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Effects of transducer size on impedance spectroscopy measurements

L. Mesin1 and M. Scalerandi2
1Department of Electronics and Telecommunications, Politecnico di Torino, Torino, Italy

2Department of Applied Science and Technology, Institute of Condensed Matter Physics and Complex Systems,
Politecnico di Torino, Torino, Italy

(Received 15 March 2012; published 21 May 2012)

The response to an electric field of electrolytic solutions, gels, liquid crystals, and other soft materials is
described by the drift-diffusion and Poisson equations. Existing models, used for the interpretation of experimental
data, usually consider the system as one dimensional (1D), which is valid only for an infinite electrode size. Here
we solve numerically the model equations in 2D, considering a circular electrode with a finite radius, and discuss
the limit of validity of the 1D approximation.
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I. INTRODUCTION

Electrolytic solutions, gels, liquid crystals, polymers, and
other soft materials are physical systems sharing the char-
acteristic of being composed of charged ions distributed in a
liquid solution [1–4]. For their practical applications [5–7], it is
important to understand their response to an external electric
field and to estimate the physical properties of the impurity
ions, such as density, charge, and diffusion coefficients. To
this purpose, experimental methods have been developed to
estimate the relaxation times of the system [8,9] and the
impedance of an equivalent electric circuit, including the
effects of the ionic redistribution when an external electric
field is applied (impedance spectroscopy methods) [10–12].

In the latter case, two plane electrodes are applied to
the system, confined in a given volume (cell). An external
sinusoidal field (with varying frequency) is applied and the
resulting electrical current in the circuit is measured.
The system behaves approximately as an RC circuit, where the
liquid is an insulating system and the mobile ions contribute
to the ionic current in the cell. For low amplitudes of
the applied potential and low density of the ions, the equivalent
circuit behaves linearly. Thus, the system can be considered as
a series of a resistance and a reactance, which are the real and
imaginary parts of the impedance, respectively.

The interpretation of the results and the estimation of the
ion parameters can then be obtained from models based on the
drift-diffusion equation (describing the ionic redistribution)
and the Poisson equation (describing the evolution of the elec-
tric field across the sample) [13–15]. In the one-dimensional
(1D) limit, corresponding to an infinite electrode size, the
solution of the problem can be analytically given, predicting
(a) a resistance vanishing at high frequency (ω) and constant in
the dc limit (low frequencies), and (b) a reactance which goes
to zero (infinity) in the high (dc) limit, with a 1/ω behavior
in both limits. These predictions are not always verified in
experimental conditions [16,17], thus posing questions about
the adequacy of the models used.

Several explanations for the anomalous behavior of the
experimental data can be found in the literature. Among
them are ambipolar diffusion phenomena (due to ions with
different mobilities) [18–20], anomalous diffusion (frequency
dependent) [21,22], and non-perfectly-blocking electrodes
[23–25]. Effects such as the existence of two plateaux in the

resistance vs frequency curve or two minima in the reactance
can be predicted. However, at least in some cases, the existing
models cannot fully explain the impedance spectroscopy
curves observed. Particularly critical is indeed the behavior
of the reactance in the low frequency limit, which in some
cases is not a 1/ω behavior [26]. Whether these anomalous
behaviors can be due to finite-size effects, such as those studied
in electrochemical cells [27,28], is still an open question.

The goal of this paper is to analyze the effects of the finite
size of the electrodes on the behavior of the system in order
to understand whether this can explain some of the observed
features. We will also study the importance of considering
the electrode dimension when estimating the ionic parameters
from impedance spectroscopy measurements. In the next
section, the physical equations governing the problem are
briefly recalled and the numerical implementation is discussed.
Results will be presented in Sec. III and the importance of our
findings for practical applications will be discussed in Sec. IV.

II. THEORY

A. The physical problem

Let us consider an electrolytic cell containing an ionic
solution, where positive and negative ions are both mobile (D±
being the respective diffusion coefficients). For simplicity, we
neglect dissociation and recombination phenomena during the
evolution of the system. At the initial time, the sample is locally
neutral and ions are uniformly distributed, with density n0 (the
same for positive and negative ions). Ions have a charge q. The
liquid in which ions are dispersed is defined by a dielectric
constant ε. The electrolytic cell is considered as a cylinder
with radius L and length d; see Fig. 1. The coordinate system
is oriented with the z axes parallel to the length of the cylinder
(−d/2 � z � d/2). Two plane circular electrodes (of radius
r < L) are placed on the top and bottom surfaces of the cell.
The electrodes are connected to an external circuit supporting
a potential applied to the cell in the form �Vext = A exp(jωt).
Here, the amplitude A is considered small, as in experiments,
and it is not a relevant parameter. ω is the angular frequency.

As soon as the external potential is applied, the electric
field generated in the sample causes a redistribution of ions
(although the sample remains globally neutral), which in turn
generates an additional electric field. We can define a vectorial
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drift-diffusion current (for positive and negative ions) as

j± = −D±∇n± ∓ μ±n±∇V, (1)

where μ± = qD±/KBT is the ionic mobility (KB is the
Boltzman constant and T is the absolute temperature). The
following evolution equations for the ionic bulk densities
n±(x,y,z,t) and the potential V (x,y,z,t) across the sample
can thus be written as

∂n±
∂t

= −∇ · j±, ∇2V = −q

ε
(n+ − n−). (2)

The second is the Poisson equation.

Boundary conditions are defined as a vanishing normal
current jN

± along each border of the cell,

jN
± = 0, (3)

for z = ±d/2 and for ρ =
√

x2 + y2 = L. Boundary condi-
tions for the potential indicates that an external voltage Vext

is applied on the electrodes surfaces (z = ±d/2 and ρ � r).
The continuity of the normal component of the dielectric
displacement vector D = εE between the inside and outside
of the cell is forced on the other boundaries (E is the electric
field).

In cylindrical coordinates, and given the symmetry of the
system for rotations (i.e., variables do not depend on the angle),
Eqs. (2) can be rewritten as

∂n±
∂t

= D±

[
∂2n±
∂z2

+ 1

ρ

∂

∂ρ

(
ρ

∂n±
∂ρ

)]
∓ μ±n±

[
∂2V

∂z2
+ 1

ρ

∂

∂ρ

(
ρ
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∂ρ

)]
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∂2V

∂z2
+ 1

ρ

∂

∂ρ

(
ρ

∂V

∂ρ

)]
= −q

ε
(n+ − n−). (4)

Furthermore, if the amplitude A of the potential applied to the cell is sufficiently small, as in a large number of applications [29],
then nonlinear terms can be neglected. In particular, introducing the local change in ionic density δn± (r,z) = n± (r,z) − n0, we
have δn± (r,z) � n0. Substituting in Eq. (4) and neglecting higher order terms, we get

∂ (δn±)

∂t
= D±

[
∂2 (δn±)

∂z2
+ 1

ρ

∂

∂ρ

(
ρ

∂ (δn±)

∂ρ

)]
∓ μ±no

[
∂2V

∂z2
+ 1

ρ

∂

∂ρ

(
ρ

∂V

∂ρ

)]
[
∂2V

∂z2
+ 1

ρ

∂

∂ρ

(
ρ

∂V

∂ρ

)]
= −q

ε
(δn+ − δn−). (5)

The boundary conditions in cylindrical coordinates are

V (ρ � r,z = ±d/2) = A exp(jωt),
(6)

∂V

∂z
(ρ > r,z = ±d/2) = 0,

FIG. 1. (Color online) Schematic representation of the cell
configuration.

jN
± (ρ,z = ±d/2) = j±(ρ = ±L,z = ±d/2) · N = 0,

(7)
∂V

∂ρ
(ρ = ±L,z) = 0.

Note that the second and last boundary conditions (equivalent
to homogeneous Neumann conditions) are valid when the
dielectric constant of the cell is large (compared to that of
air) and when L is sufficiently larger than the transducer
radius r , respectively. Both conditions are normally verified in
practical cases (and in our simulations). Otherwise, continuity
of the normal component of the dielectric displacement vector
D = εE should be imposed.

The problem is thus a 2D linear system of equations which,
as we will see in the next section, can be solved numerically.
However, before moving on, we remind the reader that in the
case of plane electrodes with infinite extension, we also have a
symmetry in the radial direction. Thus the system becomes 1D
and it is possible to derive an analytical solution (not discussed
here for brevity) [14].

B. Numerical solution

To numerically solve the problem, we observe that since
the model equations are linear, we can write

V = V̂ ejωt , δn± = δn̂±ejωt .
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Therefore, time derivatives can be replaced by multiplication for jω. Thus the problem is reduced to find the solution
in the space domain of the linear system of complex equations:

jωδn̂± = D±

{
∂2(δn̂±)

∂z2
+ 1

ρ

∂

∂ρ

[
ρ

∂(δn̂±)

∂ρ

]}
∓ μ±no

[
∂2V̂

∂z2
+ 1

ρ

∂

∂ρ

(
ρ

∂V̂

∂ρ

)]
[
∂2V̂

∂z2
+ 1

ρ

∂

∂ρ

(
ρ

∂V̂

∂ρ

)]
= −q

ε
(δn̂+ − δn̂−). (8)

We defined a bounded space domain, imposing a maximum
radius L, where homogeneous Neumann boundary conditions
were assumed for the potential ( ∂V̂

∂ρ
= 0) and no flux conditions

were imposed for the ion densities. A maximum radius r for
the electrodes was also chosen so that the electric field and the
variation of the ion densities close to the cell boundary (ρ = L)
were negligible. The mathematical problem was solved using
the finite difference method [30]. A nonuniform discretization
of the domain was used, with increasing resolution close
to the electrodes, particularly near the edges. The increased
resolution area covered a distance a few debye lengths from
the electrode (both in the z direction and from the edges). First-
and second-order space derivatives were discretized with a
second-order approximation, both within the domain and on
the boundary. For the first derivative, we have

∂u

∂x

∣∣∣∣
x0

∼= au(x0) + bu(x0 + h1) + cu(x0 + h2), (9)

where a = − h1+h2
h1h2

, b = − h2
h1(h1−h2) , and c = h1

h2(h1−h2) , and
for the second derivative, we have

∂2u

∂x2

∣∣∣∣
x0

∼= au(x0) + bu(x0 + h1) + cu(x0 + h2), (10)

where a = 2
h1h2

, b = 2
h1(h1−h2) , and c = − 2

h2(h1−h2) . Notice
that h1 and h2 have the same sign when the considered point
x0 is on the boundary and different signs when x0 is within the
domain.

Using discretization of derivatives, the problem is reduced
to a linear system of algebraic equations, which allows calcu-
lation (in the complex space) of the spatial distributions of the
ion densities and the potential for any frequency: δn±(ρ,z,ω)
and V (ρ,z,ω). The solution was estimated resolving such a
system using the Gauss elimination method. Multiplication by
ejωt brings the solutions back into the time domain.

Given the potential, the charge Q over one electrode (which
is the same, except for the sign, as that over the other electrode)
was estimated, using the integral form of Gauss’s law, as

Q(ω) =
[∫

ρ�r, z=d/2
D·NdS

]
= 2πε

∫ r

0
ρ

∂V

∂ρ
dρ, (11)

where N is the versor normal to the electrode.
The current flowing through the electrode was obtained

by a time derivative of the charge (i.e., a multiplication
by jω). From the estimated current and the imposed
potential, the impedance was computed in the complex

domain as

Z = A

jωQ
. (12)

The independence of the solution from the discretization
steps and from the discrete integration method has been
carefully verified.

The methods were implemented in MATLAB, on a Pen-
tium(R) Dual-Core computer, with clock frequency of
2.8 GHz, 4 GB of RAM, and 64-bit operating system, using
routines running on a single core. The average computational
time for a single simulation (which means a single cell, with a
specific radius of the electrode, considering a single frequency
of the voltage source) was about 60 s (with about 30 s of
variation between the fastest and the slowest simulation).

The spatial sampling of the cell depended on the radius of
the electrode and on the frequency. The maximum sampling
interval of the radial variable far from the electrode was about
3 mm; the sampling spacing in the center of the electrode
was one-hundredth of the electrode radius; the minimum
spacing between sample points was close to the electrode
circumference, where it was equal to the minimum value
between one-twentieth of the sampling interval in the center
of the electrode and one-fourth of the minimum eigenvalue
of the linearized system of equations (which depended on
debye length and frequency). The maximum sampling interval
of the z variable was about 66 μm; the minimum spacing
between sample points was close to the electrode, where it
was equal to the minimum value between one-twentieth of the
maximum sampling interval of the z variable and one-fourth of
the minimum eigenvalue of the linearized system of equations.
The sampling steps were smoothly varied between the different
extremes detailed above. The resulting sampling of the radial
coordinate was constituted by about 250 points, whereas the z

variable was sampled using about 150 points.

C. Analysis of impedance spectroscopy data

As mentioned in the previous section, numerical simula-
tions allow the calculation of the potential and the densities
of ions for any frequency of the external potential and any
position in the sample. In particular, it is possible to calculate
the charge on the electrode needed to support the external
potential [Eq. (11)] and the cell impedance Z [see Eq. (12)].
The above equation allows computation of the resistance
[R = Re(Z)] and reactance [X = Im(Z)] of the equivalent
circuit of the electrolytic cell.

As mentioned before, in the 1D case an analytical solution
can be given for the ion distribution. Thus the impedance can
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be exactly calculated. It results in

Z1D = −i
2

ωεπr2β2

{
1

λ2β
tanh(βd/2) + i

ωd

2D

}
,

β2 = 1

λ2

(
1 + i

ω

D
λ2

)
, λ2 = εkBT

2N0q2
. (13)

Details of the derivation are reported in Ref. [14].
It is interesting to observe that in the ω → ∞ limit, ions do

not participate in the dynamics of the system. Since the electric
fields vary very rapidly, the relaxation times are longer than the
electric field period and ions could be considered as fixed. It
follows that the cell behaves as a perfect capacitor bounded by
finite circular electrodes. In this case, resistance goes to zero
and the cell reactance diverges linearly with the frequency.

III. RESULTS

Simulations have been performed using the approach
discussed above to analyze the frequency dependence of the
resistance and reactance of the electrolytic cell, which was
considered as a cylinder with length d = 2 mm and radius
L = 100 mm. The radius of the electrode varied between

r = 0.5 and 80 mm. Parameters used in the simulations are
n0 = 1022 ions per m3, D+ = D− = 2 × 10−9 m2/s, ε = 80,
q is the charge of a proton, and T = 300 K. The frequency is
varied in the range 10−3 < f = ω

2π
< 107 Hz. The amplitude

of the external potential is fixed to 1 mV; due to the linearity
of the system (in the amplitude range considered), this is not
a relevant parameter.

A. Impedance spectroscopy

In Fig. 2, R and −X are plotted vs frequency for the smallest
and largest considered radius of the electrode (upper row: r =
0.5 mm; lower row: r = 80 mm). In both cases, the numerical
solution (dashed red line) is compared to the analytical one [see
Eq. (13)] in the case of an infinite electrode (solid blue line),
which from now on will be called the 1D limit. As expected,
the analytical solution is valid only when r � d; otherwise,
the 1D solution is inadequate.

To better analyze the effects of the finite size of the
electrodes, in Fig. 3 the resistance and reactance are plotted
vs the frequency for a few selected radii of the electrodes.
The numerical solution converges to the analytical one (solid
black line) when r increases. However, significant differences
from the 1D limit are already evident for r = 20 mm (i.e.,

FIG. 2. (Color online) Real (R) and imaginary (−X) parts of the cell impedance vs frequency for a small and large radius of the electrode
(0.5 and 80 mm, respectively) in the upper and lower row, respectively. The numerical solution (dashed red line) is compared with the 1D limit
(solid blue line).
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FIG. 3. (Color online) Real (R) and imaginary (−X) parts of the cell impedance (multiplied by the electrode section πr2) vs frequency
for different radii of the electrode: r = 80 mm (blue line); r = 20 mm (red line); r = 4 mm (green line); r = 2 mm (cyan line); r = 1 mm
(magenta line); 1D limit (black line). (a), (b) Resistance in semilog and log-log scales, respectively. (c), (d) Reactance in semilog and log-log
scales, respectively.

r/d = 10), for cases of interest in experimental studies. The
electrode finite-size effects detectable in Fig. 3 are as follows:

(i) The dc limit of the resistance per unit surface Rπr2 de-
creases with r and the plateaux is split into two regions [Figs. 2
and 3(a)] . In particular, the ratio between the resistance found
in numerical experiments and the 1D limit findings is always

smaller than one (the 1D limit overestimates the resistance
in dc).

(ii) The maximum of the reactance at intermediate frequen-
cies (ω ∼ 105) increases with r [see Fig. 3(c)] and distortions
of the curve are present around the minimum of the reactance
[Fig. 3(d)].

FIG. 4. (Color online) Distribution of δn−(z = d/2,ρ) vs the radial coordinate for a small and large radius of the electrode. Different colors
correspond to different phases, i.e., to different times during the evolution. The analytical limits are plotted as dotted lines (and of course are
independent from ρ). (a), (c) Distribution in the range 0 � ρ � 1.1r . (b), (d) Zoom of (a) and (c) around the electrode edge (r − 0.03 mm
�ρ � r + 0.01 mm). The left column shows that for a large radius, the edge effects are negligible, while the right column shows the different
characteristic decay scales in the inward and outward (from edge) directions.
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(iii) The resistance in the high frequency limit goes to zero
as ω−2, as in the 1D limit [Fig. 3(b)].

(iv) In both the low and high frequency limits, the reactance
behaves as 1/ω, as in the 1D limit [Fig. 3(d)].

All such effects will be quantified in the next section and
their implications discussed.

B. Spatial distribution close to electrodes

To understand the origin of the finite-size effects observed,
we investigate in Fig. 4 the time evolution of the spatial
distribution in front of the electrode of negative ions for a
fixed frequency (ω = 828 Hz, corresponding to the second
plateaux) and a small and large radius (r = 0.5 mm and
r = 80 mm, respectively). In both cases, the distribution at
different time instances within one period are reported with
different colors and line types. We recall that different times
correspond to different phases. It is to be noted that the
distribution follows, with some delay, the applied potential
[V (z = −d/2) = −A sin(�)]. The solution converges to the
1D limit (reported with circles) at ρ = 0 (center of the
electrode) for both radii [Figs. 4(a) and 4(c)], and 2D effects
are limited in a small area at the electrode edges (ρ = r).
Zooming around the edge [Figs. 4(b) and 4(d)], the behavior
for the two radii looks very similar, as will be better discussed
in the following. However, it is evident that the 2D effects
on the charge accumulated on the electrode are negligible
only for a large electrode radius. In fact, the affected region
has the same spatial size (of the order of ten μm) for both
radii.

FIG. 5. (Color online) (a) Variation in ion density normalized
through the function defined in Eq. (14) vs ρ. (b) Variation in ion
density normalized through the function defined in Eq. (14) vs ρ − r .
Curves corresponding to all radii (from 0.5 to 80 mm) scale onto a
single curve.

To verify the scaling properties of the ion distributions with
varying r , it has been found that ions profiles in front of the
electrode scale in a single curve when normalized through the
function:

f (r) = a + b/r. (14)

For the case considered in Fig. 4, it has been found that a = 1
and b = 2.1 × 10−4 m. Plots of

y = δn−(−d/2,ρ)

f (r)
(15)

for various radii are reported in Figs. 5 (y vs ρ for z = −d/2)
and 5(b) (y vs ρ − r). Here we considered � = π/2. The
curves corresponding to different radii scale in a single curve
remarkably well. An extensive analysis has been performed
and has proven that b is independent from n0 and from
the frequency (except at very low frequencies where the
differences after scaling are significant).

In Fig. 6, we analyze the behavior of the ion distribution
close to the electrode edges for different frequencies (for
� = π/2). We consider a radius of r = 2 mm. The plot in
Fig. 6(a) (resistance vs frequency) shows that the chosen
frequencies correspond to the two resistance plateaux, to the
inflection points in the R vs ω curve, and to a high frequency.
The other subplots show the distribution of negative ions (close
to the electrode edge) normalized to its value at the electrode

FIG. 6. (Color online) Modulus of the variation in ion density
δn− = n− − n0 for some frequencies of the applied electric field in
front of the electrode. (a) The real part R of the cell impedance (multi-
plied by the electrode section πr2) is shown as a function of frequency
for the radius of the electrode, r = 2 mm. Five values of frequency
are indicated and considered for the other plots as follows: on the
first plateau, on the first inflection point, on the second plateau, on the
last inflection point, and at high frequency. (b) δn− normalized to its
value for z = d/2,ρ = r . (c) Zoom of (b) around the electrode edge.
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FIG. 7. (Color online) (a) Potential V at z = d/2 (in front of the
electrode surface) as a function of ρ. (b) Zoom of (a) around the
electrode edge. Same case as Fig. 6.

edge. We can observe that the ionic density at the edge of the
electrode (ρ = r,z = d/2 ) is very different from the expected
1D limit [Fig. 6(b)]. Furthermore, it has a different decay in
the inward and outward directions. In particular, δn− decays
rapidly to zero from the edge of the electrode outward, within
a typical length of the order of that of debye [Fig. 6(c)]. Decay
is much faster at higher frequencies (as expected). The decay
length is much higher in the inward direction (from edge to cen-
ter), again significantly increasing for decreasing frequency.

As a consequence of the redistribution of ions, the potential
decays rapidly from the edge of the electrode [Fig. 7(a)],
becoming negligible within a few mm distance from the edge.
In addition to this effect, typical of a finite-size condenser, a
decay can be appreciated on a smaller length scale (that of the
debye length). The effect can be appreciated when zooming
around ρ = r [Fig. 7(b)], where the apparent jump of potential

immediately close to the edge of the electrode visible in Fig. 7
is indeed shown to be a fast decay. The effect is more significant
at low frequency (blue line) and almost negligible at high
frequency (magenta line).

Similar considerations hold true for the distribution of δn−
as a function of z (not reported for brevity). The solution at
ρ = 0 is the same as for the 1D limit for both a large and small
radius. On the contrary, huge differences from the analytical
solution are present for ρ = r . In both cases, the distribution
decays to zero in a region of the order of the debye length from
the electrode edge inward.

IV. DISCUSSION

To quantify effects due to the finite size of the electrodes, we
consider here the major features in the resistance and reactance
vs frequency curves.

Considering the reactance −X, as mentioned, the more
meaningful features are the position of the maximum and
minimum (see Fig. 2). In Fig. 8(a), −Xπr2 vs ω is plotted
around ω = ωmax

1D (where ωmax
1D is the frequency corresponding

to the position of the maximum in the 1D limit). It can be
seen that the frequency ωmax corresponding to the maximum
of the reactance does not depend on the electrode radius
[Fig. 8(b)], while −X(ωmax

1D ) increases with r up to saturating
to the value assumed in the 1D approximation [Fig. 8(c)].
Different is the case of the minimum of −Xπr2 [plotted in
Fig. 9 vs frequency around the frequency corresponding to
the minimum position in the 1D approximation]. Here, the
frequency diminishes with increasing radius, up to saturating
at the 1D approximation value. The value of −Xπr2 in
correspondence to the minimum, first increases then de-
creases with increasing r (again saturating towards the 1D
limit).

Finally, in Fig. 10, the dc limit of the resistance Rπr2

and the position of the three inflection points are studied as
functions of the radius of the electrode. In Fig. 10(a), Rπr2 is
plotted vs frequency and the inflection points for each curve
are reported as squares or red circles. Also, the plateaux values
are identified with triangles and red squares. The positions

FIG. 8. (Color online) (a) Behavior of the reactance (−Xπr2) vs frequency around the position of its maximum (see Fig. 1 for
the full curve). (b) Position of the maximum of (a) vs the electrode radius. (c) Amplitude of the maximum of (a) vs the electrode
radius.
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FIG. 9. (Color online) (a) Behavior of the reactance (−Xπr2) vs frequency around the position of its minimum (see Fig. 1 for
the full curve). (b) Position of the minimum of (a) vs the electrode radius. (c) Amplitude of the minimum of (a) vs the electrode
radius.

of the three inflection points as functions of the radius are
shown in Fig. 10(b). The inflection point at large frequency
does not change with r and corresponds to the inflection point
found in the 1D limit. The other two inflection points move
to lower frequencies increasing r and disappear in the r →
∞ limit. The difference of the resistance values at the two

plateaux are reported vs r in Fig. 10(c). It converges to zero for
large values of the electrode radius and presents a maximum
when the frequency is decreased. Finally, in Fig. 10(d), the
resistance in the dc limit (Rπr2) is plotted vs the electrode
radius. As expected, the resistance increases with increasing
r and converges to the 1D limit, thus indicating the presence

FIG. 10. (Color online) (a) Behavior of the resistance Rπr2 as a function of frequency. Three inflection points (black squares and red
circles) can be identified for each curve. Also two plateaux values of the resistance (red triangles and circles) are visible. (b) Position of the
three inflection points vs radius of the electrode. (c) Difference between plateaux values of resistance as a function of the electrode radius. (d)
Behavior of the resistance Rπr2 as a function of the electrode radius in the dc limit.
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of an additional electric current due to finite-size effects at the
electrode edges.

V. CONCLUSIONS

In this paper, we analyzed the effects on the ion redistribu-
tion in an electrolytic cell (and affine systems) due to the finite
size of the electrodes used to apply an electrical potential.
In particular, we studied the variations of the frequency
dependence of the resistance and reactance of the system
(impedance spectroscopy experiments).

We found that such effects are not negligible already when
the electrode radius is of the order of 10d (where d is the
distance between the electrodes), i.e., in common experimental
situations. The major effects observed are the appearance of
two plateaux in the resistance, the reduction of the resistance in
the dc limit, and a variation in the frequency of the minimum of
the reactance. We also showed that such effects are due to local
variations in the ionic distribution localized in a very narrow
region at the edges of the electrodes. Such effects (due to their
localization) do not seem to be removed when introducing a
guard ring.

Thus, particular care has to be used when applying the
solution of 1D models of the electrolytic cell to estimate
the ionic parameters, such as concentration and diffusion
coefficients. The results presented here indicate that 2D effects
(in cylindrical coordinates) might be responsible for some of

the anomalous effects observed in experiments (such as the two
plateaux resistance behavior). However, other effects cannot
be simply ascribed to the finite size of the electrodes. Among
them, in experiments [16], a decay of the reactance in the dc
limit is often observed that is not proportional to 1/ω. Our find-
ings indicate that in the dc (and high frequency) limits, the be-
havior of reactance still remains as in the 1D limit (1/ω for both
high and dc limits of the reactance). Thus other causes have to
be individuated to explain such a set of experimental data.

Further studies will be devoted to consider finite-size
effects due to the transducer when more complex systems
are considered. Among them, equations will be modified
to include more than one ion species, adsorption effects,
and frequency-dependent diffusion (or dielectric constant)
parameters. Such physical mechanisms alone (ambipolar
diffusion, double layer effects, etc.) have proven to be
insufficient to explain completely the anomalous behaviors
in the experimental data discussed above. However, their
combination with the transducer size effects discussed here
might provide a satisfactory interpretation of the measured
impedance of systems such as gels for biomedical applications
(work in progress).
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