just the
right surfactant is injected. This respiratory distress syndrome
(RDS) is governed by surface energy and surface tension, and
mitigated by their modulation by surfactant adsorption [8].
The ability to create a replica of features in a stiff mold using a
soft material is limited by shape rounding or flattening due to
surface tension [9]. Adhesion, locomotion, and proliferation
of biological cells depends on surface mechanical properties;
cells will propagate from the softer to the stiffer portion of
a substrate and exert surface stresses which result in surface
creases [10]. Importantly, the role of surface tension of the
deformed surface on the response of the cell has generally
been ignored.

For a liquid, it is well known that surface tension is positive
with a numerical value equal to the surface energy, so that
one need not always distinguish between the two. However,
it has long been recognized that the surface tension need not
equal the surface energy for solids—they need not even have
the same sign [5,11]. In particular, when the two are different,
in Laplace’s equation the pressure difference across a curved
interface is proportional to the surface tension (not the surface
energy) times the surface curvature [5,6]. The deformation
caused by this pressure difference for most stiff solids is
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negligible. However, in highly deformable, soft solids, this
need not be the case and surface tension could cause significant
deformation.

If a liquid contacts a soft or compliant solid, its surface
tension can drive deformation; a characteristic length scale
for it is given by the ratio γ /E, where E is the elastic
modulus [9,12]. While for stiff solids such as metals and
ceramics this is insignificantly small, for soft materials such
as elastomers and gels with E in the kPa to MPa range, γ /E
ranges from tens of nanometers to several micrometers. Such
elastocapillarity phenomena, driven by liquid surface tension,
have been studied in some detail as reviewed recently [12], but
are distinct from phenomena driven by solid surface tension.

Deformation of soft solids due to their surface tension has
been much less studied. Mora et al. recently showed that a
compliant solid cylinder experiences a Rayleigh-Plateau-like
instability in which surface tension defines the characteristic
length scale [13]. Jerison et al. [14] showed that solid surface
tension influences the elastic substrate deformation due to a
contact line. Crosby and co-workers [15] have studied bubble
growth under pressure in compliant solids, where surface
tension plays a significant role. Majumder et al. [16] reported
a change in surface profile of an elastomer due to change in
surface tension of a sub-surface interface. The characteristic
length scale in the case of surface-tension-driven deformation
is σ/E. For example, if we attempt to make a sharp edge in
a soft elastic solid, this length scale estimates the radius of
curvature to which the sharp edge will relax [9]. Adhesive
contact between elastic bodies can be used to determine
solid-solid interfacial energy [17,18], but not solid surface
tension. The commonly used contact angle measurement,
using Young’s equation [19], determines not surface tension
but differences in surface energy [5,6].

Gibbs noted [20] that the surface tension is quite a different
quantity from surface energy, and the phenomena it drives
are generally negligible, because “the rigidity of solids is
in general so great, that any tendency of the surfaces of
discontinuity to variation in area or form may be neglected in
comparison with the forces which are produced in the interior
of the solids by any sensible strains. . .” More recently, de
Gennes et al. [1], in a discussion of techniques to measure
surface energy or tension of liquids, have noted that, “As such,
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these methods cannot be readily applied to hard interfaces,
whether between a solid and a vapor or between a solid and a
liquid, because the elastic energy stored in the solid far exceeds
the interface energy associated with any distortion. As a result,
measuring the surface tension of solids is generally perceived
as an impossible task.” While surface stress measurement
is difficult, techniques for crystalline materials are available
[6,21–23], although only changes in surface stress can be
measured accurately.

Here we show that when the material is sufficiently soft,
or if a compliant structure is designed, the difficulty pointed
out by Gibbs and de Gennes et al. is obviated. We report
on two experiments where surface tension drives sufficiently
large deformation of a soft solid to make it easily measurable.
In contrast to the time-dependent shape evolution of nearly flat
interfaces, e.g., as studied by Mullins [24], a significant part
of this deformation is nearly instantaneous. This deformation
could be used to measure the solid surface tension.

II. EXPERIMENT

Poly(dimethysiloxane) (PDMS) sheets with rippled sur-
faces of different amplitudes (0.5–5 μm) and wavelengths (22–
32 μm) were fabricated using replica molding as described
elsewhere in detail [25] [Fig. 1(a)]. Gel replicas of the PDMS
rippled surfaces were prepared by pouring on them solutions of
gelatin in water and allowing the latter to cross-link overnight
at a controlled temperature of 7 ◦C–8 ◦C inside a refrigerator. In
order to vary the elastic modulus of the gel, gelatin solutions
of different concentration were prepared by mixing gelatin

powder (purchased from Ewald-Gelatine GmbH) into hot
water (60 ◦C) at different weight ratios: 1:10 to 3:10. After
gelation, the samples were removed from the refrigerator and
allowed to equilibrate to room temperature.

Prior to separation of the gel from the PDMS, we observed
a clear, light-transmitting interface suggesting intimate contact
between the two. To confirm more directly that the gel
surface matched that of the PDMS faithfully we sectioned
a rippled PDMS master normal to the surface and to the
ripple direction. The sectioned surface was placed in contact
with the bottom of a petri dish after which we poured
gelatin solution, which was allowed to gel following the
same procedure as for other samples. The PDMS-gel sample
cross section was examined by dark-field optical microscopy
[Fig. 1(b)]. Such micrographs confirmed that the gel faithfully
replicated the surface topography of the rippled PDMS. (See
also Supplemental Material [26].)

Following this, the gel was gently removed from the PDMS
mold. The surface topography of the PDMS master and its
gel replica was examined at several spots using a white light
interferometer (WLI) (along with MetroPro 8.3.5 software;
Zygo Corp. Middlefield, CT). Images were analyzed to
compute the distributions of successive peak-to-valley heights
using code written in MATLAB. In addition, the dynamics
of surface profile evolution was captured by scanning one
spot over a period of time until a steady state was attained.
Elastic moduli of different gel samples were obtained by
indentation using a rigid sphere. The compressive part of the
load-displacement curves was analyzed using the Hertz theory
of elastic contact [27] to obtain the Young’s modulus.

FIG. 1. (Color online) (a) Scanning electron micrograph of a nearly flat rippled surface. (b) Dark-field optical micrograph: Cross-sectional
view of the gel-PDMS interface shows that the gel replicated faithfully undulations in the PDMS surface. (c) Scanning electron micrograph of
a film-terminated structure, both fabricated using an elastomer, PDMS.
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In a separate set of experiements a fibrillar PDMS structure
with an undulating terminal film (∼6–8 μm thick) was
fabricated using a process described elsewhere [28] [Fig. 1(c)].
We exposed the film briefly (12–30 s) to oxygen plasma
(60% O2, 100% power; Diener electronic GmbH and Co.
KG, Germany). Surface undulations were measured using WLI
before and after exposure of the surface to oxygen plasma.

III. FLATTENING OF A GEL REPLICA
BY SURFACE TENSION

Figure 2(a) shows plots of the surface undulations of a
PDMS sample (higher amplitude) and its gel replica (smaller
amplitude, Young’s modulus, E = 18 kPa). Figure 2(b) shows
line scans of the surface profile along paths marked by the lines
in Fig. 2(a). It is evident from these figures that peak-to-valley
heights for the gel replica (∼0.4 μm) are significantly smaller
than those of the PDMS surface against which it was cast
(∼1.0 μm). Moreover, it appears that sharper features, or
higher Fourier modes, are flattened out preferentially in the
replica. Figure 2(c) shows the cumulative distribution of peak-
to-valley heights in a different gel sample, again with E =
18 kPa. The mode of the peak-to-valley height distribution of

the PDMS master, ∼2.7 μm, reduces to ∼1.5 μm in the gel
replica. The ripple amplitude of the gel replica, following an in-
stantaneous reduction upon separation from its PDMS master,
continued to evolve over tens of minutes [Fig. 2(d)]. Through
separate experiments, we confirmed that the fractional volume
change due to drying prior to separation of the gel and PDMS
is much smaller than the observed fractional change of the
surface undulation amplitude (see Supplementary Material for
more detail). Therefore, we have focused on the short-time,
nearly instantaneous, flattening of the gel surface upon
separation from the PDMS master, which is unaffected by gel
drying.

Figure 3(a) shows how the short-time mode of the peak-
to-valley height distribution of the gel replica decreases
systematically with decreasing gel modulus for two different
PDMS masters (circles and triangles). The solid lines represent
the mean peak-to-valley heights for the PDMS masters.

Figures 2 and 3 show that, upon separation from the master
PDMS surface, undulations on the gel surface relax signif-
icantly. To see whether this shape change can be explained
reasonably by surface deformation driven by surface tension,
consider the following simple model. Let the surface ripples
on the PDMS master be represented by a single sinusoidal
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FIG. 2. (Color online) (a) Surface plot of ripples on PDMS (higher amplitude) and its gel replica (E = 18 kPa). The in-plane distance is in
micrometers; the average peak-to-peak separation is 31 μm. (b) Line scans of the surface profile for the master PDMS and its gel replica (the
datum is arbitrary). (c) Cumulative distribution of peak-to-valley heights for a PDMS master and its gel replica (Young’s modulus, E = 18 KPa).
(d) Evolution of amplitude as a function of time for gels of different moduli.
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FIG. 3. (Color online) (a) Mode of short-time peak-to-valley height distribution as a function of gel modulus for two different rippled
PDMS masters (points). Solid lines represent the PDMS masters; dashed lines are theoretical predictions. (b) Normalized short-time mode of
peak-to-valley height distribution as a function of gel modulus. The dashed lines are theoretical predictions using different values of surface
tension.

function,

y = ao cos

(
2πx

λ

)
, (1)

where ao is the amplitude and λ is the wavelength. Let a be the
amplitude of the gel immediately after it is separated from the
master. Because a/λ � 1, the surface curvature of the gel can
be estimated accurately by y ′′, the second derivative. Laplace’s
equation for pressure difference across a curved surface, p,
gives

p = −aσ

(
4π2

λ2

)
cos

2πx

λ
. (2)

Assuming a constant surface tension, the resulting displace-
ment of the surface due to this pressure is given by [27]

u = −4π

(
a

λ

)(
σ

E∗

)
cos

2πx

λ
, (3)

where E∗ is the plane strain modulus. Thus, the rippled gel
surface has a reduced amplitude of

a = ao

1 + 4π
(

σ
E∗λ

) ≈ ao

[
1 − 4π

(
σ

E∗λ

)]
, (4)

where the approximate version in Eq. (4) holds if the change in
amplitude is small compared to the amplitude itself. For such
small changes in amplitude, by superposition, we can consider
more general surfaces. Specifically, if ai

o is the coefficient of
the ith Fourier mode on the master, it is reduced in the replica to

ai = ai
o

[
1 − 4π

(
σ i

E∗λ

)]
. (5)

That is, higher modes are proportionately attenuated to a
greater extent by surface tension, as is evident qualitatively in
Fig. 2(b).

A hydrogel surface essentially comprises mostly water,
bound to the cross-linked protein network. Accordingly, we

expect the surface tension σ to be on the order of the surface
energy of water, and somewhat smaller in magnitude. The
dashed lines in Fig. 3(a) show the predicted peak-to-valley
height (twice the amplitude) given by Eq. (4) using a value of
60 mN/m for surface tension. Figure 3(b) shows data from a
few different samples and plots a/ao as a function of Young’s
modulus. The solid lines are calculated using Eq. (4), for
surface tension values ranging from 30 to 70 mN/m. We may
expect that as the modulus reduces and the fraction of water
in the hydrogel increases, the surface tension would increase
and approach the value of pure water. Therefore, potentially,
the procedure followed above could be run in reverse, and
measured deformation be used to estimate an (unknown),
composition-dependent, surface tension.

IV. SURFACE UNDULATIONS OF A THIN PDMS PLATE

The interplay between surface tension and elasticity is
further examined in a different experiment in which we
compare surface undulations of a film-terminated fibrillar
PDMS sample before and after exposure to oxygen plasma
[Figs. 4(a) and 4(b)]. Taking peaks as the datum, Fig. 4(c)
plots final peak-to-valley heights for a number of points in
a sample with fibril separation of 110 μm. The surface has
well-defined periodic undulations that are evidently reduced
systematically following exposure to the oxygen plasma.

As fabricated, the terminal film [Fig. 1(c)] lies on a silicon
wafer and has a flat surface; this is its stress-free configuration.
However, the inner surface of the terminal film is not flat; let
this shape be wo(x,y). When the sample is separated from the
flat silicon wafer on which it is fabricated, the film is released
from its constraint, and the action of surface tension on the
interior surface causes the film to deform to a shape given
by wf (x,y) [Figs. 1(c) and 4(b)]. Curvature of the upper and
lower surfaces multiplied by surface tension is the Laplace
pressure which drives deformation. The following equation
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FIG. 4. (Color online) (a) Surface plot of height undulations in the PDMS film before (higher amplitudes) and after (lower amplitudes)
exposure to oxygen plasma. (b) Line scan across the surface shows that exposure to oxygen plasma flattens the surface. (c) Final peak-to-valley
heights are systematically lower than their initial values.

governs deformation of a plate subjected to surface tension
([29], see also Supplemental Material):

D∇4wf = σ∇2(wo), (6)

where D = E∗t3/12 is the flexural rigidity, and t is the film
thickness. The nonuniformity of the plate thickness, and the
fact that the plate is constrained by posts, make an exact
analysis cumbersome. We opt instead for an approximate
model that provides a scaling result by choosing to represent
shape and deformation as

wo = co

[
2 − cos

(
2πx

b

)
− cos

(
2πy

b

)]
,

(7)

wf = cf

[
2 − cos

(
2πx

b

)
− cos

(
2πy

b

)]
.

(See Fig. S3 in Supplemental Material.) Substituting Eq. (7)
into Eq. (6) provides the result

cf = −co

σb2

4π2D
= − σ

E∗
3cob

2

π2t3
. (8)

Note that the characteristic length scale σ /E∗ is amplified
by a geometric factor, 3cob

3/πt3 	 1. Based on measured
values of cf [Fig. 4(b)], PDMS modulus (4 MPa [30]), and
thickness (∼7 μm), this equation is consistent with the known

surface energy of PDMS (22 mN/m [31]) for co ≈ 6–7 μm, a
reasonable value [Fig. 1(c)]. It is known that plasma treatment
creates a thin silicaceous surface film [32]. For the short
exposures such as used in this work, it is expected to be ∼6 nm
in thickness with a Young’s modulus of 1.5 GPa modulus
[30]. The bending rigidity of the PDMS film changes from
D = E∗t3/12 approximately to D = E∗t3/12 + E∗

s t
2ts/4,

where ts , E∗
s are the thickness and Young’s modulus of the

silica film. Then, according to Eq. (8), the amplitude of
undulations should reduce by the ratio of bending rigidity.
Using the same parameters as cited above, we calculate this
reduction to be a factor of 0.56, consistent with measurements
[Fig. 4(c)].

V. CONCLUDING REMARKS

In summary, we have shown that soft elastic solids have
a surface tension that can drive significant deformation. For a
rippled surface, the amplitude change of the replica is governed
by the characteristic length scale, σ/E, attenuated by the ripple
geometrical factor, ao/λ < 1. For the thin-plate geometry, the
characteristic length scale, amplified by the plate geometrical
factor, cob

2/t3 	 1, approximates the observed changes in
surface undulations. With an appropriate choice of geometry,
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deformation can thus be used to measure the surface tension
of soft solids over a range of elastic moduli.
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