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Nonlinear response theory for Markov processes: Simple models for glassy relaxation
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The theory of nonlinear response for Markov processes obeying a master equation is formulated in terms of
time-dependent perturbation theory for the Green’s functions and general expressions for the response functions
up to third order in the external field are given. The nonlinear response is calculated for a model of dipole
reorientations in an asymmetric double well potential, a standard model in the field of dielectric spectroscopy.
The static nonlinear response is finite with the exception of a certain temperature T0 determined by the value of
the asymmetry. In a narrow temperature range around T0, the modulus of the frequency-dependent cubic response
shows a peak at a frequency on the order of the relaxation rate and it vanishes for both low frequencies and high
frequencies. At temperatures at which the static response is finite (lower and higher than T0), the modulus is
found to decay monotonously from the static limit to zero at high frequencies. In addition, results of calculations
for a trap model with a Gaussian density of states are presented. In this case, the cubic response depends on
the specific dynamical variable considered and also on the way the external field is coupled to the kinetics of
the model. In particular, a set of different dynamical variables that gives rise to identical shapes of the linear
susceptibility and only to different temperature dependencies of the relaxation times is considered. It is found
that the frequency dependence of the nonlinear response functions, however, strongly depends on the particular
choice of the variables. The results are discussed in the context of recent theoretical and experimental findings
regarding the nonlinear response of supercooled liquids and glasses.
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I. INTRODUCTION

In recent years progress has been achieved in the under-
standing of the heterogeneous dynamics observed in super-
cooled liquids and glassy systems [1,2]. Starting with nuclear
magnetic resonance (NMR) experiments [3–5] a number of
frequency-selective techniques have been developed in order
to investigate the nature of the dynamic heterogeneities in the
slow primary relaxation of supercooled liquids [6–9]. Also,
the length scale associated with the heterogeneities could be
determined in some cases [10,11]. In the experimental studies
the system always is monitored at more than two times via
the observation of four-time correlation functions as in the
quoted NMR experiments. Alternatively, large external fields
are applied giving rise to nonlinear effects as in the nonreso-
nant hole-burning studies [12,13]. Furthermore, in computer
simulations on model systems dynamic heterogeneities have
been observed via following certain trajectories [14,15] or also
via the calculation of four-point correlation functions [16,17].

Most of the studies on dynamic heterogeneities were
concerned with systems in thermal equilibrium, but also aging
glasses have been investigated [18,19]. Heterogeneous aging
has also been studied theoretically in spin glasses [20], in
simple spin models [21], and also in a free-energy landscape
model for glassy relaxation [22].

In recent years, both experimental techniques and theo-
retical tools have been refined in order to allow detailed
investigations of dynamic heterogeneities. In particular, it has
been recognized that higher-order correlation functions that
probe the system at different times and different locations
in space can be used to observe a length scale [23] and the
relevant four-point correlation function χ4(t) has been studied
theoretically [24–26]. Earlier experimental studies used the
approximative relation of χ4(t) to a two-point correlation

function [23,27] in order to extract the number of cooperatively
rearranging particles, Ncorr. In an influential paper Bouchaud
and Biroli related the nonlinear (cubic) response χ3(ω,T )
to χ4(t) [28]. The experimental determination of χ3(ω,T )
allowed the determination Ncorr more directly [29,30] and
the results are compatible with the earlier observations. In
particular, it was argued that the function

X(ω,T ) = |χ3(ω,T )| kBT

(�χ1)2a3
, (1)

with �χ1 denoting the static linear response, kB the Boltzmann
constant and a3 the molecular volume, exhibits a hump-like
structure. This behavior is assumed to be a distinctive feature
of glassy correlations [29]. Additionally, the maximum of
X(ω,T ) is expected to decrease with increasing temperature
and to be directly proportional to Ncorr. If glassy correlations
are absent, X(ω,T ) should not be peaked and this “trivial”
behavior consists of a smooth crossover from a low-frequency
limiting value to a vanishing high-frequency limit. In this
context it has to be mentioned that Brun et al. found a
hump-like shape for X(ω,T ) in a calculation employing
the so-called box model [31], a model devoid of spatial
aspects.

Apart from the determination of Ncorr. the nonlinear dielec-
tric response has been used to investigate the nature of the
heterogenous dynamics via comparison of the cubic response
with the linear response [32,33] and the results were discussed
in the framework of the box model. Similar measurements
were performed in order to extract the configurational heat
capacity of liquids [34]. In addition, also the nonlinear
dielectric response of liquids due to an ac and a dc field pulse
have been recorded [35] and also dipolar glasses have been
investigated [36].
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The present paper deals with the theory of nonlinear
response functions for Markov processes, because the relax-
ation in complex systems often is modeled in terms of such
stochastic dynamics. For systems that follow a Hamiltonian or
Langevin dynamics, nonlinear response functions have been
considered quite some time ago [37–39]. However, explicit
calculations of response functions are rare and most of them
relate to variants of the rotational diffusion of molecules in the
presence of strong electric fields (see, e.g., Refs. [40–43]). In
addition, approximate nonlinear response theory has been in-
vestigated more generally [44] and also fluctuation-dissipation
relations beyond the linear regime have been discussed [45,46].
The nonlinear response of supercooled liquids has been
worked out theoretically in the framework of mode-coupling
theory [47]. Here, I perform the calculation of the response
functions in close analogy to the quantum-mechanical way of
computing response functions [48]. Time-dependent perturba-
tion theory for the propagator is used in order to obtain the
response in the desired order in the amplitude of the external
field. I present the results of calculations of the cubic response
function for two Markovian models of relaxation. One model
describes the reorientations of dipoles in an asymmetric double
well potential (ADWP) and has been used to interpret results
of dielectric experiments in general [49]. Furthermore, it has
also been employed in calculations of the signals obtained
in nonresonant hole-burning experiments [50]. It is shown
that X(ω,T ) mainly behaves trivially for this model. Another
model that is considered is the trap model with a Gaussian
density of states [51,52]. This model has been used in the
interpretation of some features of the relaxation in simulated
supercooled liquids, both in equilibrium [53] and in the aging
regime [54,55]. Here, the results for X(ω,T ) are more complex
and, depending on the parameters chosen, either exhibit a
peaklike structure or trivial behavior.

The paper is organized as follows. In the next section, I
outline the calculation of nonlinear response functions for
systems obeying a master equation. For the convenience of
the reader, most of the explicit calculations are presented in
the Appendixes. The sections following this theoretical part
deal with a discussion of the results obtained for the two
models considered and the paper closes with some concluding
remarks.

II. NONLINEAR RESPONSE THEORY
FOR MARKOV PROCESSES

In this section, I outline the general procedure to calculate
the nonlinear response functions for a system that is described
by a master equation (ME) [56,57]. If one is dealing with
complex systems a coarse-grained procedure may result in
a description of the underlying dynamics in terms of a
nonstationary Markov process. Therefore, in order to keep the
treatment general, I treat the case of a ME with time-dependent
transition rates.

In the following, Gkl(t,t0) denotes the conditional proba-
bility to find the system in state k at time t provided it was in
state l at time t0 (Green’s function, propagator) in a discrete
notation. If continuous variables are considered, all sums in the
following expressions are to be replaced by the corresponding
integrals. Denoting the rates for a transition from state k to

state l by Wlk(t), the ME reads

∂

∂t
Gkl(t,t0) = −

∑
n

Wnk(t)Gkl(t,t0) +
∑

n

Wkn(t)Gnl(t,t0).

(2)

This equation has to be solved with the initial condition
Gkl(t0,t0)=δkl , where δkl denotes the Kronecker symbol. If
the transition rates Wkl(t) are time-independent the process
considered is stationary. The one-time probabilities pk(t) (the
populations of the states) obey the same ME and are given by
pk(t) = ∑

l Gkl(t,t0)pl(t0). The Wkl(t) can be related to the
elements of the master operator W(t) via [56]

W(t)kl = Wkl(t) − δkl

∑
n

Wnl(t). (3)

Here, W(t)kl � 0 holds for all k �= l and the sum rule∑
k W(t)kl = 0 is fulfilled for all values of l as it is a general

property of the transition rates for any Markov process. At
the initial time t0 the system is described by a fixed set
of populations, p0

k =pk(t0), with
∑

k p0
k =1. If a stationary

system is considered, one often starts from equilibrium
populations p0

k = p
eq
k or if one is interested in describing a

situation with a certain thermal history one might choose the
p0

k as the equilibrium populations at a temperature different
from the working temperature.

In order to treat the system in the presence of an external
field one has to specify the field-dependence of the transition
rates, which is not straightforward. In case of Hamiltonian or
Langevin dynamics, the linear coupling of a variable M(t) to
a field H (t) gives rise to an extra term [−M(t)H (t)] in the
Hamiltonian. In a Fokker-Planck equation, this gives rise to a
term linear in H [58]. If one considers a ME, one choice that
has been used in a number of investigations of fluctuation-
disspiation relations is given by

W
(H )
kl (t) = Wkl(t)e

βH [γMk−μMl ], (4)

with arbitrary γ and μ [59–61]. In this expression β = T −1

denotes the inverse temperature with the Boltzmann constant
set to unity, kB = 1. If the system obeys detailed balance,
one has the restriction γ + μ = 1. In particular, for systems
described by a Fokker-Planck equation, one would naturally
choose γ = μ = 1/2 and a linear expansion of Eq. (4) gives
the usual term in the Fokker-Planck operator. However, it is
obvious from Eq. (4) that, in general, one will have nonlinear
contributions to the perturbation also if the coupling to the
field is linear in the sense described above. This means that
couplings of a form like [M̃(t)H 2], as it would appear, for
instance, if the coupling to an induced dipole-moment is
considered [40], are absent.

In order to keep the treatment general, I formulate
the response theory without fixing the field-dependence of
the transition rates. It is only assumed that it can be cast in the
form

W
(H )
kl (t) =

∞∑
n=0

1

n!
W

(n)
kl (t)[βH (t)]n, with

W
(n)
kl (t) = dn

d(βH )n
W

(H )
kl (t)

∣∣∣∣
H=0

. (5)
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The elements of the propagator G(H )(t,t0) are obtained from
the ME [Eq. (2)], where the field-independent quantities
are replaced with those explicitly depending on the ex-
ternal field, that is, Ġ

(H )
kl (t,t0) = −∑

n W
(H )
nk (t)G(H )

kl (t,t0) +∑
n W

(H )
kn (t)G(H )

nl (t,t0). The solution of this equation is needed
to calculate the response of the system to an external field
applied at time t0 and measured by an observable F (t),

〈F (t)〉(H ) =
∑
kl

FkG
(H )
kl (t,t0)pl(t0). (6)

In order to be able to set up a perturbation theory for G(H )(t,t0)
in terms of the corresponding “field-free” propagator G(t,t0),
one uses the decomposition

W (H )(t) = W(t) + V(t), with V(t) =
∞∑

n=1

V (n)(t), (7)

where the perturbation is given according to Eq. (5),

V (n)(t)kl = [βH (t)]n

n!

[
W

(n)
kl (t) − δkl

∑
n

W
(n)
nl (t)

]
. (8)

The theoretical treatment is very similar to the one utilized
in Ref. [61] and consists of performing time-dependent
perturbation theory to treatV(t) in the desired order of the field.
The details of this procedure are described in Appendix A. The
explicit expressions for the response functions are given up to
third order in the field and the extension to higher order is
straightforward.

The main difference to the formalism utilized for Hamil-
tonian or Langevin dynamics with a linear coupling to the
external field is that here, in general, the elements V (n)(t)kl

with n > 1 do not vanish. This gives rise to a number of extra
terms. The situation is visualized in Fig. 1, which shows the
diagrams representing the interaction with the field for the
third-order response.

One has the terms stemming from purely linear interactions
given in the first line. These terms also appear in a Fokker-
Planck treatment of a linear coupling. Furthermore, one
has two cross terms between first-order and second-order
perturbations (second and third line in Fig. 1) and a term

V(3)

G G
t0 t t

G G G G
V(1) V(1) V(1)

t0 t tt t

V(1)V(2)

GGG
t0 t tt

V(1) V(2)

GGG
t0 t tt

FIG. 1. Pictorial representation of the perturbation expansion for
the third-order response. The unperturbed propagators are denoted
by G and the V (n) are the perturbations according to Eq. (8).

stemming from the third-order perturbation (fourth line). For
Langevin dynamics, cross-terms only appear if a quadratic
coupling is considered in addition to a linear one.

While in Appendix A the general expressions for the
response functions are given, in the actual model calculations
I consider only the response of systems that are in thermal
equilibrium prior to the application of the external field.
Furthermore, the models treated in the present paper represent
stationary Markov processes with time-independent transition
rates. The discussion is limited to sinusoidal fields of the form

H (t) = H0 cos (ωt). (9)

For this oscillating field the linear and the cubic response for
times long compared to the initial transients can be written as

χ (1)(t) = H0

2
[e−iωtχ1(ω) + c.c.],

(10)

χ (3)(t) = H 3
0

2

[
e−iωtχ

(1)
3 (ω) + e−i3ωtχ

(3)
3 (ω) + c.c.

]
,

where c.c. denotes the complex conjugate.
In the following sections, I mainly discuss the quantity

X(ω,T ) introduced in Eq. (1). As the models that will be
considered in the following are not related to any spatial
aspects of dipole reorientations or relaxing units, the molecular
volume will be set to unity, a3 = 1. Additionally, one has a
separate function for each frequency-component (cf. Ref. [30])
that can be written as (α = 1,3)

Xα(ω,T ) = T

(�χ1)2

∣∣χ (α)
3 (ω,T )

∣∣. (11)

This function eliminates the trivial temperature dependence
of χ

(α)
3 (ω,T ) because �χ1 ∼ β [cf. Eq. (A6)] and χ

(α)
3 ∼ β3

according to Eq. (A9). Therefore, any temperature dependence
stems from the “intrinsic” relaxation behavior of the dynamical
variable considered.

III. THE ADWP MODEL FOR DIPOLE REORIENTATIONS

In this section, I present the results for one of the simplest
models for dielectric relaxation, namely the model of dipole
reorientation in an ADWP. I closely follow the notation used
in a related investigation of the nonresonant dielectric hole-
burning technique [12,13,50].

As in Ref. [50], two dipole orientations denoted by “1” and
“2,” characterized by polar angles θ1 = θ and θ2 = θ + π are
assumed and the transition rates between the two are given
by W12 = We−β�/2 and W21 = We+β�/2. Here � denotes the
asymmetry, and W is the hopping rate in the symmetric case.
For this model, the Green’s functions in the field-free case are
given by

Gkl(t) = p
eq
k (1 − e−t/τ ) + δkle

−t/τ , with

τ−1 = 2W cosh(β�/2) and p
eq
k = τWkl (12)

The variable that couples to the field is

Mk = M cos(θk), and therefore, M1 = M cos(θ );

M2 = −M cos(θ ),

with M denoting the static molecular dipole moment. The
field-dependent transition rates are chosen as in Eq. (4)
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with γ = μ = 1/2. [If this restriction is relaxed all response
functions depend on the sum (γ + μ), which equals unity in
the present case.] In the calculation of the response I assume a
collection of systems characterized by an isotropic distribution
of orientations and therefore an average over the angle θ is
performed according to 〈cosn(θk)〉 = (n + 1)−1 for n even and
〈cosn(θk)〉 = 0 for n odd.

Using the general expressions given in Appendix A along
with Eq. (12), one finds for the linear response

χ1(ω) = �χ1
1

1 − iωτ
, where

�χ1 = β〈�M2〉 = β
M2

3
(1 − δ2). (13)

In this expression, I defined δ = tanh(β�/2). (It should
be mentioned that �χ1 differs by a factor of 1/2 from
the definition of χDWP in Ref. [50].) As usual, �χ1 is
related to the mean-square fluctuations of the dipole moment
〈�M2〉. Equation (13) follows immediately from the definition
〈Mm〉 = ∑

k Mm
k p

eq
k and Eq. (12) with additional isotropic

average.
Note that in the ADWP model, the static susceptibility

�χ1 for nonvanishing asymmetry depends on temperature
due to the dependence on δ in addition to the trivial 1/T

dependence. This behavior for finite asymmetry is different
from the model of Brownian rotational diffusion, where T �χ1

is independent of temperature [49]. For vanishing asymmetry,
the models show identical behavior (apart from irrelevant
prefactors). Without showing results here, it is mentioned that
Re[χ1(ω)] decays from its low-frequency limit �χ1 to zero for
large frequencies and Im[χ1(ω)] shows the typical Lorentzian
behavior and is peaked at ωτ = 1.

The third-order response functions are calculated according
to Eq. (10) using the general expressions given in Eq. (A9) in
Appendix A. In a straightforward calculation one finds

χ
(α)
3 (ω) = M4

20
β3(1 − δ2)S(α)

3 (ωτ ). (14)

Here, the spectral functions depend only on the product x =
ωτ and are given by

S
(1)
3 (x) = δ2 3(1 + i2x)

(1 + x2)(1 + 4x2)
+ 2(x2 − 1) + ix(x2 − 3)

2(1 + x2)2
,

S
(3)
3 (x) = δ2 (1 − 11x2) + i6x(1 − x2)

(1 + x2)(1 + 4x2)(1 + 9x2)

+ 2(5x2 − 1) + i3x(x2 − 3)

6(1 + x2)(1 + 9x2)
. (15)

When compared to the model of Brownian rotational diffusion,
the following can be observed. For � = 0, χ

(α)
3 (ω) for the

two models are very similar (cf. Fig. 2 and Figs. 3 and 4 of
Ref. [41]). For finite �, however, the third-order response
for the ADWP-model shows a characteristic temperature
dependence, that is absent in the model of rotational Brownian
motion.

In Fig. 2, the real and the imaginary parts of the 3ω

component χ
(3)
3 (ω) are plotted versus ωτ for different values

of the asymmetry � and various temperatures (M4 = 1).
It is evident that the signs of both functions change as a
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:     0.76
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2  T

3
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3
(
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-0.2
0.0
0.2
0.4 : T=1.0

:     1.52=2

FIG. 2. (Color online) Real part (black) and imaginary part
(red/gray) of the 3ω component χ

(3)
3 (ω) for the ADWP model as a

function of ωτ , where τ is the relaxation time according to Eq. (12).

function of frequency. Furthermore, the shapes of Im[χ (3)
3 (ω)]

differ significantly from Lorentzians. As mentioned above, for
� = 0, χ

(3)
3 (ω) does not depend on temperature.

The static nonlinear susceptibilites are determined by the
limiting values of the spectral functions, S

(1)
3 (0) = (3δ2 − 1)

and S
(3)
3 (0) = (3δ2 − 1)/3, and thus are given by

χ
(3)
3 (0) = M4

60
β3(3δ2 − 1)(1 − δ2); χ

(1)
3 (0) = 3χ

(3)
3 (0).

(16)

It should be mentioned, that χ
(α)
3 (0) is determined by

the fourth-order cumulant, κ4(M) = 〈M4〉 − 4〈M〉〈M3〉 −
3〈M2〉2 + 12〈M〉2〈M2〉 − 6〈M〉4 = 2M4(3δ2 − 1)(1 − δ2).
For finite �, the low-frequency limit χ

(α)
3 (0) vanishes at a
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FIG. 3. (Color online) Xα(ω) for various values of the asymmetry
and different temperatures. In the top panel, X(Debye)

3 (ω) [41] is shown
for comparison (dashed line).
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FIG. 4. Xmax
3 (ω)/X3(0) versus temperatures for � = 1. The

dotted line is the same with the assumption of a Gaussian distribution
of � with mean � = 1 and variance σ� = 10.

temperature T0, at which S
(α)
3 (0) = 0,

T0 = �/ ln [(
√

3 + 1)/(
√

3 − 1)] � �/1.317.

For large frequencies, one always has χ
(α)
3 (∞) = 0.

Instead of discussing χ
(α)
3 (ω) further, in the following I

consider Xα(ω) according to Eq. (11). This quantity is given
by [cf. Eqs. (13) and (14)]

Xα(ω) = 9

20

∣∣S(α)
3 (ωτ )

∣∣
(1 − δ2)

. (17)

The limiting values for small and large frequencies are
determined by the corresponding limits of S

(α)
3 (ωτ ) and thus,

one has, for example, X3(0) = (3/20)[|3δ2 − 1|/(1 − δ2)]. It
is evident that Xα(ω) will have a peaklike structure for T � T0.
As is shown in Fig. 3, for other temperatures one has trivial
behavior, that is, a continuous decay from the low-frequency
limit to Xα(ω) = 0 at high frequencies.

One can see that the behavior of the 1ω component and that
of the 3ω component are very similar.

In order to further quantify the behavior of Xα(ω) with
regard to a “hump-like” structure, in Fig. 4, the ratio
Xmax

3 (ω)/X3(0) is plotted versus temperature.
For T 	 T0 and also for T 
 T0 trivial behavior is

observed and only in the region of T ∼ T0 a hump develops.
This hump, however, has nothing to do with glassy correlations
but is solely a consequence of the temperature dependence of
the fluctuations of the dipole moments.

Finally, it is to be mentioned that the above results hardly
change if one considers distributions of the hopping rate
W and/or the asymmetry. In particular, the temperature-
dependent change in the shape of Xα(ω) is practically
unaltered. This is exemplified in Fig. 4, where the dotted line
represents Xmax

3 (ω)/X3(0) for the case of a broad Gaussian
distribution of �. The reason for this is simply the steepness
of the root of S

(α)
3 (0) = 0, meaning that the overall behavior

is determined by the mean value of �. Thus, if one considers
a system with a distribution of asymmetries that is centered
at � = 0, one will observe trivial behavior of Xα(ω) at all
temperatures. Ladieu et al. use the ADWP model with finite
� and some further assumptions to fit the experimental data
on supercooled liquids [62].

IV. TRAP MODELS

In this section, I discuss Xα(ω) for the trap model with
a Gaussian density of states, which, as mentioned in the
Introduction, shows some features of glassy relaxation. It
is defined by the ME for G(ε,t + t0|ε0,t0) = G(ε,t |ε0,0) ≡
G(ε,t |ε0), in a continuous form written as

Ġ(ε,t |ε0) = −κ(ε)G(ε,t |ε0) + ρ(ε)
∫

dε′κ(ε′)G(ε′,t |ε0).

(18)

In Eq. (18), the escape rate is given by

κ(ε) = κ∞eβε, (19)

with the attempt rate κ∞. Furthermore, I solely consider the
model with a Gaussian DOS

ρ(ε)= 1√
2πσ

e−ε2/(2σ 2), (20)

with σ = 1. From Eq. (18), the equilibrium populations at a
given temperature T (measured in units of σ ) are found to
be Gaussian peq(ε) = limt→∞ G(ε,t |ε0) = 1√

2πσ
e−(ε−ε̄)2/(2σ 2)

with ε̄ = −βσ 2.
In order to calculate the response, one further has to quantify

the dependence of the dynamical variable on the trap energy ε.
The choice of this dependence represents a further assumption
of the calculation and has a strong impact on the results for the
cubic response, as is discussed below. In order to clarify this
issue, consider the linear response for the specific choice of
Eq. (4) for the field-dependence of the transition rates. Using
Eqs. (6), (A5), and (A6), one obtains the relation between the
linear response and the equilibrium autocorrelation function
CM (t) = 〈M(t)M(0)〉, R

(1)
M (t) = −β[dCM (t)/dt], if the sys-

tem is in thermal equilibrium [61]. In the frequency domain,
this yields Eq. (B2) in Appendix B, if the average over the
possible realizations of the variables is performed with the
following assumption:

〈M(ε)〉 = 0 and 〈M(ε)M(ε0)〉 = δ(ε − ε0)〈M(ε)2〉. (21)

In the calculation of the third-order response, the fourth
moments of the variable are important. For the corresponding
averages I assume a Gaussian factorization property for
simplicity:

〈M(ε1)M(ε2)M(ε3)M(ε4)〉
= δ(ε1 − ε2)δ(ε3 − ε4)〈M(ε1)2〉〈M(ε3)2〉

+ δ(ε1 − ε3)δ(ε2 − ε4)〈M(ε1)2〉〈M(ε2)2〉
+ δ(ε1 − ε4)δ(ε2 − ε3)〈M(ε1)2〉〈M(ε2)2〉. (22)

In the calculation of the response, the field-dependence of
the transition rates has to be fixed additionally. I use Eq. (4)
with arbitrary values for γ and μ. From the physics of the
model one might argue that μ = 1 and γ = 0 is an appropriate
choice because it is meaningful to assume that the activation
energy of the escape is biased by the field [according to
ε → ε − M(ε)H ]. However, it is not clear that this simple
argument holds in out-of-equilibrium situations and for strong
fields. Using the assumptions made, one can compute the
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response according to the expressions given in Appendix A.
The calculation is outlined in Appendix B and here only the
results are discussed.

In the explicit choice of the variable, I follow Fielding and
Sollich [63] and use a set of variables with an Arrhenius-like
dependence on the trap energies:

〈M(ε)2〉 = e−nβε, (23)

with variable n and where the static value of M2 has been set to
unity. For n = 0, one has temperature-independent variables
as in the case of Brownian rotational diffusion.

The most important consequence of the specific choice
Eq. (23) is that it does not affect the spectral shape of the
linear response. The only quantities that strongly depend on
the choice of n are the static susceptibility and the temperature
dependence of the relaxation time. This is because one can
write ∫

dεp(ε)eqe−nβε κ(ε)

κ(ε) − iω

= e
n(n+2)

2 β2σ 2
∫

dεp(ε)eq κ(ε)

κ(ε) − iωn

,

with

ωn = ωenβ2σ 2
. (24)

Thus, the susceptibility is given by

χ1(ω) = β(γ + μ)
∫

dεp(ε)eqe−nβε κ(ε)

κ(ε) − iω

= �χ1

∫
dεp(ε)eq κ(ε)

κ(ε) − iωn

. (25)

The static susceptibility, that is, the amplitude, �χ1, strongly
depends on the choice of n and reads as

�χ1 = (γ + μ)β〈M2〉T = (γ + μ)βe
n(n+2)

2 β2σ 2
. (26)

Here, the second moment 〈M2〉T is related to the low-
frequency limit of χ1(ω), 〈M2〉T = ∫

dε〈M(ε)2〉p(ε)eq. Note
that �χ1 is temperature independent only for n = 0 and for
n = −2.

In Fig. 5, the imaginary part of χ1(ω) is shown for n = 0
and various temperatures.

The frequencies are scaled to the relaxation time of CM (t)
for n = 0, τeq = ∫ ∞

0 dtCM (t) = κ−1
∞ e

3
2 β2σ 2

(cf. Ref. [54]). It

10-2 10-1 100 101 102 103

0.0

0.1

0.2

0.3

T/ =1

T/ =0.5

 T
,, 1(

)

eq

FIG. 5. Imaginary part of T χ1(ω), T χ ′′
1 (ω), for n = 0 and various

temperatures (T/σ = 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, as indicated by the
arrow). The dotted line represents a Lorentzian.

is obvious that χ ′′
1 (ω) broadens as temperature is decreased

and thus time-temperature superposition is not obeyed. It is
stressed again, that χ1(ω) is basically independent of the choice
of n.

Next, the behavior of the cubic response and its dependence
on the model parameters is discussed. Using the limiting
values of the cubic response functions given in Appendix B
for small and high frequencies, one finds the following limits
for χ

(α)
3 (ω):

χ
(3)
3 (0) = 1

8β3(γ + μ)3(ξ2 − ξ1);
(27)

χ
(1)
3 (0) = 3χ

(3)
3 (0) and χ

(α)
3 (∞) = 0.

Here, I defined the averages ξ1 = 〈M2〉∞〈M2〉T and ξ2 =
〈M2〉2

T , which for the Gaussian trap model are given by

ξ1 = en(n+1)β2σ 2
; ξ2 = e2n(n+1)β2σ 2

. (28)

With these quantities, one finds for the low-frequency limit of
X3,

X3(0) = 1

8
(γ + μ)

|ξ2 − ξ1|
(〈M2〉T )2

, (29)

and similarly for X1(0). It is thus clear that these low-frequency
limits do strongly depend on the variable, that is, on n.
Therefore, one can expect to find trivial or hump-like behavior
of Xα(ω), α = 1,3, depending on this choice.

In Fig. 6 X3(ω) is shown for n = 0 and various values of
μ. Here, it is assumed that γ + μ = 1. The main difference
between the various choices for μ is the overall amplitude.
Additionally, it is clear that X3(ω,T ) exhibits a hump in
all cases. However, in contrast to the results obtained on
supercooled liquids, the maximum value of X3 increases as
a function of temperature. This increase is somewhat stronger
for μ = 1 than it is for other values of μ.

0.00
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0.04

0.06

=1

0.00

0.01

0.02
T/ =0.3

T/ =1

=1/2

10-3 10-2 10-1 100 101 102 103
0.00

0.01

0.02

=0

eq

X
3(

)

FIG. 6. X3(ω) for n = 0 and various values of μ for γ = 1 − μ

and different temperatures (T/σ = 0.3,0.4,0.5,0.6,0.7,0.8,0.9,1) in
the order indicated by the arrow.
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FIG. 7. (Color online) (Left) X3(ω) for n = 1 and different temperatures (T/σ = 1,1.5,2,2.5,3). The arrow indicates increasing temperature.
(Right) Xmax

3 (ω) as a function of temperature for n = 1. The curves are shown for temperatures higher than the onset temperature, below which
trivial behavior is observed, that is, ωmax = 0. The dotted line is the result for n = 0, μ = 1.

Next, I consider values for n different from zero, meaning
that the dynamical variable that couples to field shows an
explicit dependence on the trap energies. In Fig. 7 (left panels),
X3(ω) is plotted versus frequency for n = 1 and the same
values for μ as in Fig. 6. It is observed that a hump is found
at high temperatures, whereas trivial behavior is observed at
low temperatures. The temperature, at which a visible peak
is observed depends on the value of μ, that is, on the way,
the field couples to the transition rates. This is shown in
Fig. 7 (right panel), where the maximum value of X3(ω) is
plotted versus temperature for temperatures higher than the
onset temperature, which is defined by the first appearance of
a hump in X3(ω) indicated by the dots in Fig. 7 (right panel).
In the temperature range of a hump-like shape of X3(ω) its
maximum, Xmax

3 (ω), appears to be almost independent of tem-
perature. A similar behavior is found for other positive values
of n.

From these model calculations it becomes apparent that the
existence of a hump depends on the value of Xα(0), the value
of the maximum of Xα(ω), and in particular their ratio. Thus,

the low-frequency limit plays an important role in determining
the overall shape of Xα(ω).

These considerations can be further substantiated by con-
sidering the special value of n = −1, because in this case one
has ξ1 = ξ2 = 0 and, therefore, Xα(0) = 0 [cf. Eq. (28)]. This
means a hump will be observed in this case, as is confirmed
in Fig. 8 (left panel), where X3(ω) is plotted as a function of
frequency for μ = 1. For other values of μ, the results are very
similar. On first sight, the behavior of X3(ω) is very similar to
that for n = 0 (cf. Fig. 6). However, the maximum for n = −1,
Xmax

3 (ω), is a decreasing function of temperature as opposed
to the case of n = 0 [cf. Fig. 8 (right panel)].

At this point, however, it has to be noted that the case
n = −1 is somewhat special as the mean relaxation time
of the linear response, 〈τ 〉 = ∫

dεp(ε)eq[e−βε/κ(ε)] = κ−1
∞ , is

basically temperature independent. Thus, although the shapes
of χ1(ω) are identical for n = 0 and n = −1 at a given temper-
ature, the mean relaxation time for n = −1 does not change
with temperature. This shows that it is not straightforward to
compare linear and nonlinear response functions.
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FIG. 8. (Color online) (Left) X3(ω) for n = −1, μ = 1 and different temperatures (T/σ = 0.6,0.7,0.8,0.9,1 from top to bottom). (Right)
Xmax

3 (ω) as a function of temperature for n = −1 and n = 0 (μ = 1).
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V. CONCLUSIONS

The theory of nonlinear response functions for a system
obeying a ME has been formulated in close analogy to quantum
mechanical nonlinear response theory. Time-dependent pertur-
bation theory is used in order to compute the elements of the
propagator (the Green’s function or conditional probability) in
the desired order of the amplitude of the applied external field.
Expressions for the response functions up to third order are
given in terms of the solution of the field-free ME for systems
with arbitrary initial conditions and also for nonstationary
Markov processes. In the actual model calculations, however,
only stationary systems are considered that were in thermal
equilibrium prior to the application of the field. The treatment
of aging systems or other nonequilibrium situations are beyond
the scope of the present paper.

For the model of dipole reorientations in an ADWP
model, the spectral shape of the modulus of the frequency-
dependent cubic response, X3(ω), shows a specific temperature
dependence which strongly depends on the value of the static
susceptibility, X3(0). At a temperature T0, which is determined
by the value of the asymmetry of the potential, X3(0) vanishes.
For a narrow temperature range in the vicinity of T0 a peak
is observed in the modulus. For temperatures sufficiently
different from T0 a monotonous decay from X3(0) �= 0 to
X3(∞) = 0 is found. This trivial behavior is basically the
same as for the model of rotational Brownian motion [41]
and is at variance with experimental results obtained for
supercooled glycerol [29,30]. It was attributed to trivial dipole
reorientations that occur independent of glassy correlations.
These correlations should give rise to a peaked behavior, that
is, the existence of a hump in X3(ω). If one intends to utilize
the ADWP model for the dipole reorientations in supercooled
liquids, it is natural to assume distributions of relaxation rates
and of asymmetries. However, as shown in Sec. III, such a
distribution hardly affects the spectral shape of X3(ω) (apart
from the fact that a distribution of relaxation times gives rise
to a broadening).

If a trap model with a Gaussian distribution of trap energies
is considered, a more complex dependence of X3(ω) on the
parameters used in the calculations is observed. In particular,
the dependence of the dynamical variables that couple to the
external field on the trap energies, M(ε), has to be fixed.
I restricted the calculations to variables that obey Gaussian
statistics and depend on the trap energy in an exponential
way, M(ε) = e−nβε [cf. Eq. (23)]. This choice is particularly
useful when discussing the properties of nonlinear response
functions and their relation to the linear response. This is
because the exponential dependence on the trap energies has
the interesting property that the spectral shape of the linear
susceptibility is the same for all values of the parameter n.
Only the amplitude (�χ1) and the temperature dependence of
the relaxation time strongly depend on its specific value. If
the nonlinear response is considered, it is, however, found that
the temperature-dependent spectral shape of X3(ω) strongly
depends on the value of n. In particular, one can find a
peak or trivial behavior depending on both, the value of n

and the temperature. Similar to the situation in the ADWP
model, the existence of a peak is related to the value of the
static susceptibility. In case of the occurrence of a hump,

the temperature dependence of the peak maximum, Xmax
3 (ω),

can increase (n = 0) or decrease (n = −1) with increasing
temperature. These results indicate that it is difficult to
compare the linear and nonlinear susceptibilities. It is left
for future work to investigate the behavior of the nonlinear
response in the trap model for other dynamical variables and
also for nonequilibrium situations.

In the experimental determination of X3(ω) in supercooled
liquids [29,30], the decrease of Xmax

3 (ω) with increasing
temperature has been used to extract the number of correlated
molecules, Ncorr, which is a “real space property” of the
dynamical heterogenities in glasses. Due to the mean-field
nature of both models considered in the present paper, none
of the results presented have any connection to real space.
Therefore, a direct comparison to experimental data is not
possible. However, the model calculations substantiate the fact
observed earlier already [31] that the existence of a peak in
X3(ω) does not have to be related to glassy correlations in
some sense.

In conclusion, I have formulated a theory of nonlinear
response for systems described by Markov processes and
have presented the results of calculations for simple stochastic
models. The most important result is that the spectral shape
of the nonlinear (cubic) response can vary substantially
depending on the model considered. The occurrence of a
peak in the modulus of the third-order susceptibility cannot
generally be attributed to glassy correlations. Of course, this
does not mean that glassy correlations do not give rise to a
hump but its mere existence cannot be taken as a signature
of such correlations. Because the models considered in the
present paper are of a mean-field nature, it is impossible to
connect the results to a length scale of any kind. Due to the
growing interest in nonlinear responses in complex systems,
calculations of the kind presented in the present paper should
be performed for a variety of different models in order to gain
a deeper understanding of the general features governing the
shape and the temperature dependence of the corresponding
susceptibilities.
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APPENDIX A: CALCULATION OF NONLINEAR
RESPONSE FUNCTIONS

In this Appendix the calculation of the response for a system
obeying the ME [Eq. (2)] using time-dependent perturbation
theory is described. Using Eq. (3) for the master operator, the
ME in a matrix notation reads

∂tG(t,t0) = W(t)G(t,t0). (A1)

Here, the propagator has matrix elements G(t,t0)kl =
Gkl(t,t0). The solution of the ME in the absence of an external
field can be written in the form

G(t,t0) = T exp

(∫ t

t0

dτW(τ )

)
G(t0,t0), (A2)
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where T denotes the time-ordering operator and G(t0,t0)kl =
δkl . In the presence of the field the transition rates are given
by Eq. (5) and the corresponding master operator accordingly
reads as W (H )(t)kl = W

(H )
kl (t) − δkl

∑
n W

(H )
nl (t). The ME is

written as ∂tG(H )(t,t0) = W (H )(t)G(H )(t,t0).
In order to calculate the response of the system to an

external field applied at time t = t0 and measured by an
observable F (t), 〈F (t)〉(H ) = ∑

kl FkG
(H )
kl (t,t0)pl(t0) as given

in Eq. (6), time-dependent perturbation theory is used to
express the propagator as a series of the form G(H )(t,t0) =
G(t,t0) + ∑∞

n=1 G(n)(t,t0), where G(t,t0) denotes the propa-
gator in the field-free case. In order to perform the calculation,
one proceeds in the following way. Starting from the Dyson-
like equation

G(H )(t,t0) = G(t,t0) +
∫ t

t0

dt ′G(t,t ′)V(t ′)G(H )(t ′,t0), (A3)

one obtains, using Eq. (7), for the lowest order terms:

G(1)(t,t0) =
∫ t

t0

dt ′G(t,t ′)V (1)(t ′)G(t ′,t0),

G(2)(t,t0) =
∫ t

t0

dt ′G(t,t ′)V (2)(t ′)G(t ′,t0)

+
∫ t

t0

dt ′G(t,t ′)V (1)(t ′)G(1)(t ′,t0), (A4)

G(3)(t,t0) =
∫ t

t0

dt ′G(t,t ′)V (3)(t ′)G(t ′,t0)

+
∫ t

t0

dt ′G(t,t ′)V (1)(t ′)G(2)(t ′,t0)

+
∫ t

t0

dt ′G(t,t ′)V (2)(t ′)G(1)(t ′,t0).

In the next step, one uses the expression for the matrix elements
of G(n)(t,t0), denoted by G

(n)
kl (t,t0), in Eq. (6) in order to

compute the nth-order response, χ
(n)
F (t,t0).

With the definition

L
(η)
kj (t2,t1) =

∑
m

[Gkm(t2,t1) − Gkj (t2,t1)]W (η)
mj (t1), (A5)

where W
(n)
mj (t1) is given in Eq. (5), one obtains in a straightfor-

ward calculation for the linear response:

χ
(1)
F (t,t0) =

∫ t

t0

dt1H (t1)R(1)
F (t,t1), with

R
(1)
F (t,t1) = β

∑
k,l

FkL
(1)
kl (t,t1)pl(t1). (A6)

From the structure of this expression it is evident that R denotes
the usual response to a short field kick.

The second-order response is found to consist of two terms:

χ
(2)
F (t,t0) = χ

(2;1)
F (t,t0) + χ

(2;2)
F (t,t0), (A7)

with

χ
(2;1)
F (t,t0) =

∫ t

t0

dt1H (t1)
∫ t1

t0

dt2H (t2)R(2;1)
F (t,t1,t2),

R
(2;1)
F (t,t1,t2) = β2

∑
k,l,m

FkL
(1)
km(t,t1)L(1)

ml (t1,t2)pl(t2),

χ
(2;2)
F (t,t0) = 1

2

∫ t

t0

dt1H (t1)2R
(2;2)
F (t,t1),

R
(2;2)
F (t,t1) = β2

∑
k,l

FkL
(2)
kl (t,t1)pl(t1). (A8)

This second-order response is expected to be of little relevance
in most cases as it vanishes in isotropic systems. More
interesting is the third-order response because usually this is
the lowest-order nonlinear contribution to the response of the
system. As can be expected from Fig. 1, it has the form

χ
(3)
F (t,t0) = χ

(3;1)
F (t,t0) + χ

(3;2)
F (t,t0) + χ

(3;3)
F (t,t0) (A9)

and the individual terms are given by

χ
(3;1)
F (t,t0) =

∫ t

t0

dt1H (t1)
∫ t1

t0

dt2H (t2)

×
∫ t2

t0

dt3H (t3)R(3;1)
F (t,t1,t2,t3),

R
(3;1)
F (t,t1,t2) = β3

∑
k,l,m,n

FkL
(1)
km(t,t1)

×L(1)
mn(t1,t2)L(1)

nl (t2,t3)pl(t3), (A10)

originating from the linear perturbation. This term also is found
in the response theory for a Fokker-Planck equation. The cross-
terms between the first- and second-order perturbations are

χ
(3;2)
F (t,t0) = χ

(3;2A)
F (t,t0) + χ

(3;2B)
F (t,t0),

χ
(3;2A)
F (t,t0) = 1

2

∫ t

t0

dt1H (t1)
∫ t1

t0

dt2H (t2)2R
(3;2A)
F (t,t1,t2),

R
(3;2A)
F (t,t1,t2) = β3

∑
k,l,m

FkL
(1)
km(t,t1)L(2)

ml (t1,t2)pl(t2),

χ
(3;2B)
F (t,t0) = 1

2

∫ t

t0

dt1H (t1)2
∫ t1

t0

dt2H (t2)R(3;2B)
F (t,t1,t2),

R
(3;2B)
F (t,t1,t2) = β3

∑
k,l,m

FkL
(2)
km(t,t1)L(1)

ml (t1,t2)pl(t2). (A11)

Finally, the third-order contribution is

χ
(3;3)
F (t,t0) = 1

6

∫ t

t0

dt1H (t1)3R
(3;3)
F (t,t1),

(A12)
R

(3;3)
F (t,t1) = β3

∑
k,l

FkL
(3)
kl (t,t1)pl(t1).

These expressions are valid for any Markov process obeying
the ME, Eq. (2) and arbitrary initial conditions [initial
populations pl(t0)].

If the process considered is stationary, meaning that
the transition rates are time-independent, Wkl(t) = Wkl , the
Green’s functions depend only on the time differences,
Gkl(t2,t1) = Gkl(t2 − t1). Furthermore, if the system was in
equilibrium initially, pl(t0) = p

eq
l , the expressions simplify

considerably. In this case, the integrals can easily be trans-
formed in order to find expressions for χ (n)(t − t0) that are
reminiscent of the standard ones used, for instance, in the field
of nonlinear optics [48]. If one is interested in the stationary
response, one just starts recording χ (n)(t − t0) after times long
compared to the initial transients.
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Finally, the explicit choice of the field dependence of the
transition rates enters via Eq. (A5).

APPENDIX B: NONLINEAR RESPONSE FUNCTIONS
FOR THE TRAP MODEL

Using the general expressions given in Appendix A, one
can calculate the response for the trap model. In contrast
to other models, the calculation is simplified by the fact
that for large N , the number of states, one has to consider
only terms of order unity and one can neglect all terms
of order 1/N . In a discrete notation, one has for the trap
model Gkl(t) = δkle

−κkt + O(1/N) with Gkl(t) = G(εk,t |εl)
and κk = κ(εk). Furthermore, the density of state ρk = ρ(εk)
and the equilibrium populations p

eq
k = peq(εk) scale as 1/N .

One thus can neglect a number of terms in the calculations.

In the actual calculations, Eq. (4) is used for the field-
dependence of the transition rates. With this, one has for
the relevant part of L

(η)
kl (t2,t1) = L

(η)
kl (t2 − t1), according to

Eq. (A5),

L
(η)
kl (t) = e−κkt κl

(
ρkX

η

kl − δklX
η

l

) + O(1/N ),

where Xkl = γMk − μMl and X
η

l = ∑
k ρkX

η

kl . The system
is assumed to be in thermal equilibrium in the beginning and
the field is assumed to be of the form H (t) = H0 cos (ωt)
[cf. Eq. (9)]. The expressions given in Appendix A are
used to compute the frequency-dependent response func-
tions according to Eq. (10). For the variables Mk = M(εk),
the choice discussed in the text is used [cf. Eqs. (21)
and (22)]. Furthermore, one can utilize detailed balance in the
form

ρk〈κ〉 = κkp
eq
k , with 〈κ〉 =

∑
k

κkp
eq
k . (B1)

For the linear response one finds, according to Eq. (A6),

χ1(ω) = (γ + μ)β
∑

k

p
eq
k 〈M2

k 〉 κk

κk − iω
, (B2)

which is just the Fourier transform of the time-derivative of the correlation function CM (t). For the third-order response, one
finds for n = 1,3

χ
(α)
3 (ω) = 1

4β3(γ + μ)
{
χ̂

(α)
3;1 (ω) + χ̂

(α)
3;2A(ω) + χ̂

(α)
3;2B(ω) + χ̂

(α)
3;3 (ω)

}
,

(B3)

where the individual terms are given by

χ̂
(α)
3;1 (ω) = 3μ2

∑
k

ρk

〈
M2

k

〉2
S

(α)
kkk(ω) − μ2

∑
k,l

ρkρl

〈
M2

k

〉〈
M2

l

〉
S

(α)
kkl (ω) + γμ

∑
k,l

ρkρl

〈
M2

k

〉〈
M2

l

〉
S

(α)
kll (ω)

− γμ
∑
k,l,m

ρkρmρl

〈
M2

k

〉〈
M2

l

〉
S

(α)
kml(ω), (B4)

with

Re
[
S

(1)
klm(ω)

] = κm〈κ〉3κkκ
2
l κm + ω2

(
8κkκm − 2κkκl − 2κlκm − κ2

l

)
(
κ2

k + ω2
)(

κ2
m + ω2

)(
κ2

l + 4ω2
) ,

Im
[
S

(1)
klm(ω)

] = κm〈κ〉ωκkκ
2
l + 2κkκmκl + 3κ2

l κm + 2ω2(4κm − κl)(
κ2

k + ω2
)(

κ2
m + ω2

)(
κ2

l + 4ω2
) , (B5)

Re
[
S

(3)
klm(ω)

] = κmκl〈κ〉 κkκlκm − ω2(2κk + 3κl + 6κm)(
κ2

m + ω2
)(

κ2
l + 4ω2

)(
κ2

k + 9ω2
) , Im

[
S

(3)
klm(ω)

] = κmκl〈κ〉ω κkκl + 2κkκm + 3κlκm − 6ω2(
κ2

m + ω2
)(

κ2
l + 4ω2

)(
κ2

k + 9ω2
) .

This term corresponds to the first line in Fig. 1. The second-order terms are

χ̂
(α)
3;2A(ω) = (γ − μ)

{
μ

∑
k

ρk

〈
M2

k

〉(
3
〈
M2

k

〉 − 〈M2〉)S(α)
A;kk(ω) + γ

∑
k,l

ρkρl

〈
M2

k

〉(〈
M2

l

〉 − 〈M2〉)S(α)
A;kl(ω)

}
, (B6)

where the corresponding spectral functions are

Re
[
S

(1)
A;kl(ω)

] = 〈κ〉1

2

3κkκ
2
l + 2ω2(4κk − κl)(

κ2
k + ω2

)(
κ2

l + 4ω2
) , Im

[
S

(1)
A;kl(ω)

] = 〈κ〉1

2
ω

3κ2
l + 2κkκl + 8ω2(

κ2
k + ω2

)(
κ2

l + 4ω2
) ,

(B7)

Re
[
S

(3)
A;kl(ω)

] = κl〈κ〉1

2

κkκl − 6ω2(
κ2

l + 4ω2
)(

κ2
k + 9ω2

) , Im
[
S

(3)
A;kl(ω)

] = κl〈κ〉1

2
ω

2κk + 3κl(
κ2

l + 4ω2
)(

κ2
k + 9ω2

) .
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Additionally, I defined

〈M2〉 =
∑

k

ρk

〈
M2

k

〉
. (B8)

The other second-order term is

χ̂
(α)
3;2B (ω) = −3μ2

∑
k

ρk

〈
M2

k

〉2
S

(α)
B;kk(ω) − γ 2〈M2〉

∑
k

ρk

〈
M2

k

〉
S

(α)
B;kk(ω) − 2γμ

∑
k,l

ρkρl

〈
M2

k

〉〈
M2

l

〉
S

(α)
B;kl(ω), (B9)

with

Re
[
S

(1)
B;kl(ω)

] = κl〈κ〉1

2

3κkκl − ω2(
κ2

k + ω2
)
(κ2

l + ω2)
, Im

[
S

(1)
B;kl(ω)

] = κl〈κ〉1

2
ω

κk + 3κl(
κ2

k + ω2
)
(κ2

l + ω2)
,

(B10)

Re
[
S

(3)
B;kl(ω)

] = κl〈κ〉1

2

κkκl − 3ω2(
κ2

l + ω2
)(

κ2
k + 9ω2

) , Im
[
S

(3)
B;kl(ω)

] = κl〈κ〉1

2
ω

κk + 3κl(
κ2

l + ω2
)(

κ2
k + 9ω2

) .

Finally, the term corresponding to the third-order perturbation, that is, the last line in Fig. 1, is given by

χ̂
(α)
3;3 (ω) = 3(μ2 − γμ + γ 2)

∑
k

ρk

〈
M2

k

〉2
S

(α)
k (ω) + 3γμ〈M2〉

∑
k

ρk

〈
M2

k

〉
S

(α)
k (ω), (B11)

where

Re
[
S

(1)
k (ω)

] = 〈κ〉1

2

κk(
κ2

k + ω2
) ; Im

[
S

(1)
k (ω)

] = 〈κ〉1

2

ω(
κ2

k + ω2
) ,

(B12)

Re
[
S

(3)
k (ω)

] = 〈κ〉1

6

κk(
κ2

k + 9ω2
) ; Im

[
S

(3)
k (ω)

] = 〈κ〉1

2

ω(
κ2

k + 9ω2
) .

Here, all expressions are given in a discrete notation. If one changes to a continuous description, one has to replace all sums with
the appropriate integrals over the trap energies εk .

[1] H. Sillescu, J. Non-Cryst. Solids 243, 81 (1999).
[2] L. Berthier, Physics 4, 42 (2011).
[3] K. Schmidt-Rohr and H. W. Spiess, Phys. Rev. Lett. 66, 3020

(1991).
[4] A. Heuer, M. Wilhelm, H. Zimmermann, and H. W. Spiess, Phys.

Rev. Lett. 75, 2851 (1995).
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