
PHYSICAL REVIEW E 85, 051601 (2012)

Droplet motion in one-component fluids on solid substrates with wettability gradients
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Droplet motion on solid substrates has been widely studied not only because of its importance in fundamental
research but also because of its promising potentials in droplet-based devices developed for various applications
in chemistry, biology, and industry. In this paper, we investigate the motion of an evaporating droplet in one-
component fluids on a solid substrate with a wettability gradient. As is well known, there are two major difficulties
in the continuum description of fluid flows and heat fluxes near the contact line of droplets on solid substrates,
namely, the hydrodynamic (stress) singularity and thermal singularity. To model the droplet motion, we use the
dynamic van der Waals theory [Phys. Rev. E 75, 036304 (2007)] for the hydrodynamic equations in the bulk
region, supplemented with the boundary conditions at the fluid-solid interface. In this continuum hydrodynamic
model, various physical processes involved in the droplet motion can be taken into account simultaneously,
e.g., phase transitions (evaporation or condensation), capillary flows, fluid velocity slip, and substrate cooling
or heating. Due to the use of the phase field method (diffuse interface method), the hydrodynamic and thermal
singularities are resolved automatically. Furthermore, in the dynamic van der Waals theory, the evaporation or
condensation rate at the liquid-gas interface is an outcome of the calculation rather than a prerequisite as in most
of the other models proposed for evaporating droplets. Numerical results show that the droplet migrates in the
direction of increasing wettability on the solid substrates. The migration velocity of the droplet is found to be
proportional to the wettability gradients as predicted by Brochard [Langmuir 5, 432 (1989)]. The proportionality
coefficient is found to be linearly dependent on the ratio of slip length to initial droplet radius. These results
indicate that the steady migration of the droplets results from the balance between the (conservative) driving
force due to the wettability gradient and the (dissipative) viscous drag force. In addition, we study the motion
of droplets on cooled or heated solid substrates with wettability gradients. The fast temperature variations from
the solid to the fluid can be accurately described in the present approach. It is observed that accompanying the
droplet migration, the contact lines move through phase transition and boundary velocity slip with their relative
contributions mostly determined by the slip length. The results presented in this paper may lead to a more
complete understanding of the droplet motion driven by wettability gradients with a detailed picture of the fluid
flows and phase transitions in the vicinity of the moving contact line.
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I. INTRODUCTION

Droplet motion on solid substrates is ubiquitous in nature
[1,2]. Since the pioneering papers by Thomson [3] and
Marangoni [4], an important body of work has been devoted
to the study of droplet motion driven by the Marangoni effect,
which is induced by the gradient of interfacial tension of the
liquid-liquid or liquid-gas interface. It is equally important to
study the droplet motion on solid surfaces with wettability
gradients [5]. Great efforts have been made to improve our
understanding of droplet motion not only because of its
importance in fundamental research, but also because of its
promising potentials in droplet-based devices developed for
various applications in chemistry, biology, and industry [6–10].
Technologically, droplet motion on solid substrates can be
triggered by thermal [11,12], chemical [13], electric [10],
magnetic [14], and photoirradiative [15] methods. In the
present paper, we focus on the case where the droplet motion
is induced by the chemical or wettability gradients at solid
surfaces. A gradient in wettability leads to the droplet motion
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in the direction of increasing wettability, which lowers the free
energy of the system.

The droplet motion driven by wettability gradients was
predicted by Greenspan [5] and was investigated by Brochard
[16] and Raphael [17]. Their predictions have been confirmed
experimentally [13,15,18–20] by using surfaces with various
types of wettability gradients. According to Brochard [16],
the forces acting on the droplet include the driving force
due to the wettability gradient and the viscous drag force. To
balance these two forces (with a negligible inertia effect), the
droplet attains a steady state with an almost constant migration
velocity Vmig given by [16,21,22]

Vmig = αV

γ h0

η

d cos θs

dx
. (1.1)

Here, γ and η are the surface tension and viscosity of the
liquid, respectively, h0 is the height of the droplet, θs is
the static contact angle varying along the solid substrate,
and the proportionality coefficient αV is positive as droplets
migrate from the low wettability region to the high wettability
region spontaneously. The magnitude of αV depends on the
hydrodynamic mechanism that resolves the stress singularity
at the three-phase contact line [5,16,22]. Theoretically, αV is
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a constant provided that the drag forces in the vicinity of the
contact line scale with the fluid viscosity in the bulk region
[22]. The relation (1.1) has been confirmed experimentally
[22]. Note that the hydrodynamic mechanism is not directly
implied by Eq. (1.1). The present paper shows that the droplet
motion is driven by the gradient of Laplace pressure induced
by the contact angle difference across the droplet.

It is worth pointing out that, in nearly all the previous
theoretical papers, the droplet migration velocity and the forces
acting on the droplet are derived using either the lubrication
approximation or the wedge approximation. The lubrication
approximation is usually used for nearly flat droplets and
films [16,21], whereas, the wedge approximation treats the
shape of a droplet as a collection of wedges [23]. Roughly
speaking, the former involves a local balance of forces,
whereas, the latter involves a balance of forces on the entire
droplet [23]. A small θs , typically θs < 30◦, is assumed in
these approximations. However, in many practical situations,
a substrate with varying wettability can produce contact angles
that range from 100◦ down to 20◦ [24]. The other issue
pertaining to evaporating droplets is the phase transition, which
may play an essential role in controlling the droplet motion on
solid substrates. Typically, an empirical relation is assumed
and is used for the evaporation or condensation rate at the
droplet surface in literature [25–27]. The above two issues
concern the theoretical and numerical studies of evaporating
droplets. As a matter of fact, the motion of evaporating
droplets on solid substrates plays an important role in many
industrial and medical applications, e.g., coating and printing
technology [28]. Therefore, the study of evaporating droplets
is highly nontrivial in both fundamental research and practical
applications.

The motion of evaporative droplets on solid substrates
naturally involves the fluid flows and heat fluxes near the
contact line, the intersection of the droplet surface with
the solid surface. It has been known for decades that the
moving contact line presents challenges in its continuum
description, namely, the hydrodynamic singularity and the
thermal singularity [29–34]. The hydrodynamic singularity
states that the fluid stress is nonintegrable at the moving
contact line if the classical no-slip boundary condition is
applied at the solid surface [29,30]. Two mechanisms have
been proposed to resolve this stress singularity. The first is
to introduce a velocity slip in a small region near the contact
line [24,35–40], whereas, the second is to take into account
the diffusive transport across the fluid-fluid interface in binary
fluids [38,39,41,42] or the mass transport across the liquid-gas
interface in one-component fluids [40,43]. In addition, the
stress singularity can be removed if the (nominal) contact
line is preceded by a thin precursor film [44]. The thermal
singularity refers to the nonintegrable heat flux near the contact
line in liquid-gas systems on heated or cooled solid substrates
[31–34]. The heat flux tends to diverge at the contact line as
the temperature exhibits a nearly discontinuous variation there.
This is because the liquid-gas interface is almost isothermal
at the coexistence or saturation temperature, while the solid
surface is nearly isothermal for a highly conductive solid.
Therefore, a temperature discontinuity is inevitable if the
liquid-gas interface and the solid surface are of different
temperatures and intersect at the contact line [43,45]. There

exist three mechanisms that can be used to resolve this thermal
singularity. (i) The temperature is allowed to vary along the
liquid-gas interface [31]. (ii) The finite heat conductivity
of the solid substrate is taken into consideration [31,46].
(iii) A temperature slip is introduced at the fluid-solid interface.
Based on the above understanding, we believe that a continuum
hydrodynamic model capable of resolving both the stress and
the temperature singularities is imperative.

In this paper, we present a continuum hydrodynamic
model suitable for the study of evaporating droplets in one-
component fluids on solid substrates. We then carry out
numerical simulations for evaporating droplets moving on
solid substrates with wettability gradients. In constructing the
model, we use the dynamic van der Waals theory developed
by Onuki for one-component liquid-gas systems [43,45],
supplemented with the hydrodynamic boundary conditions,
which are derived based on the mechanical and thermodynamic
principles [40,47].

The phase field model by Onuki [43,45] is closely related
to the so-called model H, which was originally devised to de-
scribe the critical dynamics of thermal fluctuations [48,49]. For
binary fluids, several variants of model H have been proposed
to study thermocapillary flows [50], two-phase flows with a
density contrast [51], and influence of convection on phase
segregation [52]. The translation between several interrelated
models was also discussed [53]. For one-component fluids,
phase field models have been developed in Refs. [43,49]
where the connections with model H have been addressed.
The purpose of the present paper is to study the droplet
motion in one-component fluids with liquid-gas transition
in the nonisothermal situation. Therefore, we employ the
model proposed by Onuki in which momentum transport,
heat transport, and phase transition are coupled. Recently, this
model has been used to study the thermohydrodynamics of
boiling in one-component fluids [54]. It is interesting to note
that the model by Anderson et al. [49] and that by Onuki
[43] yield practically indistinguishable results for a boiling
simulation in a domain with a temperature gradient [54].

It is worth emphasizing that the boundary conditions
derived in the present paper represent a generalization of
those in our previous paper [40] as the fluid-solid interface
is no longer assumed to be isothermal here. In this continuum
model, various physical processes involved in the droplet
motion can be taken into account, including phase transitions
(evaporation or condensation) and capillary flows in the
bulk liquid-gas region [43,45], fluid velocity slip [24,35–40],
temperature slip (namely, the Kapitza resistance) [55,56],
and mechanical-thermal cross coupling [57] at the fluid-solid
interface. It is also capable of describing the droplet motion
for arbitrary contact angles. Furthermore, the hydrodynamic
and thermal singularities can be resolved by the phase field
(diffuse interface) description and the various interfacial
processes inherent in the model. It is also worth pointing
out that the evaporation or condensation rate at the liquid-
gas interface is now a result of hydrodynamic calculations,
rather than an empirical input as in most of the literature on
evaporating droplets [58–62]. Therefore, this model has the
potential of leading to a better understanding of evaporating
droplets on solid substrates. From the numerical simulations
for evaporating droplets on solid substrates with wettability
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gradients, we measure the droplet migration velocity and
analyze its dependence on wettability gradient, contact angle,
boundary slip, and substrate temperature. We also observe that
accompanying the droplet migration, the contact lines move
through phase transition and boundary slip with their relative
contributions tunable by slip length. This observation, now
made at nonisothermal fluid-solid interfaces, is consistent with
our previous observation for contact line motion at isothermal
fluid-solid interfaces [40].

We would like to point out that, as a phase field model
for one-component fluids, the dynamic van der Waals theory
leads to a small interfacial thickness (∼1nm) at temperatures
far away from the critical point. In this regime, the dynamic
van der Waals theory is expected to approach the free-boundary
formulation [58,63,64]. This may be demonstrated by taking
the sharp interface limit [49–51,65,66]. For immiscible two-
component (binary) fluids, this limit has been well studied, and
comparisons have been made with free-boundary formulation
[50,65,66]. For one-component fluids, an attempt of taking
the sharp interface limit has been presented in Ref. [49], and
more papers are to follow in this direction. In the present
paper, we have only studied the motion of droplets on the
nanoscale. We hope that our continuum results can motivate
(i) molecular dynamics simulations for systems of comparable
size and (ii) continuum simulations for much larger systems.
Whether larger drops can be studied with an artificially thick
liquid-gas interface remains an open question to be answered
through a thorough study of the sharp interface limit of one-
component fluid dynamics [49].

The paper is organized as follows. Following the introduc-
tion in Sec. I, Sec. II is devoted to a review of the dynamic van
der Waals theory and a derivation of the necessary boundary
conditions at the fluid-solid interface. In Sec. III, details of our
numerical simulations are explained. In Sec. IV, the numerical
results are presented and are discussed. The paper is concluded
in Sec. V with a few remarks.

II. DYNAMIC VAN DER WAALS THEORY FOR
ONE-COMPONENT FLUIDS ON SOLID SUBSTRATES

The first part of this section is a brief review of the dynamic
van der Waals theory [43,67]. This theory assumes the local
equilibrium condition for density at the solid boundary, the
no-slip boundary condition for velocity, and the continuity
conditions for temperature and heat flux normal to the fluid-
solid interface. In the second part, these boundary conditions
are relaxed by introducing additional dissipative processes at
the fluid-solid interface [40,47]. The positive definiteness of
entropy production rate is the guiding principle for formulating
the hydrodynamic equations in the bulk region and the
boundary conditions at the fluid-solid interface.

A. Hydrodynamic equations and constitutive relations

In a diffuse-interface modeling of one-component liquid-
gas systems, the order parameter is the number density n,
which takes distinct values in the liquid and gas phases and
shows a fast variation across the liquid-gas interface. In order
to describe the inhomogeneous systems, the contributions of

density gradient are included in the entropy density Ŝ and the
internal energy density ê through

Ŝ = ns(n,e) − C

2
|∇n|2, (2.1)

ê = e + K

2
|∇n|2, (2.2)

where s(n,e) is the entropy per molecule in a homogeneous
system of number density n and internal energy density e. Note
that Ŝ and ê both consist of a regular part for a homogeneous
system [68] and a gradient part due to the inhomogeneity
of the number density. Here, C and K are both positive,
indicating a decrease in entropy and an increase in internal
energy due to the density variations. In general, C and K

may depend on n, i.e., C = C(n) and K = K(n). Note that
the dynamic van der Waals theory has been presented to
describe the hydrodynamics in one-component fluids with a
liquid-gas transition in the nonisothermal situation. For this
purpose, the gradient contribution to the internal energy and
that to the entropy have to be introduced respectively. In the
isothermal situation, the gradient contributions to energy and
entropy can be combined in the Helmholtz free energy in
describing the statics and dynamics, consistent with the general
thermodynamic consideration. This leads to the coefficient
M = K + CT with T = constant. (Note that this coefficient
will appear in the equilibrium conditions derived below.) In
the seminal paper of Cahn and Hilliard [69], the interfacial
structures were studied for isothermal systems by introducing
a Helmholtz free energy with a square gradient term. The
coefficient κ in this gradient term corresponds to M in our
approach. It is worth emphasizing that, in the isothermal
situation, only κ (or M) is needed as a parameter, which, in
general, may be dependent on local density and temperature.
However, in the nonisothermal situation, K and C need
to be introduced into the internal energy and the entropy,
respectively. In our paper, K = 0 and C = constant have been
used for simplicity. These assumptions were also used by
Onuki [43,45]. Recently, the dynamic van der Waals theory has
been employed to study the thermohydrodynamics of boiling
by assuming C = 0 and K = constant [54].

In the van der Waals theory for homogeneous one-
component fluids [68], the entropy per molecule s, the internal
energy density e, and the pressure p can be expressed as
functions of number density n and temperature T ,

s(n,T ) = kB ln[(kBT /ε)3/2(1/nv0 − 1)] + s0, (2.3)

e(n,T ) = 3nkBT /2 − εv0n
2, (2.4)

p(n,T ) = nkBT /(1 − v0n) − εv0n
2, (2.5)

where kB is the Boltzmann constant, ε is the strength of
attractive interaction, v0 is the molecular volume, and s0 =
5kB/2 + kB ln[v0(εm/2πh̄2)3/2] with m being the molecular
mass. In this mean field theory for liquid-gas phase transition,
the critical temperature and critical density are given by Tc =
8ε/27kB , nc = 1/3v0, respectively. Equations (2.3)–(2.5) can
be derived from the Helmholtz free energy density f (n,T ) =
nkBT [ln(λ3

thn) − 1 − ln(1 − v0n)] − εv0n
2 by using the stan-

dard thermodynamic relations. Here, λth = h̄(2π/mkBT )1/2 is
the thermal de Broglie wavelength. Physically, s0 is a constant
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independent of n and T (and, hence, does not show up in the
balance equation for entropy), e(n,T ) consists of the kinetic
energy due to random molecular motion and the attractive
potential energy, and the expression for p(n,T ) is the equation
of state exhibiting liquid-gas coexistence.

To derive the equilibrium conditions in the bulk region, we
consider a system of entropy Sb = ∫

dr Ŝ with fixed particle
number N = ∫

dr n and fixed internal energy Eb = ∫
dr ê.

Maximizing Sb with respect to ê and n yields the bulk
equilibrium conditions: (i) the homogeneity of temperature T

and (ii) the homogeneity of the generalized chemical potential,

μ̂ = μ + Mn

2
|∇n|2 − T ∇ ·

(
M

T
∇n

)
, (2.6)

with M(n,T ) = K(n) + C(n)T and Mn ≡ (∂M/∂n)T . Here,
μ ≡ −T [∂(ns)/∂n]e is the usual chemical potential for homo-
geneous fluids. We then introduce the generalized pressure p̂

through the generalized Euler equation,

ê − T Ŝ + p̂ − nμ̂ = 0, (2.7)

with

p̂ = p − M

2
|∇n|2 + nMn

2
|∇n|2 − T n∇n · ∇M

T
− Mn∇2n.

(2.8)

Now, we turn to the hydrodynamic equations, which can
be derived from the balance equations for particle number,
momentum, and energy, supplemented with the constitutive
relations for viscous stress and heat flux [43]. The mass density
ρ ≡ mn, the momentum density ρv, and the total energy
density eT ≡ ê + ρv2/2 obey the hydrodynamic equations,

∂n

∂t
+ ∇ · (nv) = 0, (2.9)

∂

∂t
(ρv) + ∇ · (ρvv) = ∇ · ↔

M, (2.10)

∂eT

∂t
+ ∇ · (eT v) = −∇ ·

(
− ↔

M · v + q
)

, (2.11)

respectively, with
↔
M = − ↔

� + ↔
σ being the total stress tensor.

Here, the reversible stress tensor − ↔
�, the viscous stress tensor

↔
σ , and the heat flux q are given by

− ↔
� = −M∇n∇n − p̂

↔
I, (2.12)

↔
σ = η(∇v + ∇vT ) + (ζ − 2η/3)

↔
I∇ · v, (2.13)

q = −λ∇T , (2.14)

respectively, with p̂ expressed in Eq. (2.8). The positive
coefficients η, ζ , and λ denote the shear viscosity, bulk
viscosity, and heat conductivity, respectively. In order to update
the temperature distribution, we solve the balance equation for
entropy density Ŝ,

∂Ŝ

∂t
+ ∇ · (Ŝv) = −∇ · ĴS

f + 1

T

↔
σ : ∇v − 1

T 2
q · ∇T ,

(2.15)

instead of the energy equation (2.11). This is to avoid
the artificial parasitic flows in numerical computation [70].

Here, ĴS
f ≡ [q + M(∂n/∂t + v · ∇n)∇n]/T represents the

total (reversible) entropy flux, which includes the contri-
bution of the inhomogeneity of number density, given by
M(∂n/∂t + v · ∇n)∇n. The local relation between T and Ŝ is(

kBT

ε

)3/2

= nv0

1 − nv0
exp

(
Ŝ + C|∇n|2/2

nkB

)
, (2.16)

which is obtained from Eqs. (2.1) and (2.3). Here, the constant
s0 in Eq. (2.3) is omitted because Ŝ is determined up to n ×
constant by Eq. (2.15) due to the continuity equation (2.9).

In the hydrodynamic description outlined above, the liquid-
gas phase transition is represented by the converging (for
condensation) or diverging (for evaporation) velocity field, the
liquid-gas interfacial tension is realized through the anisotropic

part −M∇n∇n in the reversible stress tensor − ↔
�, and the

latent heat release or absorption is described by the balance
equation for entropy. That is, the entropy change arising from
phase transition is accompanied by the heat flux q that enters
into the entropy flux ĴS

f .

B. Hydrodynamic boundary conditions

The hydrodynamic boundary conditions derived here repre-
sent a generalization of those in our previous paper [40] where
the fluid-solid interface is assumed to be isothermal. The equi-
librium and dynamic properties of a fluid can be considerably
modified by its interactions with the solid substrate. Following
our previous paper [40], the solid substrate is modeled to be
flat, rigid, impermeable, and insoluble. The temperature in
the solid substrate, hereafter denoted by Tw, obeys the heat
equation,

Cw

∂Tw

∂t
= λw∇2Tw, (2.17)

where Cw is the heat capacity (per unit volume) and λw

is the heat conductivity of the solid with qw = −λw∇Tw

being the heat flux in the solid. Note that Eq. (2.17) is
valid only in the reference frame moving with the rigid
solid substrate. In general, ∂Tw/∂t should be replaced by
dTw/dt = ∂Tw/∂t + w · ∇Tw with w denoting the velocity
of the substrate. For simplicity, here, we choose the reference
frame moving with the solid substrate, and hence, w = 0.
Moreover, for the purpose of the present paper, we only
consider the situation where Tw is fixed and homogeneous (in
the limit of λw → ∞). Since the solid substrate is flat, rigid,
and impermeable, we have the kinematic boundary condition
for the normal components of the fluid velocity v and wall
velocity w at the fluid-solid interface,

vγ = wγ , (2.18)

with vγ ≡ γ̂ · v and wγ ≡ γ̂ · w. However, the tangential
components of these two boundary velocities may differ.
That is, slip may occur at the fluid-solid interface, and the
(tangential) slip velocity is defined as

vslip
τ = vτ − wτ , (2.19)

with vτ = v − vγ γ̂ and wτ = w − wγ γ̂ . In the reference
frame moving with the solid substrate, the conditions (2.18)
and (2.19) give vγ = 0 and vslip

τ = vτ .
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For one-component liquid-gas flows on solid substrates, the
boundary effects can be taken into account by introducing the
surface entropy Ss and surface energy Es as

Ss =
∫

dA σ ′
s(n), (2.20)

Es =
∫

dA e′
s(n), (2.21)

where σ ′
s and e′

s are the surface entropy and surface energy per
unit area and

∫
dA denotes the surface integral at the fluid-solid

interface [43]. Note that σ ′
s and e′

s are only functions of n, the
boundary value of fluid density. Here, the primes are used to
denote the surface quantities whose dimensions are different
from the corresponding bulk quantities. The Helmholtz free
energy per unit area is given by

f ′
s (n,T ) = e′

s(n) − T σ ′
s(n), (2.22)

with T being the boundary value of fluid temperature at the
fluid-solid interface. It follows that σ ′

s = −(∂f ′
s /∂T )n, and

hence,

df ′
s = −σ ′

sdT +
(

∂f ′
s

∂n

)
T

dn. (2.23)

Substituting Eq. (2.22) into Eq. (2.23) then gives a Gibbs-type
equation,

dσ ′
s = 1

T
de′

s − 1

T

(
∂f ′

s

∂n

)
T

dn. (2.24)

Furthermore, the fluid-solid interfacial tension, denoted by
γf s , satisfies a Euler-type equation e′

s − T σ ′
s − γf s = 0 [71].

It follows that

γf s = f ′
s , (2.25)

which depends on the local temperature.
To derive the equilibrium condition at the fluid-solid

interface, we make use of the equilibrium conditions in the
bulk region and minimize the total free energy (Eb − T Sb) +
(Es − T Ss). This leads to

L ≡ M∇γ n +
(

∂f ′
s

∂n

)
T

= 0, (2.26)

at the fluid-solid interface. Here, the scalar operator ∇γ is
defined by ∇γ ≡ γ̂ · ∇ with γ̂ denoting the outward unit
vector normal to the interface.

The hydrodynamic boundary conditions at the fluid-solid
interface can be derived from the balance equations for
particle number, momentum, and energy, supplemented with
the positive definiteness condition for the rate of entropy
production [40,47]. Here, it is assumed that the surface stress

tensor
↔
M′

s and surface heat flux q′
s (tangent to the surface)

exist at the fluid-solid interface. But there is no surface
viscosity. That is,

↔
M′

s only has the reversible part arising from
the interfacial tension γf s ,

↔
M′

s ≡ γf s
↔
τ = f ′

s

↔
τ , (2.27)

with
↔
τ ≡ ↔

I − γ̂ γ̂ and
↔
I being the identity tensor. Then, the

equation for local force balance at the interface is given by

∇τ f
′
s − γ̂ · ↔

M + F = 0, (2.28)

whose tangential and normal components are

∇τ f
′
s − γ̂ · ↔

M · ↔
τ + Fτ = 0, (2.29)

and

−γ̂ · ↔
M · γ̂ + Fγ = 0, (2.30)

respectively, with
↔
M = − ↔

� + ↔
σ being the total stress tensor

in the bulk fluid region. Here, ∇τ f
′
s ≡ ∇τ · (f ′

s

↔
τ ) with the

surface divergence of a vector field a defined by ∇τ · a ≡
∇ · a − ∇γ (γ̂ · a), and F is the stress force exerted by the solid
with Fγ ≡ γ̂ · F and Fτ = ↔

τ · F being the normal (scalar) and
tangential (vector) wall forces (per unit area), respectively.

In the reference frame moving with the solid substrate, the
equation for the local energy balance at the interface is given
by

∂e′
s

∂t
+ ∇τ · (e′

svτ ) = ∇τ · (
↔
M′

s · vτ ) − ∇τ · q′
s

+ (γ̂ · q − γ̂ · qw) − γ̂ · ↔
M · v, (2.31)

where the surface heat flux q′
s is actually defined through the

nonconvective surface energy flux − ↔
M′

s · v + q′
s . Substitut-

ing Eqs. (2.27) and (2.28) into Eq. (2.31), we obtain

∂e′
s

∂t
+ ∇τ · (e′

svτ ) = ∇τ · (f ′
s vτ ) − ∇τ · q′

s

+ (γ̂ · q − γ̂ · qw) − γ̂ · ↔
M · vslip

τ ,

(2.32)

with vslip
τ = vτ as defined in Eq. (2.19).

Using the Gibbs-type equation (2.24) for ∂σ ′
s/∂t , we can

obtain the balance equation for the surface entropy density σ ′
s ,

∂σ ′
s

∂t
+ ∇τ · (σ ′

svτ ) = −∇τ ·
(

q′
s

T

)
+

(
γ̂ · ĴS

f − 1

Tw

γ̂ · qw

)

+ q′
s · ∇τ

1

T
−

(
1

T
− 1

Tw

)
γ̂ · qw

− 1

T
Fτ · vslip

τ − 1

T
Lṅ, (2.33)

where γ̂ · ĴS
f ≡ (γ̂ · q + Mṅ∇γ n)/T is the total entropy flux

from the bulk fluid region, ṅ ≡ ∂n/∂t + vτ · ∇τ n is the
material derivative of n at the fluid-solid interface, and L =
M∇γ n + (∂f ′

s /∂n)T is the quantity first defined in Eq. (2.26).
It follows that the rate of entropy production per unit area at
the fluid-solid interface is of the form

σsurf ≡ q′
s · ∇τ

1

T
−

(
1

T
− 1

Tw

)
γ̂ · qw

− 1

T
Fτ · vslip

τ − 1

T
Lṅ, (2.34)

which must be positive definite according to the second law of
thermodynamics.

The surface entropy production σsurf has already been
written in the bilinear form in terms of the conjugate
forces and fluxes. Among the four force-flux pairs, q′

s ·
∇τ (1/T ) and −Fτ · vτ /T involve tangential vectors, whereas,
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−(1/T − 1/Tw)γ̂ · qw and −Lṅ/T involve scalars. In the
linear response regime [72,73], the constitutive relations
governing the interfacial dissipative processes can be obtained
from Eq. (2.34). According to Curie’s symmetry principle [73],
there can be cross coupling between the vectorial pairs q′

s ·
∇τ (1/T ) and −Fτ · vτ /T and/or between the scalarial pairs
−(1/T − 1/Tw)γ̂ · qw and −Lṅ/T . Without cross coupling
between the scalarial pairs, two constitutive relations can be
obtained as

κ γ̂ · qw = −
(

1

T
− 1

Tw

)
, (2.35)

αṅ = −L, (2.36)

where κ is an interfacial parameter directly related to the
interfacial thermal resistance (namely, the Kapitza resistance)
[55] and α is another interfacial parameter controlling the
density relaxation at the solid surface [40]. The positive
definiteness of σsurf requires κ and α to be positive.

As to the two vectorial pairs, the constitutive relations,
which take into account the cross coupling, can be written as

q′
s = −λ′

s∇τ T − χFτ , (2.37)

βvslip
τ = −β

χ

T
∇τ T − Fτ , (2.38)

where λ′
s is the surface heat conductivity, β is the slip coeffi-

cient, and χ is a coefficient measuring the mechanical-thermal
cross coupling. The positive definiteness of σsurf requires λ′

s

and β to be positive. However, the sign of χ cannot be simply
determined by thermodynamic constraints. It is also interesting
to note that, in the presence of mechanical-thermal coupling
with χ 
= 0, then, still required by the positive definiteness
of entropy production, λ′

s must be nonzero for surface heat
transport and β cannot reach +∞, i.e., there has to be a certain
amount of velocity slip. We expect that molecular dynamics
simulations can reveal how χ is influenced by fluid-solid
interactions at microscopic length scales [57,74,75].

Based on the interfacial constitutive relations derived above,
we can present the hydrodynamic boundary conditions in the
form that can be directly coupled with the hydrodynamic
equations in the bulk region. Substituting the definition of
L in Eq. (2.26) into Eq. (2.36), we obtain

αṅ = −M∇γ n −
(

∂f ′
s

∂n

)
T

, (2.39)

as the boundary condition for density relaxation at solid
surfaces of the same form as that derived in our previous
paper [40]. Substituting Eqs. (2.12), (2.13), (2.23), and (2.29)
into Eq. (2.38), we obtain

βvslip
τ = −η∇γ vτ +

[
M∇γ n +

(
∂f ′

s

∂n

)
T

]

×∇τ n −
(
σ ′

s + β
χ

T

)
∇τ T , (2.40)

as the slip boundary condition. This is a generalization of
that derived in our previous paper where the fluid-solid
interface was assumed to be isothermal [40]. Substituting
qw = −λw∇Tw into Eq. (2.35), we obtain

κλw∇γ Tw = 1

T
− 1

Tw

, (2.41)

as the boundary condition for temperature slip across the
fluid-solid interface. It serves as a boundary condition for
the solid temperature Tw governed by Eq. (2.17). Substituting
Eqs. (2.22), (2.14), qw = −λw∇Tw, Eqs. (2.37), (2.29), and
(2.38) into the energy equation (2.32), we obtain

−λ∇γ T + λw∇γ Tw = ∂e′
s

∂t
+ ∇τ · (T σ ′

svτ ) + vτ · ∇τ f
′
s

−∇τ · (λ′
s∇τ T ) − 1

β
Fτ · Fτ

−∇τ · (χFτ ) − χ

T
Fτ · ∇τ T , (2.42)

as the boundary condition for energy balance. Here, the tan-
gential wall force Fτ is given by Fτ = η∇γ vτ − M∇γ n∇τ n −
∇τ f

′
s according to Eq. (2.29), and ∇τ f

′
s is given by ∇τ f

′
s =

−σ ′
s∇τ T + (∂f ′

s /∂n)T ∇τ n according to Eq. (2.23). In our
previous paper, the fluid temperature was assumed to be
a uniform constant at the fluid-solid interface (a Dirichlet
condition for the fluid temperature T ) [40]. Now, this assump-
tion is replaced by Eq. (2.42), which serves as a boundary
condition for the fluid temperature. In the limit of λw → ∞,
the solid temperature becomes a constant. But there is still
heat exchange between the fluid and the solid with λw → ∞,
∇γ Tw → 0, and κλw∇γ Tw = 1/T − 1/Tw remaining finite.
It follows that, in the limit of λw → ∞, the boundary condition
applicable to the fluid temperature becomes

−λ∇γ T + κ−1

(
1

T
− 1

Tw

)

= ∂e′
s

∂t
+ ∇τ · (T σ ′

svτ ) + vτ · ∇τ f
′
s − ∇τ · (λ′

s∇τ T )

− 1

β
Fτ · Fτ − ∇τ · (χFτ ) − χ

T
Fτ · ∇τ T , (2.43)

which is obtained by substituting Eq. (2.41) into Eq. (2.42).
For comparison, we mention that, in our previous paper [40],
the fluid-solid interface is assumed to be isothermal, and
consequently, the boundary condition for fluid temperature is
simply the Dirichlet condition T = Tw with Tw being a known
constant.

III. NUMERICAL SIMULATIONS

A. Phenomenological parameters

To make our numerical simulations simple and specific, a
few assumptions are made for the phenomenological parame-
ters in the model [40,43,67]:

(a) C is a positive constant while K vanishes, and hence,
M = CT .

(b) Transport coefficients in the bulk region may strongly
depend on the density n. The shear viscosity η, bulk viscosity
ζ , and heat conductivity λ are locally proportional to n, i.e.,
η = ζ = νmn and λ = kBνn, where ν = η/ρ is the kinematic
viscosity independent of n.

(c) The surface energy density e′
s is a constant, and the

surface entropy density is given by σ ′
s = −cs(n − nc) with

cs being a constant independent of n and T . Then, the
surface free energy density f ′

s in Eq. (2.22) is given by
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f ′
s = csT (n − nc) + const, with

∇τ f
′
s = −σ ′

s∇τ T +
(

∂f ′
s

∂n

)
T

∇τ n

= cs(n − nc)∇τ T + csT ∇τ n. (3.1)

For the fluid density at the solid surface, a relaxational
boundary condition has been used [see Eq. (2.39)]. The
rate of density relaxation is controlled by the parameter
α. If α approaches zero, then the fast equilibration leads
to L ≡ M∇γ n + (∂f ′

s /∂n)T → 0, which indicates that the
density distribution approaches local equilibrium at solid
surface. In Refs. [66,76,77], the boundary condition M∇γ n +
(∂f ′

s /∂n)T = 0 was used to represent a local equilibrium at
a solid surface. In particular, a special form was used for
the fluid-solid interfacial free energy density f ′

s such that
∂f ′

s /∂n = 0 for the bulk value of density. As a consequence,
∇γ n = 0 at the surface. It follows that there will be neither
enrichment nor depletion near the solid surface. In the present
paper, a linear dependence of f ′

s on the local density n

is assumed. For comparison, it is noted that f ′
s is usually

expanded to second order in n − nc [43]. These energy
functions typically lead to density enrichment or depletion
near the solid surface and have been widely used in the
study of wettability effects and wetting transitions following
the pioneering paper of Cahn [78]. We point out that, for
the parameter value used in the present paper, there is no
enrichment layer that takes the role of a precursor film [44]. It
is interesting to note that f ′

s took the same form in Ref. [67]
where the parameter value was chosen to realize the complete
wetting condition for a precursor film to grow.

(d) The relaxation coefficient α is a positive constant
independent of n.

(e) Except for α, phenomenological coefficients at the solid
surface are extrapolated via

ϑ(n) = (ϑl − ϑg)
n − ng

nl − ng

+ ϑg, (3.2)

where ϑ can be the slip coefficient β, surface heat conductivity
λ′

s , Kapitza resistance κ , or cross-coupling parameter χ. Here,
ϑl (ϑg) is the value of a surface parameter in the homogeneous
liquid (gas) phase, i.e., ϑl ≡ ϑ(nl) [ϑg ≡ ϑ(ng)], and nl (ng)
is the number density of the homogeneous liquid (gas) at
liquid-gas coexistence. At temperature T = 0.875Tc, the van
der Waals theory gives nl ≈ 0.58/v0 (ng ≈ 0.122/v0).

(f) In the limit of λw → ∞, the solid temperature Tw

becomes a constant, and the boundary condition for fluid
temperature is given by Eq. (2.43).

B. Flow geometry and initial state

Numerical simulations are carried out in the two-
dimensional xz plane with the two fluid-solid interfaces
defined at z = 0 and Lz as shown in Fig. 1. Details of
our numerical algorithm are presented in the Appendix. The
state variables n, v, and T in the fluid are defined in a
two-dimensional unstaggered uniformly discretized Cartesian
mesh. The mesh size of our simulation cell is chosen to be
�x = �z = 0.5�, with � = (C/2kBv0)1/2 being the character-
istic liquid-gas interfacial thickness far from the critical point.
In the figures below, the x axis is in the horizontal direction, and

FIG. 1. A schematic for the two-dimensional system in numerical
simulations. Bottom: A semicircular liquid droplet of radius R0 is
placed on the flat rigid solid surface at z = 0 and is surrounded by
gas. Here, the two solid surfaces are parallel to the xy plane. The
system is closed by applying the periodic boundary condition in the
x direction.

the z axis is in the vertical direction with 0 � x � Lx = 250�

and 0 � z � Lz = 60�. The width Lx and height Lz of the
computational domain are chosen to be large enough in order
to avoid possible boundary effects. The system is closed by
applying the periodic boundary condition in the x direction.
An estimate for water gives � ∼= 1 nm [79]. Therefore, the
droplets simulated in the present paper are of the size of a few
tens of nanometers.

The initial state of the droplet is prepared as follows. A
semicircular droplet of radius R0 is placed on the bottom
surface z = 0 and is surrounded by gas as shown in Fig. 1.
(The droplet is actually infinitely long in the third direction
perpendicular to the xz plane.) The fluid temperature is at
T = 0.875Tc in the beginning. The temperatures of the top and
bottom solid substrates are fixed at Tw = 0.875Tc. The liquid
and gas densities take the values at liquid-gas coexistence,
given by nl ≈ 0.58/v0 and ng ≈ 0.122/v0 at T = 0.875Tc.

The wettability numberW ≡ cs/kB� (defined in the Appendix
as a dimensionless parameter related to the wettability of solid
substrates) is uniform and constant at z = 0 in the partial
wetting regime. Under these conditions, we wait until the
droplet arrives at an almost equilibrium state with a fixed
contact angle, hereafter denoted by θs, the static contact angle.
We want to point out that we have not waited until the whole
system reaches the true equilibrium state. Actually, this would
take t ∼ 10 000τ0, which is much larger than the transient
time scale 1000τ0 for the droplet migration considered in
this paper. (The time unit τ0 will be defined in Sec IV A.)
In fact, true equilibrium states are rarely reached in most
practical situations. For different values of W, we record the
corresponding static contact angles, which are measured by
fitting the level curve of n = (nl + ng)/2 with a circular arc.
We find that cos θs

∼= −6.23 W (see Fig. 2). It is also observed
that, in one-component liquid-gas systems, the contact angle
increases with the heat flux (see Fig. 8), a phenomenon that
has been theoretically predicted and has been experimentally
confirmed [70,80,81].

After this equilibration stage, we set t = 0 as the origin
of the time axis. A gradient of the wettability number W
is introduced at t = 0 to the bottom surface z = 0. This
is to produce a solid substrate with a constant wettability
gradient. Droplet migration induced by this gradient is
recorded for the presentation and discussion in the next
section.
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FIG. 2. Cosine of the static contact angle, cos θs , is plotted as a
function of the wettability number W. The ∗ symbols are measured
by fitting the level curve of n = (nl + ng)/2 with a circular arc.
Each symbol corresponds to a nearly equilibrium state of a droplet
on a homogeneous solid substrate with the fixed temperature Tw =
0.875Tc and a constant value ofW. Dashed line: A linear least squares
fitting gives cos θs = −6.23W.

IV. RESULTS AND DISCUSSION

In this section, we present and discuss the numerical results
obtained for the migration of droplets on solid substrates with
wettability gradients. First, we select a few relevant dimen-
sionless parameters from a large number of those appearing in
the nondimensionalized equation system (see the Appendix).
For the droplet migration induced by the wettability gradient,
the most important parameters are the wettability number
W = cs/kB� (related to the wettability of a solid substrate),
Lsl = lsl/� (the ratio of the slip length lsl = ηl/βl of the liquid
to the length scale �), and the scaled temperature kBTw/ε of
the bottom substrate. Effects of these parameters are to be
presented and discussed below. As for the other dimensionless
parameters, we simply set them at physically reasonable
values. These includeW = 0.0, Lsl = 1.0, and Tw = 0.875Tc

at the top substrate, and R = 0.06, A = 0.002, �sl = 0.002,

Cqv = 0.002, LKl = 1.0, and ϑgl ≡ ϑg/ϑl = 0.5, where ϑ

can be the slip coefficient β, surface heat conductivity λ′
s ,

Kapitza resistance κ, or cross-coupling parameter χ.

Explanations for our choices of parameter values are as
follows:

(a) In the limit of α → 0, or equivalently A ≡
αkBν/�Cε → 0 [40], the wettability condition is described by
Eq. (2.26). Then, the dimensionless parameterW ≡ cs/kB� =
0 leads to ∇γ n = 0 at the fluid-solid interface. This gives a
90◦ static contact angle. The dependence of the static contact
angle θs on the dimensionless parameterW (or the dimensional
parameter cs = kB�W) is shown in Fig. 2.

(b) Typically, the velocity slip length lsl and the temper-
ature slip length lKl range between several angstroms and
several nanometers in Lennard-Jones fluids [55,82]. Therefore,
the dimensionless parameters Lsl ≡ lsl/� = 1.0 and LKl ≡
lKl/� = 1.0 correspond to lsl = � and lKl = � with � ∼ 1 nm.
The influence of the slip length will be demonstrated in the
physically reasonable range.

(c) The dimensionless parameter R is defined by R ≡
ν2m/ε�2 = νmV0/ε�, with ν being the kinematic viscosity
independent of the density. This is the only dimensionless

parameter in the dimensionless hydrodynamic equations in
the bulk region (see the Appendix). For He3, the critical
temperature is Tc = 3.32 K from which the energy parameter
ε = 27kBT /8 is determined. Hence, R1/2� ≡ √

m/εν ≈ 2 Å
is obtained. Using � ≈ 1 nm, we then have R ≈ 0.04 for
He3 [43]. In the present paper, we used R = 0.06, which was
also used in Refs. [67,70].

(d) The dimensionless parameters �sl = 0.002 and Cqv =
0.002 are very small. This is to avoid any appreciable
effects caused by interfacial heat conductance and mechanical-
thermal cross coupling. Whereas, they are permitted by the
hydrodynamic boundary conditions, a quantitative study of
their physical effects is beyond the scope of the present
paper.

A. Migration velocities of the droplets on solid substrates with
wettability gradients

According to Brochard [16], as the driving force due to
the wettability gradient is balanced by the viscous drag force,
the droplet attains a steady state characterized by an almost
constant migration velocity Vmig. In our numerical simulations,
such a steady state is obtained after t ∼ 1000τ0 as shown in
Fig. 3 where the migration velocity is measured according to
Vmig ≡ 1

h0

∫ h0

0 dz vx. Here, vx denotes the xcomponent of the
fluid velocity measured on the middle line of the droplet, and
h0 is the height of the droplet defined along the middle line
(see Fig. 4). The time unit used here is τ0 ≡ �2/ν, the viscous
relaxation time over the length �. From τ0, the velocity unit
V0 is then defined by V0 ≡ �/τ0 = ν/�.

Figure 4 shows the droplet shapes in the beginning (t = 0)
and in the steady state (t = 6000 τ0). In either the hy-
drophilic case (a) or the hydrophobic case (b), d cos θs/dx ≈
1.5 × 10−3/� (with the +x direction as the direction of
increasing wettability), Lsl = 2.0, and Tw = 0.875Tc (for the
ordinary substrate) are used. It is observed that, compared
to the initial shape, a moving droplet experiences a little
deformation with elongation in the x direction and contraction
in the z direction. And the deformation in the hydrophilic
case is more visible than that in the hydrophobic case. The
observed deformation is not surprising because the volume
of a droplet is almost invariant in migration, and the driving

200 500 800 1100 1400 1700 2000
1.0

1.5

2.0

2.5

3.0

t/τ
0
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m
ig
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Cooled
Ordinary
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FIG. 3. Time variation in the migration velocity Vmig. Three
different temperatures are used for the bottom substrate with the
cooled substrate: dots for Tw = 0.870Tc, the ordinary substrate: stars
for Tw = 0.875Tc, and the heated substrate: crosses for Tw = 0.890Tc.
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FIG. 4. The +x direction: level curves of n = (nl + ng)/2 for
droplets moving on solid substrates in the direction of increasing wet-
tability. (a) The hydrophilic case with θs < 90◦. (b) The hydrophobic
case with θs > 90◦. In both cases, R0 = 25�, d cos θs

dx
≈ 1.5 × 10−3/�,

Lsl = 2.0, and the ordinary substrate: Tw = 0.875Tc are used. Here,
the droplet height h0 is defined along the middle line, and Rc is
designated as the contact radius.

force arises from the wettability gradient in the x direction
at the bottom substrate. In addition, by plotting more droplet
shapes between t = 0 and t = 6000τ0 (not shown here), it is
found that the deformation of a droplet is actually completed in
the initial transient stage (0 � t � 1000τ0).After t ∼ 1000τ0,
the droplet slides smoothly on the solid substrate. This further
specifies the steady state observed after t ∼ 1000τ0: It is a
state of constant migration velocity and constant shape. A
simple comparison between Figs. 4(a) and 4(b) also shows
that the droplet moves faster in the hydrophilic case. (This is
seen from the two distances covered in the same time period.)
This direct observation raises two interesting questions. Why
is the droplet moving faster on the hydrophilic substrate? How
is the migration velocity affected by the fluid-solid interfacial
dynamics? To answer these questions, a more detailed data
analysis is needed.

First, the Brochard relation (1.1) has been verified by
plotting the migration velocity Vmig as a function of γ h0

η

d cos θs

dx

(see Fig. 5) with γ ≈ kBT (1 − T /Tc)3/2�/v0 [67]. Note that
the interfacial tension of the diffuse liquid-gas interface is
temperature dependent. However, we would like to point out
that, in one-component fluids, due to the phase transition
with latent heat release or absorption, the liquid-gas interface
is almost isothermal at the coexistence temperature [43,70].
Consequently, there is no variation in the interfacial tension,
and the temperature Marangoni effect is suppressed. On the
contrary, the Marangoni effect will play an important role in
multicomponent fluids. It is also noted that the assumption of
a small contact angle, usually made for theoretical analysis,
is not valid here. A linear least squares fitting gives the
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FIG. 5. Vmig is plotted as a function of h0
γ

η

d

dx
cos θs for the

circles: hydrophilic and for the squares: hydrophobic cases. In both
cases, R0 = 25�, Lsl = 2.0, and the ordinary substrate Tw = 0.875Tc

are used. A linear least squares fitting gives the proportionality
coefficient αV ≈ 0.16,dashed line: for the hydrophobic case and
αV ≈ 0.33,solid line: for the hydrophilic case.

proportionality coefficient αV ≈ 0.16 for the hydrophobic case
and αV ≈ 0.33 for the hydrophilic case. This shows again the
faster migration of droplets on hydrophilic substrates (under
the same other conditions). The agreement of our numerical
results with Brochard’s scaling analysis implies that the steady
droplet migration observed here still results from the balance
between the driving force due to the wettability gradient and
the viscous drag force.

B. Dependence of the proportionality coefficient αV on the
droplet dynamics

To see why the droplet moves faster on the hydrophilic
substrate, we turn to Fig. 6, which shows the tangential
velocity vx, measured on the middle line of the droplet as
a function of z. The nonzero derivative ∂vx/∂z at the top
of the droplet (z ≈ 20� for the hydrophilic case and z ≈ 30�

for the hydrophobic case) indicates that there is considerable
resistance acting on the droplet by the surrounding gas because
of the small density ratio and viscosity ratio (both ∼ 5)
between liquid and gas. Physically, the streamlined shape

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5
0

5

10

15

20

25

30

103vx/V0

z/
l

Hydrophilic
Hydrophobic

FIG. 6. The tangential velocity vx , measured on the middle line
of the droplet, plotted as a function of z at t = 2000τ0. The dashed
line represents the hydrophobic case (θs > 90◦) and the solid line
represents the hydrophilic case (θs < 90◦)with R0 = 25�, d cos θs

dx
≈

1.5 × 10−3/�, Lsl = 2.0, and the ordinary substrate: Tw = 0.875Tc.
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FIG. 7. Dependence of the coefficient αV on
(a) the nondimensionalized initial droplet radius
R0/� for lsl/� = 2.0, (b) the nondimensional-
ized slip length of the liquid Lsl = lsl/� for
R0/� = 25.0, and (c) the ratio lsl/R0, evaluated
for the ordinary substrate: Tw = 0.875Tc. A
linear least squares fitting gives the solid line
for the hydrophilic case and the dashed line
for the hydrophobic case in (c). Here, lsl is
the slip length in the liquid phase, given by
lsl = νmnl/βl.

of the liquid droplet in the hydrophilic case helps reduce
the resistance due to the surrounding gas. This provides a
qualitative understanding of why the droplet moves faster in the
hydrophilic case (under the same other conditions). Figure 6
also shows that, due to the confinement over a smaller distance
in the z direction in the hydrophilic case, the liquid droplet
exhibits a larger velocity slip at z = 0.

It is worth pointing out that the hydrodynamic boundary
conditions are derived in the linear response regime where
small displacements from thermodynamic equilibrium are
assumed. Accordingly, the microscopic contact angle is close
to its equilibrium value in our numerical simulations. It follows
that the droplet cannot have a spherical shape in the presence
of a wettability gradient. This leads to a gradient of Laplace
pressure that drives the motion of the droplet. According to
Fig. 6, the tangential velocity vx plotted as a function of z can
be fitted by a quadratic function, which is in agreement with
the presence of a pressure gradient. This picture was confirmed
in a comparison of asymptotic and numerical results [83].

As already pointed out, the steady droplet migration results
from the balance between the driving force due to the wettabil-
ity gradient and the viscous drag force. Physically, the total vis-
cous drag force is contributed by the viscous dissipation in the
bulk region and the dissipation due to velocity slip at the fluid-
solid interface. Here, we want to point out that, physically, the
interfacial velocity slip provides a mechanism to reduce the to-
tal dissipation [40,84]. Therefore, it is expected that the droplet
migration can be facilitated by the velocity slip. To quantify
this effect, we make use of the linear dependence of Vmig on
γ h0

η

d cos θs

dx
[5,16,22]. Below, we show the dependence of the

coefficient αV on two length scales: the droplet size (measured
by R0) and the slip length of the tangential velocity slip.

Figure 7(a) shows that αV decreases with the increasing
R0/� and Fig. 7(b) shows that αV increases with the increasing

Lsl = lsl/�. Physically, it is expected that, in determining the
dimensionless coefficient αV , the relative effect of the velocity
slip on the reduction of total dissipation is mostly controlled
by the dimensionless parameter lsl/R0. This is indeed shown
in Fig. 7(c) where an approximate linear dependence of αV on
small lsl/R0 is displayed. The fact that αV is finite even for
zero lsl/R0 means there are some other mechanism(s) (e.g.,
phase transition) operative in resolving the stress singularity
associated with the moving contact line [40]. That αV increases
with the increasing lsl/R0 confirms that the velocity slip helps
to reduce the total dissipation and, hence, to enhance the
droplet mobility.

C. Slip versus phase transitions: Droplet migration on cooled,
ordinary, and heated solid substrates

Now, we turn to the situation where the substrate temper-
ature is different from the liquid-gas coexistence temperature,
and therefore, thermal singularity appears [31–34]. Figure 8
shows the density and velocity fields for a droplet on a
solid substrate with and without a wettability gradient. Three
different values are used for the bottom substrate temperature
Tw: 0.870Tc for the cooled substrate, 0.875Tc for the ordinary
substrate, and 0.890Tc for the heated substrate, as shown in
Fig. 3. Note that the fluid temperature is at T = 0.875Tc

in the beginning, and the temperature of the top substrate
is fixed at 0.875Tc. For the droplet on the cooled substrate
with Tw = 0.870Tc, condensation, which is characterized by
a converging velocity field, occurs in a narrow region near
the contact line [see Fig. 8(a1) for the velocity field and
the dashed line in Fig. 9(a1) for the corresponding ∇ · v].
For the droplet on the heated substrate with Tw = 0.890Tc,

evaporation, which is characterized by a diverging velocity
field, is prominent in a narrow region near the contact line [see
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FIG. 8. (Color online) Color: density and arrow: velocity fields for droplets on solid substrates with and without wettability gradients. Each
figure is labeled by a letter (a), (b), or (c) for the substrate temperature at z = 0 and a number (1) or (2) indicating whether the wettability
gradient is 1 for a stationary case: off or 2 for a moving case: on. The substrate temperature at z = 0 is set to be the cooled substrate:
(a) 0.870Tc, (b) the ordinary substrate: 0.875Tc, and (c) the heated substrate: 0.890Tc. The wettability number W at the bottom fluid-solid
interface z = 0 is set to be (1) a homogeneous constant W = 0.1 for the three figures in the left column and (2) a function linear in x, varying
fromW = 0.1 at x = 0 toW = 0.04 at x = Lx = 250� for the three figures in the right column. Here, the dimensionless slip length Lsl = 2.0 is
used.

Fig. 8(c1) for the velocity field and the dashed line in Fig. 9(c1)
for the corresponding ∇ · v]. For the droplet on the ordinary
substrate with Tw = 0.875Tc, local evaporation is also seen
from Fig. 8(b1) and the dashed line in Fig. 9(b1), though less
prominent compared to that for the heated substrate. In these
observations for droplets on isothermal solid substrates (with
Tw being fixed and homogeneous), phase transition (evapo-
ration or condensation) is always concentrated in a narrow
region near the contact line, a characteristic in one-component
fluids [70]. This is not only observed for the three stationary
droplets in the left column of Fig. 8. The moving droplets
in the right column of Fig. 8 actually exhibit localized phase
transition as well, though less visibly due to the accompanying

migration. This will be further discussed with the help of Fig. 9
below. Physically, the localized phase transition is regarded
as a manifestation of the thermal singularity concerning
temperature distribution [31,46]. It is also interesting to note
that the apparent contact angle increases with the increasing
substrate temperature as indicated by the decrease in the
droplet-substrate contact area in Fig. 8. This is considered
to be another characteristic in one-component fluids, which is
actually a physical consequence of the first characteristic [70].

To see the effects of wettability gradients, it is noted
that, associated with a stationary droplet on a substrate
without a wettability gradient, the velocity field appears to
be symmetric about the middle line of the droplet. Once
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the wettability gradient is turned on, this symmetry must
be broken by the droplet migration. This is clearly seen
from all three cases in Fig. 8. In addition, the velocity
field within a moving droplet appears to be more or less a
superposition of (i) a slowly varying velocity field for droplet
migration in the direction of increasing wettability (the +x

direction) and (ii) the (background) velocity field within the
droplet before the wettability gradient is turned on. (This
superposition is seen from a comparison between the two
figures in each row of Fig. 8.) This is actually mathematically
expected based on a leading order expansion in the wettability
gradient.

Whereas, the three cases displayed in Fig. 8 all show
localized phase transition and (approximate) velocity-field su-
perposition, the velocity fields are quite different for different
bottom substrate temperatures. Physically, phase transition and
boundary slip are the two competing mechanisms for contact
line motion [40]. Therefore, it is expected that the rate of
phase transition and the slip velocity profile in the vicinity
of the contact line can be greatly affected by the substrate
temperature. Below, we present a detailed analysis of the data.

Before we proceed, we point out that, in some hydrody-
namic treatments, the liquid-gas transition has been described
with the aid of a phenomenological input of the evaporation
rate per unit area on the droplet surface J. Some authors
used the form J (r) = J0/[re(t)2 − r2]1/2 for a thin circular
droplet as a function of the distance r from the droplet center,
where re(t) was the droplet radius and J0 was a constant
[59,60]. In recent papers about the spreading with evaporation
and condensation in one-component fluids [67,70], this form
has been shown to be very different from the simulation
results from the dynamic van der Waals theory. For example,
evaporation of a thick droplet was found to be mostly localized
near the contact line in the partial wetting condition [70]. Our
simulations have been carried out in the partial wetting regime
as well (see Figs. 2 and 4). It is observed that, on the heated
substrate, evaporation is mostly localized near the contact line
[see Fig. 8(c)].

Figure 9 shows the profiles of ∇ · v at z = 0 for stationary
and moving droplets on the cooled, ordinary, and heated sub-
strates. Since evaporation and condensation are characterized
by diverging and converging velocity fields, respectively, ∇ · v

FIG. 9. ∇ · v at z = 0 plotted as a function of x along the solid substrate. Each figure is labeled by a letter (a), (b), or (c) for the substrate
temperature at z = 0 and a number (1) or (2) indicating whether the slip length is (1) large or (2) small. The substrate temperature at z = 0 is
set to be (a) the cooled substrate: 0.870Tc, (b) the ordinary substrate: 0.875Tc, and (c) the heated substrate: 0.890Tc. In each figure, the dashed
line represents the wettability gradient off: stationary case and the solid line represents the wettability gradient on: moving cases.
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FIG. 10. Vslip/V0 plotted as a function of x along the solid substrate. Each figure is labeled by a letter (a), (b), or (c) for the substrate
temperature at z = 0 and a number (1) or (2) indicating whether the slip length is (1) large or (2) small. The substrate temperature at z = 0 is
set to be (a) the cooled substrate: 0.870Tc, (b) the ordinary substrate: 0.875Tc, and (c) the heated substrate 0.890Tc. In each figure, the dashed
line represents the wettability gradient off: stationary case and the solid line represents the wettability gradient on: moving cases. Figures here
have a one-to-one correspondence with those in Fig. 9.

can be taken as a measure of the liquid-gas transition rate. From
the dashed lines for stationary droplets and the solid lines
for moving droplets, it is evident that liquid-gas transition is
always concentrated in a narrow region (of width ∼ 10�) near
the contact line.

Although the ∇ · v profiles are very different for different
cases (for stationary and moving droplets on the cooled,
ordinary, and heated substrates), the following change is
always noted regardless of the substrate temperature. That
is, the change in ∇ · v from a stationary to a moving droplet
is always positive around the left contact line but is negative
around the right contact line. This means the droplet migration
in the +x direction is accompanied by a net evaporation around
the left contact line and a net condensation around the right
contact line. Here, the change in ∇ · v (from a stationary
to a moving case) is used to define the net evaporation or
condensation relative to the stationary case. According to our
previous paper [40], phase transition and boundary velocity
slip can both contribute to the contact line motion relative
to the solid surface. Here, for the liquid droplet moving in

the +x direction, the left contact line moves partly through
evaporation, whereas, the right contact line moves partly
through condensation. Such transition needed by each moving
contact line is just the net evaporation or condensation defined
by the change in ∇ · v as shown in Fig. 9.

Two slip lengths are used in Fig. 9. In the case of small slip
length Lsl = 0.1, phase transition is suppressed for stationary
droplets, but the change in ∇ · v from a stationary to a moving
case is large. In the case of large slip length Lsl = 2.0, phase
transition is noticeable for stationary droplets, but the change
in ∇ · v from a stationary to a moving case is relatively small.
This comparison implies that, in moving the contact line,
phase transition tends to play a quantitatively more important
role if the slip length is reduced. This is consistent with the
principle of least energy dissipation (entropy production): As
the slip length is reduced, the velocity slip becomes more
costly in dissipation, and consequently, the system relies more
on phase transition to maintain a moving contact line [40].
This picture can also be demonstrated quantitatively by the
slip profiles.
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TABLE I. The migration velocity Vmig and the stationary-to-
moving change in slip velocity �Vslip (measured at the left contact
line) for three substrate temperatures and two slip lengths.

Cases 103Vmig 103�Vslip

Heated substrate Lsl = 0.1 1.686 0.028
Ordinary substrate Lsl = 0.1 1.915 0.095
Cooled substrate Lsl = 0.1 1.977 0.097
Heated substrate Lsl = 2.0 2.275 0.920
Ordinary substrate Lsl = 2.0 2.536 1.115
Cooled substrate Lsl = 2.0 2.609 1.218

Figure 10 shows the slip velocity profiles for stationary and
moving droplets on the cooled, ordinary, and heated substrates.
Here, the slip velocity Vslip is simply given by vx at z = 0.
Although the Vslip profiles are very different for different cases
(for stationary and moving droplets on the cooled, ordinary,
and heated substrates), the following trend is always noted
regardless of the substrate temperature: The overall change in
the Vslip profile from a stationary to a moving case is always
upward (i.e., in the +x direction). This means the droplet
migration in the +x direction engages boundary slip as a
participating mechanism.

Table I shows the migration velocity Vmig and the stationary-
to-moving change in slip velocity �Vslip (measured at the
left contact line) for three substrate temperatures and two slip
lengths. It is seen that Vmig and �Vslip both increase with the
increasing slip length. This is consistent with the principle
of least energy dissipation (entropy production): As the slip
length is increased, the velocity slip becomes less costly in
dissipation, and consequently, the droplet acquires a higher
mobility by relying more on the boundary slip [40]. This is
also consistent with Fig. 9, which shows that the system relies
more on phase transition as the slip length is reduced.

To summarize, it has been observed that, for droplets mov-
ing on cooled, ordinary, and heated substrates with wettability
gradients, the contact lines move through both phase transition
and boundary slip with their relative contributions mostly
controlled by the slip length. This agreed with the conclusion
of our previous paper [40], which was reached for two-phase
Couette flows confined between two parallel planar solid walls.

V. CONCLUDING REMARKS

A continuum hydrodynamic model has been presented,
suitable for the study of droplet motion in one-component
fluids on solid substrates. The model can deal with the
thermal singularity, which appears inevitably as the substrate
temperature is different from the liquid-gas coexistence
temperature. Numerical simulations have been carried out
for substrates with homogeneous temperature and wettability
gradients. It has been shown that droplets migrate in the
direction of increasing wettability as theoretically predicted
and experimentally confirmed. The migration velocity is
found to satisfy the Brochard relation (1.1) even for droplets
on hydrophobic substrates (with large contact angles). The
(mobility) coefficient αV is found to be controlled by the ratio
of slip length to droplet radius. These results indicate that

the steady migration of a droplet results from the balance
between the driving force due to the wettability gradient and
the viscous drag force. Furthermore, the velocity field within
a moving droplet exhibits a superposition of (i) a slowly
varying velocity field for droplet migration in the direction
of increasing wettability and (ii) the velocity field within the
stationary droplet before the wettability gradient is turned on.
Moving contact lines are naturally in droplet migration. From
the distributions of velocity divergence and slip velocity, it
is observed that phase transition and boundary slip are both
engaged in moving the contact lines and the droplets with
their relative contributions mostly controlled by the slip length
according to the principle of least energy dissipation (entropy
production).

We would like to conclude with a few remarks. (i) The
droplets in our two-dimensional simulations are actually
liquid columns, which are simple but not practical. Brochard
[16] and Sekimot et al. [85] have shown the instability for
liquid cylinders, which can lower the surface energy by
breaking into droplets. More realistic results demand large
scale three-dimensional simulations. (ii) Isothermal substrates,
homogeneous in temperature, are used in the present paper.
To be more realistic, heat conduction in the solid needs to
be taken into account. This may lead to the issues related
to (tangential) temperature gradient, finite substrate thickness,
and finite heat conductivity of the solid. (iii) The role of Kapitza
resistance (fluid-solid interfacial thermal resistance) and that
of the long-range van der Waals force between fluid and solid
are worth exploring in the future. Papers in these directions
are currently underway.
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APPENDIX: NUMERICAL IMPLEMENTATION

In this appendix, we present our numerical method for
solving the continuum model, which consists of the hy-
drodynamic equations (2.9), (2.10), and (2.15) with the
constitutive relations (2.12), (2.13), and (2.14), supplemented
by the kinematic boundary condition vγ = 0 and the dynamic
boundary conditions (2.39), (2.40), and (2.43). (The artificial
parasitic flows can be avoided by using Eq. (2.15) for Ŝ

instead of Eq. (2.11) for eT [70].) Note that Eqs. (2.5) and
(2.8) for the generalized pressure are needed by Eq. (2.12),
and Eq. (2.16) gives the local temperature as a function of
n, ∇n, and Ŝ. Special attention is paid to the application of
boundary conditions, and our calculations are carried out for
two-dimensional systems (in the xz plane as shown in Fig. 1).

1. Dimensionless equations

To obtain the dimensionless continuum model, we scale
the length by � = (C/2kBv0)1/2, which is the characteristic
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liquid-gas interfacial thickness far from the critical point, the
velocity by V0 ≡ ν/� (with ν being the kinematic viscosity),
the time by τ0 ≡ �/V0, the number density n by 1/v0, the

mass density mn by m/v0, the stresses − ↔
� and

↔
σ by ε/v0,

the entropy density Ŝ by kB/v0, the temperature by ε/kB, the
interfacial free energy density f ′

s by csε/kBv0, the tangential
wall force Fx by νmV0/v0�, and the surface coefficients β(n),
κ(n), χ (n), and λ′

s(n) by their values in the homogeneous
liquid phase, i.e., βl ≡ β(nl), κl ≡ κ(nl), χl ≡ χ (nl), and
λ′

sl ≡ λ′
s(nl), respectively. In the dimensionless system, the

continuity equation (2.9) reads
∂n

∂t
+ ∇ · (nv) = 0, (A1)

the momentum equation (2.10) reads
∂

∂t
(nv) + ∇ · (nvv) = R−1∇ · (− ↔

� + ↔
σ ), (A2)

and the balance equation (2.15) for entropy density Ŝ becomes

∂Ŝ

∂t
+ ∇ · (Ŝv) = 2∇ · (n∇n∇ · v) + 1

T
(

↔
σ : ∇↔

v)

+
[
∇ ·

( n

T
∇T

)
+ n

T 2
(∇T )2

]
, (A3)

with the dimensionless stresses and pressure given by
↔
σ = R[n(∇v + ∇vT ) + n

↔
I∇ · v/3], (A4)

− ↔
� = −2T ∇n∇n − p̂

↔
I, (A5)

p̂ = nT

1 − n
− n2 − T |∇n|2 − 2T n∇2n. (A6)

Equation (2.16) for calculating T from Ŝ becomes

T =
[

n

1 − n
exp

(
Ŝ + |∇n|2

n

)]2/3

. (A7)

The dimensionless kinematic boundary condition is

vγ = 0,

with vγ = −vz at z = 0 and vγ = vz at z = Lz, the dimension-
less equation (2.39) for the relaxation of n at the fluid-solid
interface reads

Aṅ = −T ∇γ n − W
2

T , (A8)

with ∇γ = −∂/∂z at z = 0 and ∇γ = ∂/∂z at z = Lz, the
dimensionless slip boundary condition (2.40) reads

βvslip
x = Ls

(
−Fx − R−1Cqv

βχ

T
∇xT

)
, (A9)

with ∇x ≡ ∂/∂x, Fx = n∇γ vx − 2R−1T ∇γ n∇xn −
R−1W∇xf

′
s , and ∇xf

′
s = (n − nc)∇xT + T ∇xn, and the

dimensionless boundary condition (2.43) for fluid temperature
becomes

−n∇γ T + L−1
K κ−1

(
1

T
− 1

Tw

)
= −WT (n − nc) ∇xvx − �sl∇x

(
λ′

s∇xT
)

−Ls

[
R 1

β
F 2

x + Cqv∇x (χFx) + Cqv

χ

T
Fx∇xT

]
.

(A10)

The dimensionless surface coefficients are given by

ϑ(n) = (1 − ϑgl)
n − ng

nl − ng

+ ϑgl, (A11)

where ϑgl ≡ ϑg/ϑl, ϑ can be the slip coefficient β, surface
heat conductivity λ′

s , Kapitza resistance κ, or cross-coupling
parameter χ.

In the dimensionless equations presented above, there are a
number of dimensionless parameters:

(a) R = ν2m/ε�2.

(b) A = αkBν/Cε�, which is proportional to the damping
coefficient α.

(c) The dimensionless substrate temperature Tw.

(d) The wettability number W = cs/kB�, which measures
the wettability of a solid substrate.

(e) Ls = νm/βlv0�, which measures the strength of vis-
cous coupling between fluid and solid. Note that Ls is related
to Lsl ≡ lsl/� via Lsl = nlv0Ls , where lsl ≡ ηl/βl (with
ηl = νmnl) is the slip length of the liquid.

(f) LK = νκlε
2/�v0kB, which measures the strength of

the thermal coupling between fluid and solid. Note that LK

is related to LKl ≡ lKl/� via LKl = nlv0k
2
BT 2

c LK/ε2, where
lKl ≡ κlλlT

2
c (with λl ≡ kBνnl) is the Kapitza length [55,56]

of the liquid near the critical point.
(g) �sl = λ′

slv0/νkB�.

(h) Cqv = χlβlv0/ε�, which measures the strength of
mechanical-thermal cross coupling.

(i) The dimensionless surface parameters: βgl = βg/βl,

κgl = κg/κl, λ′
sgl = λ′

sg/λ′
sl , and χgl = χg/χl.

2. Finite-difference scheme

Below, we present the finite-difference scheme for
solving the nondimensionalized system in the xz

plane with an emphasis on the use of boundary
conditions.

The state variables n, vx , vz, and T in the fluid are defined
in an unstaggered uniformly discretized Cartesian mesh. The
number density n, velocity component vx, and entropy density
Ŝ are updated at the interior sites and at the fluid-solid interface,
whereas, the velocity component vz is only updated at the
interior sites due to the impermeability condition vγ = 0 at
the fluid-solid interface. This involves the use of hydrodynamic
equations (A1)–(A3). Obviously, values of n, vx , vz, and T at
some “ghost” sites are needed for updating n, vx, and Ŝ at
the fluid-solid interface and updating vz at the sites closest
to the fluid-solid interface. [Note that, in updating vz at the
sites next to the fluid-solid interface, the term T n∇2n in
Eq. (A6) for p̂ leads to a third-order derivative of n in the
z direction, and hence, the values of n at the ghost sites out of
the fluid space are needed.] With ṅ evaluated in the continuity
equation (A1), the ghost values of n can be first determined by
the boundary condition (A8) through ∇γ n. The ghost values
of vx are then determined by the boundary condition (A9)
through ∇γ vx. The ghost values of T can be determined by
Eq. (A10) through ∇γ T . As for the ghost values of vz, they are
determined through ∇γ vγ at the fluid-solid interface, which
can be evaluated using second-order one-sided extrapolation.
Finally, the fluid temperature T can be directly obtained from
Eq. (A7).
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