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In this paper we study the critical behavior of the fully connected p-color Potts spin glass at the dynamical
transition. In the framework of mode coupling theory (MCT), the time autocorrelation function displays a two-step
relaxation, with two exponents governing the approach to the plateau and the exit from it. Exploiting a relation
between static and equilibrium dynamics which has been recently introduced, we are able to compute the critical
slowing down exponents at the dynamical transition with arbitrary precision and for any value of the number
of colors p. When available, we compare our exact results with numerical simulations. In addition, we present
a detailed study of the dynamical transition in the large p limit, showing that the system is not equivalent to a
random energy model.

DOI: 10.1103/PhysRevE.85.051504 PACS number(s): 64.70.Q−, 64.60.Ht, 75.10.Nr

I. INTRODUCTION

Mean-field spin-glass models can be divided into two
main classes, the ones which undergo a continuous transition
and the ones which, instead, display a jump in the order
parameter. In systems belonging to the former class, at a certain
temperature Ts a second order phase transition takes place,
with a continuous growth of the Edwards-Anderson (EA)
order parameter qEA = 1

N

∑
i 〈Si〉2 and zero magnetization

(in absence of magnetic field): the spins are essentially frozen
in a random direction so that the global mean magnetization
vanishes while the mean square magnetization is finite. In the
low temperature phase the replica symmetry is broken with a
continuous pattern [full replica symmetry breaking (RSB)] or
with a steplike pattern (one-step RSB) according to the Parisi
scheme [1], and the order parameter is, in fact, a nontrivial
function q(x). One can also study the Langevin dynamics
of these systems, showing that exactly at the thermodynamic
transition temperature Ts there is ergodicity breaking; therefore
we can say that, in correspondence to the static transition, a
dynamical transition takes place too.

There exists another class of mean-field spin-glass model
(like the p-spin or the p-color Potts model [2,3]) which
display two different transitions: at a temperature Ts there
is a thermodynamic phase transition which is second order
in terms of potentials but can be discontinuous in the EA
order parameter. The low temperature phase is (at least in the
vicinity of the critical temperature) one-step replica symmetry
broken. At a temperature Td > Ts a dynamical phase transition
occurs, where the system’s relaxation time becomes infinite
and the ergodicity is broken [2,4]. This is due to the fact that
at the dynamical transition the equilibrium state splits into a
large (exponential in the system size) number of excited states,
represented by free energy local minima. Since in the mean
field the barriers between these states become infinitely high
in the thermodynamic limit, the equilibrium dynamics remains
stuck forever in one of them, and the overlap cannot relax to
zero.

This second class of mean-field systems has been shown to
share some relevant properties of structural glasses [5–8]; more
specifically, the dynamical equations are exactly equivalent to

those predicted by the mode coupling theory (MCT) above
the mode coupling temperature Tmc where ergodicity breaking
occurs. The analogy between structural glass models (with
self-induced frustration) and proper mean-field spin glasses
(with quenched disorder) has been widely studied and has
provided rather accurate predictions [9–12]. In systems with
continuous transition, above Ts the spin-spin time correlation
function C(t) = 〈σi(0)σi(t)〉 decays exponentially at large
times, which means that the system is ergodic. Lowering the
temperature the relaxation time grows until it diverges exactly
at Ts (the static transition temperature), so that the ergodicity
is broken, and the relaxation (at large times) follows a power
law C(t) ∼ t−ν with some exponent ν.

The systems belonging to the discontinuous class intro-
duced above behave quite differently: above Td the time
correlation function displays at first a fast decay to a plateau
and then a slow decay to zero (in the absence of a magnetic
field) [4]; the length of the plateau grows, lowering the
temperature until it diverges at Td . According to MCT the
approach to the plateau and the decay from it are both
characterized by a power law behavior, respectively,

C(t) � qd + ct−a, (1)

C(t) � qd − c′tb, (2)

where qd is the height of the plateau, and the two exponents
satisfy the exact MCT relation

�2(1 − a)

�(1 − 2a)
= �2(1 + b)

�(1 + 2b)
= λ, (3)

where λ is usually treated as a tunable parameter (see, for
example, [13]). The exponents a and b have been computed
exactly only for the spherical p-spin model [4] because the
dynamical equations are particularly simple and correspond
to the so-called schematic MCT models. In most cases it is
instead very difficult or impossible to compute the exponents in
a purely dynamical framework, either analytically or through
Monte Carlo simulations.
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Numerical simulations are often difficult to interpret and
give a quite poor indication of the value of the exponents
due to strong finite size effects; if the system is not infinite,
barriers between metastable states cannot be infinitely high,
the dynamics does not remain stuck in a single state, and
all the observables eventually relax to their equilibrium value
since, through activated processes, the configuration is able
to explore the whole phase space. The extent of this effect
depends on the specific model we consider and, in particular,
on how fast the barriers between metastable states grow with
the size of the system.

Recently, a connection between the mode coupling expo-
nents and some purely thermodynamic quantities has been
introduced [14]; this connection suggests a quite simple recipe
to compute the dynamical exponents exactly starting from the
static mean-field theory which is much easier to work out for
all the reasonable models one can think of.

The aim of this paper is to apply this technique to the
mean-field Potts spin glass and compute the MCT exponents
for any value of the number of colors p. The Potts glass is
particularly interesting because, as will be pointed out in the
following sections, the parameter p allows us to switch from
a continuous transition (p � 4) to a discontinuous transition
(p > 4); moreover in the latter case it works as a tuning
parameter for the magnitude and separation of the static and
dynamical transitions. In the following we will not make use
of the symplectic representation which is widely exploited in
literature [15–17]. The outline of this paper is as follows: in
Sec. II we give a sketch of the technique used to compute
the MCT exponents in a generic model; in Sec. III we
summarize some of the necessary known results about the
Potts model. In Sec. IV we compute the dynamical exponents
for the Potts model for arbitrary value of the parameter p. In
Sec. V we compare our theoretical exact results with numerical
simulations, and in Sec. VI we give our conclusions and final
remarks.

II. HOW TO COMPUTE THE EXPONENT

Given a fully connected model, it is possible to compute the
Gibbs free energy as a function of the order parameter, which,
in the case of a spin-glass transition, is the well known overlap
matrix Q. The thermodynamic value of the order parameter can
be determined by minimizing the Gibbs free energy functional.
It can then be expanded around the replica symmetric saddle
point solution, giving rise to eight different kinds of third order
terms. For our purposes, only two of them will be relevant,
namely,

w1Tr(δQ3) = w1

∑
a,b,c

δQabδQbcδQca, (4)

and

w2

∑
a,b

δQ3
ab. (5)

In the case of continuous transitions it has been found [14]
that there exists a quite simple relation between the exponent

ν and the two coefficients w1 and w2:

�2(1 − ν)

�(1 − 2ν)
= w2(Ts)

w1(Ts)
. (6)

In the case of discontinuous transitions it can be shown
[14] that a relation analogous to (6) holds at the dynamical
transition, which, again, gives the connection between the
dynamical exponents a and b and the static coefficients,
namely,

�2(1 − a)

�(1 − 2a)
= �2(1 + b)

�(1 + 2b)
= w2(Td )

w1(Td )
, (7)

where, different from the former case, the expansion of the
Gibbs free energy has to be performed around the dynamical
overlap (the height of the infinite plateau at the dynamical
transition).

In order to compute the two coefficients w1 and w2 one
must determine the expression of the Gibbs free energy as
a function of the overlap and then expand it to third order
around the replica symmetric (RS) thermodynamic value q.
The reason why the expansion has to be performed around a
replica symmetric solution will be clarified in Sec. IV. In fully
connected models, introducing a replicated external field ε, the
free energy reads

f (ε) = − 1

βnN
ln

∫
dQ exp N (S[Q] + Tr εQ), (8)

which, for N → ∞, can be evaluated at the saddle point,

f (ε) = − 1

βn
extrQ(S[Q] + Tr εQ). (9)

We can immediately notice that the equation above exactly
defines f (ε) as the anti-Legendre transform L of the effective
action,

f (ε) = L (S[Q]), (10)

and, again, by definition the Gibbs free energy �(Q) is the
Legendre transform L of f (ε), yielding

�(Q) ≡ L (f (ε)) = L (L (S[Q])) = S[Q]. (11)

This implies that the functional form of the Gibbs free energy
is exactly the same as the effective action. In fully connected
models, we can then directly expand the latter.

The general form of the third order term in the effective
action reads

S (3) =
∑

(ab)(cd)(ef )

Wab,cd,ef δQabδQcdδQef . (12)

Since a 
= b, c 
= d, and e 
= f and the coefficients W

are computed in a RS ansatz, we can have eight different
vertices:

Wαβ,βγ,γ α = W1, Wαβ,αβ,αβ = W2,

Wαβ,αβ,αγ = W3, Wαβ,αβ,γ δ = W4,
(13)

Wαβ,βγ,γ δ = W5, Wαβ,αγ,αδ = W6,

Wαγ,βγ,δμ = W7, Wαβ,γ δ,μν = W8.
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Following Ref. [18], Eq. (12) can be rephrased in the following way:

S (3) = w1

∑
αβγ

δQαβδQβγ δQγα + w2

∑
αβ

δQαβδQαβδQαβ + w3

∑
αβγ

δQαβδQαβδQαγ + w4

∑
αβγ δ

δQαβδQαβδQγδ

+w5

∑
αβγ δ

δQαβδQαγ δQβδ + w6

∑
αβγ δ

δQαβδQαγ δQαδ + w7

∑
αβγ δμ

δQαγ δQβγ δQδμ + w8

∑
αβγ δμν

δQαβδQγδδQμν, (14)

with

w1 = W1 − 3W5 + 3W7 − W8, w2 = 1

2
W2 − 3W3 + 3

2
W4 + 3W5 + 2W6 − 6W7 + 2W8,

w3 = 3W3 − 3W4 − 6W5 − 3W6 + 15W7 − 6W8, w4 = 3

4
W4 − 3

2
W7 + 3

4
W8, w5 = 3W5 − 6W7 + 3W8, (15)

w6 = W6 − 3W7 + 2W8, w7 = 3

2
W7 − 3

2
W8, w8 = 1

8
W8.

It is therefore sufficient to compute the eight W coefficients
and use Eq. (15) to get w1 and w2.

III. THE POTTS MODEL: SUMMARY OF KNOWN
RESULTS

We consider the p-color disordered Potts Hamiltonian

H = −
∑
〈i,j〉

Jij η(σi,σj ), (16)

with

η(a,b) = p δa,b − 1, (17)

where p is the number of colors and σ = 0,1, . . . ,p − 1. The
sum is extended over all the possible couples taken from
N spins, and the couplings Jij are independent Gaussian
random variables with mean J0/N and variance J 2/N ,
where the normalization is needed in order to obtain a finite
thermodynamic limit. As usual, we are interested in computing
the mean-field free energy, exploiting the well known replica
trick in order to average over the disorder

ln Z = lim
n→0

1

n
ln Zn. (18)

Carrying on the computation, we obtain the replicated partition
function in a functional integral form:

Zn =
∫

DQ Dm exp(−NS[m,Q]), (19)

where the “effective action” S[m,Q] is a function of two order
parameters: the magnetization mα

r and the overlap Q
αβ
rs , with

Greek replica indices α,β = 1, . . . ,n and Latin color indices
r,s = 1, . . . ,p.

S[m,Q] = β2J 2

4
(1 − p) + β2J 2

2p2

∑
α<β

∑
r,s

(
Qαβ

rs

)2

× β

2p

[
J0 + βJ 2 p − 2

2

]

×
∑

α

∑
r

(
mα

r

)2 − ln Tr{σ }eH[m,Q,{σ }], (20)

H[m,Q,{σ }] = β2J 2

p2

∑
α<β

∑
r,s

Qαβ
rs η(σα,r)η(σβ,s)

+ β

p

[
J0 + βJ 2 p − 2

2

] ∑
α

∑
r

mα
r η(σα,r).

(21)

In order to determine the order parameters we can use the two
saddle point equations, which read

Qab
rs = 〈〈η(σα,r)η(σβ,s)〉〉, (22)

mα
r = 〈〈η(σα,r)〉〉, (23)

where 〈〈· · · 〉〉 is the average taken with respect to the measure

μ({σ }) = eH[m,Q,{σ }]

Tr{τ }eH[m,Q,{τ }] . (24)

The order parameters are clearly redundant; in fact, they satisfy
the following constraints:∑

r

Qαβ
rs = 0 ∀s,

∑
r

mα
r = 0. (25)

In the particular case p = 2 one recovers the Sherrington-
Kirkpatrick (SK) model solution [1].

For p > 2 ferromagnetic ordering is always preferred
below some temperature TF [3]. An upper bound TE for the
temperature TF below which ferromagnetic ordering appears
is [19] (from now on we consider J = 1)

TE = p − 2

2(1 − J0)
. (26)

For p > 4, in order to prevent ferromagnetic ordering from
occurring at a higher temperature than the spin-glass one, the
couplings should be antiferromagnetic on average, with J0

less than some (negative) threshold value. A lower bound for
the critical mean value is JF = (4 − p)/2 [19]. Under this
condition the magnetization is zero, and it is straightforward
to show that, as a consequence, the overlap has the symmetry
Q

αβ
rs = Qαβη(r,s). Then it is possible to write the Gibbs free

energy as a function of a unique overlap matrix in the following
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way [19]:

�[Q] = 1

2
(p − 1)β2

∑
α<β

Q2
αβ

− ln Tr exp

⎡
⎣β2

∑
α<β

Qαβη(σα,σ β)

⎤
⎦ . (27)

Differentiating with respect to Qαβ , one obtains the saddle
point equation,

Qαβ = 1

p − 1

Tr η(σα,σ β) exp (U[Q,σ ])

Tr exp (U[Q,σ ])

= 1

p − 1
〈〈η(σα,σ β)〉〉, (28)

with

U[Q,σ ] = β2
∑
α<β

Qαβη(σα,σ β). (29)

It has been shown [3] that for 2.8 < p < 4 the system
undergoes a continuous transition at a temperature Ts = 1 with
one-step RSB. The breaking point is m = (p − 2)/2.

For p > 4 the transition occurs at a temperature Ts > 1;
it is discontinuous, and the RSB scheme is one step with
breaking parameter m = 1 at criticality. In this case there
exists a (dynamical) glass transition, associated with the
static one, occurring at some temperature Td greater than Ts .
The static and dynamical transition temperatures and overlap
can be determined numerically with great accuracy using
the marginality condition and the techniques described in
Ref. [19]. We briefly summarize the results here.

We can compute the free energy (27) in the one-step RSB
ansatz with q1 = q and q0 = 0 and expand it at first order
around m = 1 as �0 + (m − 1)�1(q),

�(q) = 1
4β2(1 − p) − ln(p) + (m − 1)

× (
1
4β2(p − 1)q2 + 1

2β2q(p + 1) + ln(p) − I2
)
,

(30)

where the integral I2 is given by

I2 = exp

(
− β2pq

2

) ∫ ∞

−∞

p∏
r=1

(
dyr√

2π
e− y2

r
2

)

× eβ
√

qpy1 ln

[(
p∑

r=1

exp
(
β(qp)

1
2 yr

))]
. (31)

For m = 1 expression (30) gives the high-temperature free
energy, which is independent of q. This general expansion
allows us to determine the static and the dynamic transitions.

The static temperature is determined by imposing that a
solution qs exists that satisfies the following conditions:(

∂�

∂q

)
q=qs

=
(

∂�1

∂q

)
q=qs

= 0, (32)

(�1)q=qs
= 0. (33)

On the other hand, for the dynamical transition temperature,
we must search for a marginal stability, and the conditions

become (
∂�

∂q

)
q=qd

=
(

∂�1

∂q

)
q=qd

= 0, (34)

(
∂2�

∂q2

)
q=qd

=
(

∂2�1

∂q2

)
q=qd

= 0. (35)

In the language of the Franz-Parisi potential [20] the two
conditions above correspond, respectively, to the appearance of
a local minimum (horizontal flex) for the dynamical transition
and to the fact that this minimum reaches the same height as
the paramagnetic one for the static transition.

As we will see in the following, the p-dimensional integral
I2 in Eq. (30) is extremely hard to evaluate numerically as soon
as p > 2. Therefore in Ref. [19] the authors use the identity

ln(1 + A) =
∫ ∞

0

dx

x
e−x(1 − e−Ax), (36)

and taking

A =
p∑

r=1

exp
(
β(qp)

1
2 yr

) − 1, (37)

they obtain the result

I2 =
∫ ∞

0

dx

x
e−x {1 − exw

(
xeβ2qp

)
wp−1(x)}, (38)

with

w(x) =
∫ ∞

−∞

dy√
2π

exp

(
− 1

2
y2 − x exp

(
β(pq)

1
2 y

))
, (39)

which is much easier to evaluate numerically [21].

A. Infinite number of colors

It has been pointed out [3] that the Potts model becomes
a random energy model (REM) in the limit p → ∞, with a
critical temperature that diverges like

Ts = 1

2

√
p

ln(p)
. (40)

In the following, we show that the limit model is not exactly
a REM. The first of Eqs. (32), which is satisfied at both
the dynamical and statical transitions, can be written in the
following way:

q = 1

p − 1
(p L(p)(β,q) − 1), (41)

with

L(p)(β,q) =
(∫

Gp(z)
p∑

r=1

exp
(
β(pq)1/2zr

))−1

×
∫

Gp(z)

(∑p

r=1 exp
(
2β(pq)1/2zr

)
∑p

r=1 exp
(
β(pq)1/2zr

)
)

and

Gp(z) =
(

p∏
r=1

dzr√
2π

exp

(
− 1

2
z2
r

))
. (42)
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FIG. 1. (Color online) Black solid line: y = q. Yellow (left) and
green (right) dashed lines: y = L(∞)(ξ,q) for ξ = 4 and ξ = 4/3.
Blue (gray) solid line: y = L(∞)(ξ,q) for ξ = 2. The dynamical
transition is located at ξ = 2, for which the line y = q is tangent
to the curve y = L(∞)(ξ,q).

We have been able to show that, as a function of the rescaled
temperature

ξ = β2 p

ln(p)
, (43)

the right hand side of Eq. (41) tends to a Heaviside function in
the infinite p limit (see the Appendix),

L(∞)(ξ,q) = θ

(
q − 2

ξ

)
(44)

with breaking point q = 2/ξ .
As can be easily seen from Fig. 1 both qd and qs go to 1

in the limit p → ∞, and the dynamical transition is located at
the rescaled temperature such that the breaking point of L(∞)

is 1:

ξd = 2 =⇒ Td =
√

p

2 ln(p)
. (45)

While in a REM the ratio between Td and Ts is formally
infinite [22], in the large p Potts model this ratio tends to a
finite value, namely,

Td

Ts

−−−→
p→∞

√
ξs

ξd

=
√

2 ≈ 1.414 . . . (46)

Therefore, the limit model is still a “glassy” model with
dynamic and static transitions. This is at variance with the Ising
p-spin model in the p → ∞ limit that goes to a REM [22].

IV. THE POTTS MODEL: MCT EXPONENTS

The determination of the mode coupling exponents follows
essentially the steps described in Sec. II. Expanding the ef-
fective action (27) to third order around the replica symmetric
saddle point, we obtain the following eight coefficients:

W1 = R1 − 3(p − 1)qM2 + 2(p − 1)3q3,

W2 = R2 − 3(p − 1)qM1 + 2(p − 1)3q3,

W3 = R3 − (p − 1)qM1 − 2(p − 1)qM2 + 2(p − 1)3q3,

W4 = R4 − (p − 1)qM1 − 2(p − 1)qM3 + 2(p − 1)3q3,

W5 = R5 − 2(p − 1)qM2 − (p − 1)qM3 + 2(p − 1)3q3,

W6 = R6 − 3(p − 1)qM2 + 2(p − 1)3q3,

W7 = R7 − (p − 1)qM2 − 2(p − 1)qM3 + 2(p − 1)3q3,

W8 = R8 − 3(p − 1)qM3 + 2(p − 1)3q3, (47)

where the replica symmetric overlap is determined through the
saddle point equation

q = 〈〈η(σα,σ β)〉〉, (48)

the “mass matrix” can assume three different values

M1 = 〈〈η(σα,σ β)η(σα,σ β)〉〉,
M2 = 〈〈η(σα,σ β)η(σα,σ γ )〉〉, (49)

M3 = 〈〈η(σα,σ β)η(σγ ,σ δ)〉〉,
and the six-replica cumulants are given by

R1 = 〈〈η(σα,σ β)η(σβ,σ γ )η(σγ ,σ α)〉〉,
R2 = 〈〈η(σα,σ β)η(σα,σ β)η(σα,σ β)〉〉,
R3 = 〈〈η(σα,σ β)η(σα,σ β)η(σα,σ γ )〉〉,
R4 = 〈〈η(σα,σ β)η(σα,σ β)η(σγ ,σ δ)〉〉,

(50)
R5 = 〈〈η(σα,σ β)η(σβ,σ γ )η(σγ ,σ δ)〉〉,
R6 = 〈〈η(σα,σ β)η(σα,σ γ )η(σα,σ δ)〉〉,
R7 = 〈〈η(σα,σ β)η(σα,σ γ )η(σ δ,σμ)〉〉,
R8 = 〈〈η(σα,σ β)η(σγ ,σ δ)η(σμ,σ ν)〉〉.

Given the relationship [Eq. (15)] between w1, w2, and the W

coefficients, one obtains

w1 = R1 − 3R5 + 3R7 − R8,
(51)

w2 = 1
2 [R2 − 6R3 + 3R4 + 6R5 + 4(R6 − 3R7 + R8)],

where only the disconnected cumulants are left.
If the thermodynamic phase transition is continuous, then it

coincides with the dynamical one (as in the SK model). In this
case dynamical quantities at infinite time relax to their static
value [23], and the averages above can be computed in a replica
symmetric ansatz taking finally the limit n → 0. If, instead,
the transition is discontinuous, then the coefficients have to
be computed at the dynamical transition, where quantities at
infinite time do not relax to their equilibrium (thermodynamic)
value but remain stuck at their value inside the most excited
metastable states. The averages should then be computed
inside a single state; this corresponds to taking a one-step
RSB ansatz with breaking parameter m → 1 or, if the mutual
overlap between different states is 0 as in our case, a RS
ansatz with the number of replicas n → 1 [24]. Finally, we can
assume replica symmetry and leave n unspecified, obtaining
the following expressions for the two coefficients:

w1 = p3(L3 − 3L4 + 3L23 − L222) (52)

and

w2 = p2

2
(1 − q) + 1

2
p3(q − 6L3 + 10L4 + 3L22

− 12L23 + 4L222),
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where, exploiting the fact that (η(σa,σ b))2 = (p − 1) + (p − 2)η(σa,σ b), the saddle point equation becomes

q = 1

p − 1

[
p

∫
Gp(z)

(∑p

r=1 exp
(
β(pq)1/2zr

))n−2( ∑p

r=1 exp
(
2β(pq)1/2zr

))
∫
Gp(z)

(∑p

r=1 exp
(
β(pq)1/2zr

))n − 1

]
, (53)

and we have defined the class of integrals

Lklh = 1∫
Gp(z)

(∑p

r=1 exp
(
β(pq)1/2zr

))n

∫
Gp(z)

(
p∑

r=1

exp
(
β(pq)1/2zr

))n−k−l−h (
p∑

r=1

exp
(
kβ(pq)1/2zr

))

×
(

p∑
r=1

exp
(
lβ(pq)1/2zr

)) (
p∑

r=1

exp
(
hβ(pq)1/2zr

))
, Lkl = 1

p
Lkl0, Lk = 1

p2
Lk00, (54)

with Gp(z) given in Eq. (42). As already pointed out, the above
result holds for both continuous and discontinuous transitions,
with the only difference that in the former case q and the L

integrals are computed at n = 0, while in the latter we consider
n = 1.

A. The continuous transition

If p < 4 the phase transition is second order [3], with q(x)
being continuous for p = 2 and steplike for p = 3. In the
case of continuous transitions we have to consider n = 0 and
q = 0, and the result (already found in Ref. [3]) is very simple,
namely,

w2

w1
= p − 2

2
, (55)

which yields ν2 = 0.5 and ν3 � 0.395. As in the case of the
fully connected model, it can be proven [25] that, on the Bethe
lattice, for p � 4 the phase transition is second order. The
difference on the Bethe lattice is that, for p = 3 and low

enough connectivity, the order parameter q(x) is a continuous
(Parisi type) function, while for high connectivity it becomes
a steplike function (as in the fully connected case). This does
not affect the result, which is again (for p � 4) given by
Eq. (55).

B. The discontinuous transition

We are interested here in the case p > 4, when the system
undergoes a dynamical transition; therefore we must take the
limit n → 1 in order to compute the exponents correctly. The
computation of the overlap q and the third order coefficients w1

and w2 involves p-dimensional integrals (54), which become
very difficult to evaluate numerically as soon as p is greater
than 2. In order to overcome this issue, using the identity

1

Ak
= 1

(k − 1)!

∫ ∞

0
xk−1e−Ax, (56)

the integrals (54) can be rewritten in following form, which is
more suitable for numerical evaluation:

Lklh = e− 1
2 β2pq

p (k + l + h − 2)!

[
p e

1
2 (k+l+h)2β2pq

∫ ∞

0
dx xk+l+h−2 wp−1(x) w

(
x e(k+l+h)β2pq

)
+p(p − 1) e

1
2 (k+l)2β2pqe

1
2 h2β2pq

∫ ∞

0
dx xk+l+h−2 wp−2(x) w

(
x e(k+l)β2pq

)
w

(
x ehβ2pq

)
+p(p − 1) e

1
2 (k+h)2β2pqe

1
2 l2β2pq

∫ ∞

0
dx xk+l+h−2 wp−2(x) w

(
x e(k+h)β2pq

)
w

(
x elβ2pq

)
+p(p − 1) e

1
2 (l+h)2β2pqe

1
2 k2β2pq

∫ ∞

0
dx xk+l+h−2 wp−2(x) w

(
x e(l+h)β2pq

)
w

(
x ekβ2pq

)
+p(p − 1)(p − 2) e

1
2 (k2+l2+h2)β2pq

∫ ∞

0
dx xk+l+h−2 wp−3(x) w

(
x ekβ2pq

)
w

(
x elβ2pq

)
w

(
x ehβ2pq

)]
, (57)

with w(x) given in Eq. (39).
Through identity (56) we have been able to reduce p-

dimensional to “sort of” two-dimensional integrals. They are
not technically two-dimensional integrals because in formula
(57) for each value of the integration variable x we have
to perform two, three, or four integrations to obtain the
function w in different points (instead of just one integra-

tion, which would be needed in a regular two-dimensional
integral).

Some care is needed in the computation of w(x), especially
for small x’s, since the integrand has an extremely steep growth
near zero and the integration step must be taken very small. In
order to go to very large values of p it should be better to recast
the integrals (57) in their asymptotic form using Eqs. (A5) and
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TABLE I. The dynamical transition temperature, the dynamical
overlap, the exponent parameter, and the a exponent for different
values of p ranging from 5 to 100.

p Td qd λ a

5 1.0101 0.09507 0.8764 0.2290
7 1.0577 0.2206 0.8236 0.2651
10 1.1420 0.3238 0.8052 0.2759
12 1.1970 0.3665 0.8002 0.2787
15 1.2748 0.4114 0.7962 0.2810
20 1.3926 0.4598 0.7930 0.2827
30 1.5941 0.5142 0.7904 0.2841
40 1.7648 0.5455 0.7895 0.2846
100 2.4964 0.6187 0.7892 0.2848

(A8) given in the Appendix. The results for different values of
the number of colors p are reported in Table I and in Fig. 2.

V. COMPARISON WITH NUMERICAL SIMULATIONS

For p = 10 Monte Carlo simulations were performed in
Refs. [26,27] to investigate the finite size effects on the glass
transition. References [26,27] find that the thermodynamic
static quantities such as the energy, the entropy, the suscep-
tibility, and the overlap distribution display very strong finite
size effects. It is found also that the system remains always
ergodic and the plateau in the equilibrium spin-spin correlation
function C(t) is almost invisible even at temperatures close to
the dynamical transition TG and for big system sizes. Since
for N → ∞ the physics of the system should be described
by the exact mode coupling equations, Refs. [26,27] expect
a divergence of the relaxation time τ (t) with a power law
behavior at the dynamical transition:

τ ∝
(

T

Td

− 1

)−γ

, (58)

with an exponent γ which, in mode coupling theory, is related
to the exponents a and b through the exact relation

γ = 1

2a
+ 1

2b
. (59)

10 20 30 40 50 60 70 80 90 100
0.22

0.24

0.26

0.28

p

a

FIG. 2. Joined circles: the exponent a computed for different
values of the number of colors ranging from p = 5 to p = 100 in
the discontinuous regime.

Refs. [26,27] plot τ
− 1

γ for a set of reasonable trial values
of γ and find that the data are linearized in the region
1.1 � T � 1.4 for γ = 2.0 ± 0.5. This value of γ gives,
through relation (59), an indirect estimate for a(γ ) ≈ 0.36.
Two different kinds of finite size scaling are considered in order
to perform extrapolations of C(t,N ) at N → ∞. References
[26,27] find that only one of the two gives a C(t) which is
suitably compatible with a power law behavior of the type in
Eq. (1). In this way they can make a rough direct estimate of
the exponent, obtaining a = 0.33 ± 0.04, which, despite the
difficulties (identification of the plateau, extrapolation, etc.),
is close (within 2σ ) to our exact computation.

VI. CONCLUSIONS AND REMARKS

In the first part of this paper we presented a review of
some known results about the disordered Potts model. In the
second part, exploiting a technique that has been recently
developed [14], we computed the dynamical exponents of
the autocorrelation decay in the cases of continuous and
discontinuous transitions in a completely static framework.

In Fig. 2 we show the plot of the exponent a as a function
of the parameter p from p = 5 up to p = 100.

Since our computation is nonperturbative, the exponents
can be determined with arbitrary precision, and they can be
taken as a reference in numerical simulations. Knowing a
priori the exponents in the thermodynamic limit, one has an
additional tool for studying, for example, the finite size effects
and the deviations from MCT in a numerical simulation of a
finite (fully connected) system.
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APPENDIX: INFINITE p LIMIT

In this Appendix we compute the dynamical critical
temperature Td and overlap qd in the limit p → ∞ and the
first correction. First of all, note that the saddle point equation
(41) in the infinite p limit becomes

q = L(∞)(β,q). (A1)

Using identity (56), the p-dimensional integral L of Eq. (41)
can be rewritten in the following way:

L(p)(β,q) =
∫ ∞

0
dx

[
w

(
xe− 3

2 β2pq
)]p−1

w
(
xe

1
2 β2pq

)
. (A2)

Setting α ≡ βp1/2q1/2 and making the change of variables

x = e
1
2 α2+αx, (A3)

the integral becomes∫ ∞

−∞
dx α e

1
2 α2+αxw

(
eα2+αx

)[
w

(
e−α2+αx

)]p−1
. (A4)

Through standard manipulations it can be shown that

α e
1
2 α2+αxw

(
eα2+αx

) = 1√
2π

e− 1
2 x2

F (x), (A5)
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where F (x) tends to unity in the α → ∞ limit:

F (x) =
∫ ∞

−∞
dy

[
ey−ey ]

e
− y2

2α2 + yx

α . (A6)

Moreover we have clearly

w
(
e−α2+αx

) → 1. (A7)

The behavior of wp−1 and, consequently, of the integral L is
now determined by the leading order of the first correction
� ≡ w − 1; in fact[

w
(
e−α2+αx

)]p−1 � exp[p ln(1 + �)]. (A8)

We have to compute the leading behavior of

� ≡
∫ ∞

−∞

dy√
2π

e− 1
2 y2[

exp
(−e−α2+α(y+x)

) − 1
]
; (A9)

making the change of variables

y = z + α − x, (A10)

we obtain the form

� = e− 1
2 α2+αx

∫ ∞

−∞

dz√
2π

e− 1
2 (z−x)2

e−αz[exp(−eαz) − 1],

(A11)

which in the limit of large α goes to the following form:

� � −e− 1
2 α2+αx

∫ ∞

−∞

dz√
2π

e− 1
2 (z−x)2

θ (−z)

= −1

2
e− 1

2 α2+αx erfc

(
x√
2

)
. (A12)

Given this correction, Eq. (A8) becomes

wp−1 � exp

[
− p

2
e− 1

2 α2+αx erfc

(
x√
2

)]
. (A13)

Using a rescaled inverse temperature, β2 = ξ ln(p)/p, we have

α2 = ξq ln(p), (A14)

and substituting into Eq. (A13), we obtain the following
expression:

wp−1 � exp

[
− 1

2
p1− ξq

2 ex
√

ξq ln(p) erfc

(
x√
2

)
.

]
(A15)

Independently of the value of x, the quantity (A15) clearly
goes to 1 if ξq > 2, while it goes to 0 if ξq < 2. Therefore,
the integrand in Eq. (A2) converges uniformly to a normalized
Gaussian if q > 2/ξ or to 0 if q < 2/ξ , and since the
convergence is uniform, the limit can be taken before the
integration, yielding (see Fig. 3)

L(∞)(ξ,q) ≡ lim
p→∞ L(p)

(√
ξ

ln(p)

p
,q

)
= θ

(
q − 2

ξ

)
.

(A16)

The dynamical transition will be located at the temperature for
which the two curves y = q and y = L(∞)(ξ,q) are tangent,
that is, when the breaking point of the step function is 1. For
this reason we have

q
(∞)
d = 1, ξ

(∞)
d = 2. (A17)

1 2 3 4
q

0.2

0.4

0.6

0.8

1.0
L

FIG. 3. (Color online) The right-hand side of Eq. (A21) for
p = 1010,10102

,10103
,10104

. Solid blue lines: ξ = 2. Dashed orange
lines: ξ = 2/3.

We have obtained the desired result in the infinite p limit, and
now we want to compute the leading correction both to the
critical temperature and to the critical overlap, starting again
from Eq. (A13).

In order to obtain a finite result for finite x we must have

ln(p) − α2

2
+ tα = 0 (A18)

for some value of t which now becomes our variable. Under
this condition wp−1 behaves like θ (t − x), the equation for the
overlap now reads

q = 1

2

(
1 + erf

(
t√
2

))
, (A19)

and Eq. (A18) with the substitution (A14) becomes

ξq − 2t√
ln(p)

(ξq)
1
2 − 2 = 0. (A20)

Substituting Eq. (A20) into Eq. (A19), we get

q = 1

2

(
1 + erf

(
1

2
√

2
(ξq − 2)

√
ln(p)

ξq

))
. (A21)

Equation (A21) can be used to obtain approximate solutions
in the large p limit.

Considering that 1 � t � ln(p), from Eqs. (A19) and
(A20), we have at leading order

q � 1 − e−t2/2

t
√

2π
, ξq � 2 + 2

√
2

t√
ln(p)

+ · · · , (A22)

and we can then define

ε = 1 − q, μ = ξ − 2, (A23)

satisfying the two coupled equations

ε = e−t2/2

t
√

2π
, μ − 2ε = 2

√
2

t√
ln(p)

. (A24)

We can obtain t2 from the second expression in Eqs. (A24)
and plug it into the logarithm of the first one, getting at
leading order

ln(ε) = − 1
16 ln(p)(μ − 2ε)2. (A25)
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At criticality the derivative of Eq. (A25) must hold as well, giv-
ing the second constraint necessary to determine both ε and μ:

1

ε
= 1

4
(μ − 2ε) ln(p). (A26)

Substituting this last equation into (A25), we obtain

ε2 ln(ε) = − 1

ln(p)
, (A27)

which at leading order gives

ε =
[

2

ln(p) ln(ln(p))

] 1
2

. (A28)

Substituting into (A26) and taking the leading order, we get
the other correction,

μ = 2
√

2

[
ln(ln(p))

ln(p)

] 1
2

. (A29)

Given ε and μ, we can write the dynamical overlap and critical
temperature with the leading correction for large p:

qd = 1 −
[

2

ln(p) ln(ln(p))

] 1
2

,

(A30)

T 2
d = p

2 ln(p)

[
1 −

√
2

[
ln(ln(p))

ln(p)

] 1
2
]
.
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[18] T. Temesvári, C. De Dominicis, and I. Pimentel, Eur. Phys. J. B

25, 361 (2002).
[19] E. De Santis, G. Parisi, and F. Ritort, J. Phys. A: Math. Gen. 28,

3025 (1995).
[20] S. Franz and G. Parisi, J. Phys. I 5, 1401 (1995).
[21] Note that formula (38) differs from the one in Ref. [19] in which

there was a typo (a 1/2 in the argument of the exponential).
[22] B. Derrida, Phys. Rev. B 24, 2613 (1981).
[23] H. Sompolinsky and A. Zippelius, Phys. Rev. B 25, 6860 (1982).
[24] A. Crisanti, Nucl. Phys. B 796, 425 (2008).
[25] Y. Y. Goldschmidt, Europhys. Lett. 6, 7 (1988).
[26] C. Brangian, W. Kob, and K. Binder, J. Phys. A: Math. Gen. 35,

191 (2002).
[27] C. Brangian, W. Kob, and K. Binder, Comput. Phys. Commun.

35, 154 (2002).

051504-9

http://dx.doi.org/10.1088/0305-4470/13/4/009
http://dx.doi.org/10.1007/BF01309287
http://dx.doi.org/10.1103/PhysRevLett.55.304
http://dx.doi.org/10.1103/PhysRevLett.55.304
http://dx.doi.org/10.1007/BF01312184
http://dx.doi.org/10.1007/BF01312184
http://dx.doi.org/10.1103/PhysRevB.36.8552
http://dx.doi.org/10.1103/PhysRevB.36.8552
http://dx.doi.org/10.1103/PhysRevB.36.5388
http://dx.doi.org/10.1103/PhysRevB.36.5388
http://dx.doi.org/10.1103/PhysRevLett.58.2091
http://dx.doi.org/10.1103/PhysRevLett.58.2091
http://dx.doi.org/10.1103/PhysRevA.35.3072
http://dx.doi.org/10.1103/PhysRevA.35.3072
http://dx.doi.org/10.1103/PhysRevLett.75.2847
http://dx.doi.org/10.1088/0305-4470/29/20/009
http://dx.doi.org/10.1103/PhysRevLett.82.747
http://dx.doi.org/10.1103/RevModPhys.82.789
http://dx.doi.org/10.1103/PhysRevLett.108.085702
http://dx.doi.org/10.1088/0305-4470/8/9/019
http://dx.doi.org/10.1088/0305-4470/8/9/019
http://dx.doi.org/10.1088/0022-3719/16/15/003
http://dx.doi.org/10.1088/0022-3719/16/27/005
http://dx.doi.org/10.1140/epjb/e20020041
http://dx.doi.org/10.1140/epjb/e20020041
http://dx.doi.org/10.1088/0305-4470/28/11/008
http://dx.doi.org/10.1088/0305-4470/28/11/008
http://dx.doi.org/10.1051/jp1:1995201
http://dx.doi.org/10.1103/PhysRevB.24.2613
http://dx.doi.org/10.1103/PhysRevB.25.6860
http://dx.doi.org/10.1016/j.nuclphysb.2007.11.039
http://dx.doi.org/10.1209/0295-5075/6/1/002
http://dx.doi.org/10.1088/0305-4470/35/2/302
http://dx.doi.org/10.1088/0305-4470/35/2/302
http://dx.doi.org/10.1016/S0010-4655(02)00235-7
http://dx.doi.org/10.1016/S0010-4655(02)00235-7

