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Metastable-state dynamics of a liquid: A free-energy landscape study
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Using the time dependence of density fluctuations in a supercooled liquid obtained from the solutions of
the equations of nonlinear fluctuating hydrodynamics (NFH), the evolution of the system in the free energy
landscape is studied. A crossover from a continuous fluid type dynamics to that of hopping between different
free energy minima is observed as the liquid is increasingly supercooled. We demonstrate that our results are
also in agreement with equilibrium density functional analysis of the same system. The density field obtained in
the numerical solution of the NFH equations are further analyzed to introduce complimentary density of voids
in the supercooled liquid state and its static and dynamic correlations are computed. The nature of the relaxation
of vacancy correlations are observed to be similar to that of the density fluctuations.
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I. INTRODUCTION

Landscape studies of many particle systems have been an
area of much research interest. In particular, the potential
energy landscape studies have been widely applied for various
disciplines of chemical physics [1], ranging from clusters,
glassy systems, to proteins. In 1969, in a seminal paper
Goldstein [2] presented a picture for the dynamics of the
supercooled liquid based on the evolution of the system in
the multidimensional phase space of all its configurational
degrees of freedom. In a simple monoatomic system of N

particles in three dimensions this refers to a set of total 3N

coordinates. The total potential energy U (r1, . . . ,rN ) of the
system defines a hypersurface termed as the potential energy
landscape (PEL). It is characterized by different minima of
the potential energy among which the local ones represent
the amorphous structures. Below the freezing point Tm the
crystalline state with long range order corresponds to lowest
free energy. The PEL is related to the mechanical property of
the N particle system and is not dependent on the temperature
T , which refers to the thermodynamic state of the system.
However, the part of the landscape explored by the system is
strongly dependent on the temperature. At a finite temperature
there are fluctuations of the energy which allow the system,
represented by a single point moving over the PEL, to move
from one minimum to another through barrier crossing. For
the equilibrium liquid which is ergodic, these jumps occur
between minima which have similar energy values on the
average. At low temperature the point representing the system
remains confined to a local minimum until it moves out by
making activated jumps over potential barriers. The atoms
are localized having small vibrations around positions on an
amorphous lattice structure. In terms of the PEL this situation
is described as the single representative point for the system
making small (vibrational) motions around a local minimum
of the potential energy in the (3N + 1) dimensional space.
This state continues until a large enough fluctuation causes
the system to jump over the potential barrier to move to
another minimum. This activated barrier hopping in the PEL
for the supercooled liquid was interpreted by Goldstein as a
rearrangement of particles in a small region of the system in
the real space. Such rearrangements can occur independently
in different parts of the system at low temperature.

While the PEL paradigm discussed above has been widely
applied for studying the supercooled liquids, a similar ap-
proach in terms of the free energy is somewhat less explored.
The equilibrium state of a many particle system at a finite
temperature is controlled by its free energy reaching a
minimum. For studying the glassy state this concept of
equilibrium free energy is often generalized to a coarse grained
free energy functional expressed in terms of a set of suitable
order parameters. In the density functional theory which has
been widely applied for studying equilibrium phase transitions
[3–5], the free energy is treated as a functional of the density.

The most obvious choice of the parameters for the coarse
grained free energy of a system with heterogeneous density
profiles is a set of spatial coordinates {Ri}. The latter corre-
sponds to the centers of the inhomogeneous density profiles
ρ(r) in the system. In other words, {Ri}’s denote the average
positions of the constituent particles in a localized state.
Such a parametrization defines a multidimensional landscape.
With the entropic contribution included this is generally
referred to as the free energy landscape (FEL). Models for
the supercooled liquids have been studied by evaluating
the free energy functional for a small number of particles.
The size of the system considered is smaller and is similar
to the molecular dynamic simulations with a finite size
system in which the periodic boundary conditions are used.
The structure of the FEL is crucially linked to the choice
of a suitable functional in terms of the density function.
The free energy of the metastable liquid is obtained by
minimizing a functional corresponding to the optimum choice
of the inhomogeneous density function [6,7]. In the standard
formulation of the density functional theory, the free energy
functional is given by

F [ρ] =
∫

drρ(r)[ln(ρ(r)/ρ0) − 1] + Fin, (1)

where the first term is the ideal gas entropy contribution and the
second term is the interaction part Fin obtained to a quadratic
order in density fluctuations as

βFin = − 1

2m2

∫
drdr

′
c(r − r

′
)δρ(r)δρ(r

′
), (2)
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where c(r) is the two point Ornstein-Zernike direct correlation
function [8] and m is the mass of the particles in the one
component fluid. The optimization of the above form referred
to as the Ramakrishnan-Yussouff free energy functional with
respect to aperiodic density profiles was done numerically [9]
in the supercooled regime. Similar approaches were used
[10–12] for evaluating the equilibrium free energy F [ρ] of
the amorphous solidlike state by parameterizing the density
in terms of a small number of Gaussian density profiles
localized around a set of points {Ri} which are treated as
free parameters in the model. Monte Carlo dynamics was
used [13] to obtain the density fluctuations and study the
above free energy functional in order to study the evolution
of the metastable state. The dynamics was also studied with
a discretized version of the Fokker-Planck equation in the
form of a mesoscopic kinetic equation [14,15]. This involved
mapping the problem to a kinetic lattice gas type model in
which the system is divided into an assembly of primitive cells
and the local density is treated as the only relevant variable.

In the present work we consider the dynamics of the
metastable liquid in terms of its evolution in the FEL. The
free energy functional given by Eq. (2) is evaluated in terms
of the corresponding density fluctuations obtained from the
direct solutions of the equations of the nonlinear fluctuating
hydrodynamics (NFH). These equations describe the dynamics
of conserved or slow variables, namely mass, momentum, and
energy density. The physical significance of the fluctuating
hydrodynamics approach to the glassy relaxation is that the
correlated motion of the particles is expressed through the
nonlinear coupling of the slow modes. The latter becomes
very important in describing the strongly correlated liquid
dynamics in the dense supercooled state. The NFH equations
mainly contain two parts: the reversible part which includes the
coupling of slow modes and the stochastic part representing
the thermal noise in the system. In our earlier work we studied
extensively the equilibrium and nonequilibrium dynamics
[16,17] of the supercooled liquid from the direct numerical
solutions of the NFH equations. These equations provide a
reliable way of studying the dynamics of fluctuations in a dense
liquids. In the present work we study how a one component
dense liquid explores the corresponding FEL. We also study
the nature of the frozen state from an analysis of the density
profiles obtained as the solutions of the NFH equations. In
particular, we use the density profiles in the amorphous state
to study the dynamics of voids in the metastable structures and
compare the associated time scales with the corresponding
times for relaxation of density fluctuations.

In the next section we introduce the model used for
obtaining the density fluctuations from the numerical solution
of the equations of NFH. In Sec. III we describe the evolution
of the system in terms of the dynamics in the FEL. We also
present in this section an analysis using the equilibrium density
functional approach and compare the findings with those from
the dynamical solutions. Following this we study the crossover
nature of this dynamics by introducing a state vector |�ν(t)〉
for a particular state labeled as ν at time t , by representing all
the densities at the lattice points at t . We use this state vector to
study the nature of the system’s dynamics in FEL. In Sec. IV
we analyze the dense metastable structures of the liquid to
introduce a characteristic vacancy density for the supercooled

liquid and study its static and dynamic correlations. We end
the paper with a discussion of the results.

II. THE MODEL FOR DYNAMICS

A. The generalized Langevin equations

The equations of NFH for a set of slow modes {φi} are
obtained in the form [18]

∂φi(t)

∂t
= Vi[φ] +

∑
j

[
β−1

∂L0
ij (φ)

∂φj

− L0
ij

∂F

∂φj

]
+ θi(t),

(3)

where Vi is the reversible part of the dynamics and L0
ij

represents bare transport matrix in the dissipative term and
is equal to correlation of the noise θi assumed to be white and
Gaussian. Vi is expressed in terms of Poisson brackets Qij of
the slow variables {φ̂i} ( the hat indicates the microscopic
variable dependent on phase space coordinates) and the
functional F [φ] which is identified with the free energy
functional determining the equilibrium state of the system (see
below).

For the case of compressible liquid explicit calculation ob-
tains from the above formulation, respectively, the continuity
equations of the mass density ρ and momentum density g,

∂ρ

∂t
+ ∇ · g = 0, (4)

and that for g is the generalized nonlinear Navier-Stokes
equation [19],

∂gi

∂t
+ ∇j

[
gigj

ρ

]
+ ρ∇i

δF

δρ
+ Lij

gj

ρ
= θi . (5)

where F [ρ] is the solely density dependent part of the effective
Hamiltonian and is defined by the Eq. (1) above. For an
isotropic liquid the Gaussian noise θi is related to the bare
damping matrix Lij [8] as

〈θi(x,t)θj (x ′t ′)〉 = 2kBT Lij δ(t − t ′)δ(x − x ′), (6)

where

Lij = (ζ0 + η0/3)δij∇2 + η0∇i∇j . (7)

Here ζ0 and η0 represent the bare bulk and shear viscosities,
respectively. We work here with the set of variables containing
density and momentum density and solve these equations
numerically to obtain the density fields on a grid of cubic
lattice.

The probability P [φ,t] that the collective modes {φi}
have the value {φi} at time t , where φ ≡ {ρ,g} is controlled
by the Fokker-Planck equation corresponding to the above
generalized Langevin equations,

∂

∂t
P [φ,t] = DφP [φ,t], (8)

with Dφ as the corresponding driving operator,

Dφ = −
∑

i

∂

∂φi

[
Vi[φ] − β−1

∑
j

L0
ij (φ)

(
∂

∂φj

+ β
∂F [φ]

∂φj

)]
.

(9)
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The Vi[φ] represent the reversible part of the Langevin
equation (3) for the slow mode φi and satisfy the divergence
condition ∑

i

∂

∂φi

{Vi(φ)P [φ]} = 0. (10)

The probability of the equilibrium state P [φ,t] does not have
any explicit time dependence such that DφPEQ[φ] = 0. Using
(10) it is straightforward to show that exp{−F [φ]} is a sta-
tionary solution of the Fokker-Planck equation. In the present
formulation F [ρ,gi] = FK [ρ,g] + F [ρ] is a functional of
both mass density ρ as well as momentum density g. However,
the Gaussian dependence of the dependence on g in FK [ρ,g] is
integrated out and in the following we focus on the functional
F [ρ] of density only. In doing this we ignore the presence
of a counterterm ln[ρ/ρ0] [20] due to the 1/ρ nonlinearity in
the kinetic energy term FK . The primary motivation here is to
focus on the dynamics of slowly decaying density fluctuations
in the supercooled state.

B. Numerical solution of NFH equations

We consider the one component liquid of N particles
interacting via Lennard-Jones (LJ) potential,

u(r) = 4ε[(σ/r)12 − (σ/r)6]. (11)

The units of different variables are chosen so as to make
subsequent expressions dimensionless. In our model there are
two length scales: One is the length scale σ associated with
the LJ potential and the other is the length h of the lattice grid
on which ρ and g are computed. We choose the ratio of these
length scales to be incommensurate, that is, σ/h = 4.6. Time
and length are respectively scaled with the LJ unit of τ0 =
(mσ 2/ε)

1
2 and the grid size h. The thermodynamic state of the

fluid is described in terms of the reduced density ρ∗
0 = ρ0σ

3

and the reduced T ∗ = (kBT )/ε. Here ρ0 represents the total
number of particles per unit volume and T is the temperature.
To keep notations simple we choose the mass m of the particles
to be unity so that the number and mass densities are same.
The local density ρ(x,t) and momentum density g(x,t) are
respectively chosen in terms of dimensionless quantities

n(r) = [h3m−1]ρ(r), (12)

j(r) = [
h3(mε)−

1
2
]
g(r). (13)

The speed of sound c0 is given by, c2
0 = kBT /[mS(0)]. We

study the time evolution of the system in terms of that of the
free energy functional F [ρ]. In the standard density functional
theory, which is a thermodynamic approach, minimum value of
this functional is searched in the multidimensional parameter
space of density. In the present work we evaluate the free
energy functional as the density profiles ρ(x,t) evolves in time.
The density field is obtained from the numerical Eqs. (4) and
(5) on a three dimensional cubic lattice.

The details of the numerical solution of the nonlinear
fluctuating hydrodynamic equations have been discussed in
Ref. [16]. We list here two important features. First, the
third term of Eq. (5) representing a nonlocal contribution is
calculated by dividing the cubic grid into concentric spherical
shells and evaluating the nonlocal integral f (r,t) as a sum

of contributions from the successive shells. Second, a major
concern in solving the nonlinear stochastic equations is the
stability of the numerical algorithm. In the earlier work [21]
for a similar model the stability was maintained by violating the
fluctuation dissipation theorem. We also encounter a similar
problem in the numerical solution of our model. Due to
the presence of the Gaussian noise n(x,t) gets negative at
certain grid points. To overcome this problem we adopt the
following coarse graining scheme also outlined in Ref. [16].
The positivity of the density field n(x,t) over the whole grid
is maintained at each time step during the evolution of our
system. With this scheme we have successfully avoided the
numerical instability and solve the nonlinear equation for long
time where fluctuation dissipation relation is respected.

III. FREE ENERGY LANDSCAPE DESCRIPTION

A. Dynamics of density fluctuations

For studying the dynamics of a dense liquid, we analyze
the free energy F [ρ] of the density field ρ(x,t). The change
in the free energy of the inhomogeneous state from that of the
uniform state is obtained as

�F [ρ] = βF [ρ] − βFl[ρ0] =
∫

dr[ρ(r) ln(ρ(r)/ρ0) − δρ]

− 1

2m2

∫
drdr

′
c(r − r

′
)δρ(r)δρ(r

′
), (14)

where F [ρ] is the total free energy of the inhomogeneous
liquid and Fl is that of a uniform liquid of density ρ0. We
compute the functional �F [ρ(x,t)] at each time step in terms
of the density fluctuations to study the dynamical evolution
of our system in the PEL. The fluctuating density field ρ(x,t)
is obtained from the solution of the equations of NFH over
the cubic grid and is stored in suitably chosen time bins.
This study is done at five different temperatures T = 0.4,
0.6, 0.8, 1.0, and 1.2 at constant density n∗ = 1.10. For
each temperature the density fields is computed on a cubic
grid of size h having S × S × S points. Periodic boundary
condition is maintained. This essentially means a system of
ρ∗

0 (Sκ)3 = N (say) particles in the box of volume V = (Sh)3,
where κ = h/σ is the ratio of the two characteristic length
scales. κ is chosen to be incommensurate, that is, σ/h = 4.6.
For the available computation strength we take the cubic box of
size S = 20. At each temperature the free energy per particle
f [ρ] = �F [ρ]/N .

Equilibration of the liquid around a stable or metastable
state is inferred when the free energy f [ρ] fluctuates around
a steady value which signifies a minimum in the FEL. In this
we observe two qualitatively different types of behavior in the
time evolution of the free energy functional.

(A) For higher temperatures, in the range 0.8–1.2, over
long times the F [ρ] settles around a single average value.
In Fig. 1 we show that for T = 0.8, f [ρ] ∼ 0(≡ F [ρ]/N ),
that is, the system is in the global free energy minimum or
in liquid state. For somewhat higher temperatures T = 1.0
and 1.2 (until below the crystallization point Tm) the average
over which the free energy f [ρ] fluctuates is slightly higher
than that of the uniform liquid state. This indicates that at
this high T the system stays in the metastable state with
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FIG. 1. (Color online) f [ρ](in units of β−1) vs t/τ0 at n∗ = 1.10
and T ∗ = 1.0 (solid line), 0.8 (dashed line), 0.6 (dot-dashed line).
The inset shows the T ∗ = 0.8 results with higher magnifications over
two different time windows respectively in (a) and (b).

higher f [ρ] over this time scale of observation. Eventually, the
metastable liquid should crystallize going to the most stable
state corresponding to the temperature (<Tm). As the liquid
is further supercooled the free energy corresponding to the
metastable state goes below that of the uniform liquid. The
average f [ρ] becomes negative with decrease in T , indicating
that at this temperature the supercooled metastable state has a
lower free energy than the uniform liquid state. Beyond this
temperature the metastable glassy state is more stable than the
uniform liquid state.

(B) At low temperatures we observe a qualitative change in
the nature of time evolution of the free energy density. Unlike
the high temperature case, here the free energy functional does
not settle at some average value in the long time limit. Over the
different time windows, the free energy remains close to some
average value until making a jump beyond which it fluctuates
around a different average value. This behavior is displayed in
Fig. 2.
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FIG. 2. (Color online) f [ρ](in units of β−1) vs t/τ0 at T ∗ = 0.4
and n∗ = 1.10 for large times. The inset shows the results over shorter
time windows with higher magnification. The dashed line is the mean
value of free energy over this time window.
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FIG. 3. (Color online) Standard deviation of the free energy
fSD[ρ](in units of β−1) vs T ∗ graph at n∗ = 1.10 is presented by
solid points. The dashed curve is the straight line fit.

In both Figs. 1 and 2, in the respective insets we display
the fluctuations of the free energy around the corresponding
minimum over the selected time window. Average of these
fluctuations represented by the standard deviation of the free
energy within the respective window is taken as a measure
of the vibrational contribution. This excess harmonic part is
plotted in Fig. 3 with temperature displaying the expected
linear behavior.

B. Density functional model

The above observations of the dynamics of the system
in terms of the evolution in the FEL are obtained from the
direct solutions of the equations of motion for the density.
These results are further consolidated with a complementary
calculation of minimizing the free energy in the equilibrium
density functional approach [7,12,22]. The density functional
theory evaluates the free energy F [ρ] of the solid state as
a functional of the corresponding inhomogeneous density
function ρ(x) for the equilibrium state. The free energy F [ρ]
is expanded around that of the corresponding uniform liquid
of constant density ρ0 in terms of functional Taylor expansion.
The coefficients of the expansion are the successive functional
derivatives of F with respect to ρ(x) evaluated at uniform
density ρ0. At second order this is the two point direct
correlation function c(r) for the uniform state and is a required
input in the theory. In addition, details of the structure of
the solid state constitute another input needed in the DFT to
describe the inhomogeneous density of the solid. Generally
the density function is defined in terms of a sum of Gaussian
profiles centered around a set of fixed lattice points. In case of
the fcc crystal these are the points on a fcc lattice with long
range order. For the amorphous solid we use here the Bernal
structure [23] which represents in terms of the corresponding
pair function gB(r) the structure of the random lattice points
on which the Gaussian density profiles are centered.

In order to evaluate the free energy functional described
in Eqs. (1) and (2) the inhomogeneous density function ρ(x)
is expressed as the superposition of Gaussian density profiles
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centered on a lattice,

ρ(r) =
∑

i

φ(|r − Ri |), (15)

where the {Ri} denotes the underlying lattice sites. The
function φ is taken as the isotropic Gaussian,

φ(r) =
(

α

π

) 3
2

e−αr2
.

The input required in this calculation is the distribution of
centers for the Gaussian density profiles. In case of a crystalline
structure it is the corresponding lattice with long range order.
The width of the Gaussian profiles are given by the inverse
of the parameter

√
α. The range ασ 2 
 1 corresponds to the

highly localized structure. In this range the ideal gas part of
free energy per particle is approximated to its asymptotic value
for large α,

βfid[ρ] = −5

2
+ ln

[
�3

(
α

π

) 3
2

]
.

In the low α region the overlapping Gaussians from different
sites contribute and we account for such density profiles. The
ideal gas part in this case is expressed as

βfid[ρ] =
∫

drφ(r)

{
ln

[
�3

∫
dRφ(r − R)(δ(R)

+ ρ0g(R))
]

− 1

}
, (16)

where g(R) is the site-site correlation function in terms of
which the random structure is parameterized. We approximate
the pair correlation function in terms of the isotropic function
[24,25] g(R), which is defined in the parametric form

g(R) = gB

[
R

(
η

ηRCP

) 1
3

]
, (17)

where gB(r) is the structure corresponding to the Bernal
random packing obtained using Bennett algorithm [26].
Increasing ηRCP in the expression maps to a system with
increasingly separated or loose underlying lattice structure.
For η = ηRCP the structure corresponds to Bernal packing
for which the pair correlation is displayed in Fig. 4. The
other input in this density functional calculation is the direct
correlation function c(r) appearing in the interaction part of
the free energy functional in Eq. (2). The c(r) corresponding
to the uniform liquid state at supercooled temperature is
approximated using the Bridge function method of Due and
Haymet [27]. The different c(r) values used in the calculation
at different temperatures are shown as an inset in Fig. 5.

The free energy difference as defined in Eq. (2) and
computed using the Bernal structure function is plotted with
width parameter α in Fig. 6. Here this is displayed for different
values of temperatures T ∗ at constant density of ρ∗

0 = 1.1.
For each of the temperatures studied, a free energy minimum
occurs at an intermediate α value and predicts the existence of
a metastable state. These density profiles for these intermediate
α values are far less localized than the usual crystalline
state (ασ 2 ∼ 100). However the heterogeneous state is very
different from the uniform liquid state corresponding to

0 2 4 6 8
r

0.5

1

1.5

2

2.5

g B
(r
)

FIG. 4. The Bernal gB (r) used in choosing the distribution of the
Gaussian centers of overlapping Gaussian profiles.

(ασ 2→0). For T > 0.8 this finite α state is relatively less stable
than the uniform liquid state and has a higher free energy. With
increased supercooling the metastable state becomes more
stable than the uniform liquid state. This is dependent on the
amorphous structure associated with the inhomogeneous state
controlled by the parameter ηRCP. The origin of the Gaussian
density profiles lies on a random structure characterized in
terms of the pair correlation function corresponding to the
parameter value ηRCP = 0.671 in Eq. (17).

The metastable states obtained in the density functional
calculation is in agreement with our findings in the previous
section using a dynamic approach with the solutions of the
NFH equations. The difference �f between the free energies
(scaled with respect to β−1) of the metastable state and the
uniform liquid state obtained, respectively, from the DFT and
NFH calculations are displayed in Table I. The behaviors seen
from the two types of theories are qualitatively in agreement.

C. Evolution of the supercooled state

In order to investigate thermally activated transitions among
the free energy minima we now introduce a state vector

0 1 2 3
r

-100

-75

-50

-25

0

c(
r)

1 2
r

-1

0

1

c(
r)

FIG. 5. (Color online) Direct correlation function c(r) vs r/σ at
ρ∗

0 = 1.1 and T ∗ = 1.2 (solid line), 1.0 (dashed line), 0.8 (dot-dashed
line), and 0.6 (dotted line) using the bridge function method [27].
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FIG. 6. (Color online) The free energy difference (in units of β−1

vs width parameter ασ 2 at ρ∗
0 = 1.1 and T ∗ = 1.2 (solid line), 1.0

(dashed line), 0.8 (dot-dashed line), and 0.6 (dotted line) for the LJ
system.

involving the densities at all the N points in the cubic lattice.
The vector |�ν(t)〉 characterizing the state (labeled as ν) of
the system is defined in terms of set of basic vectors |ei〉 as
follows:

|�ν(t)〉 =
N∑

i=1

nν
i (t)|ei〉, (18)

where nν
i (t) is the scaled density at the lattice site i and

is defined as nnu
i (t) = ρ(Ri)σ 3, where Ri denotes the ith

lattice site for the state ν. The set of numbers {nν
i (t)} satisfies

the constraint N−1 ∑
i n

ν
i (t) = ρ∗

0 ≡ ρ0σ
3. The basic vectors

|ei〉’s, defined as

|ei〉 = |0 . . . 0. 1︸︷︷︸
i

.0 . . . 0〉, (19)

represent the ith orthonormal basis(of size N ) in the corre-
sponding vector space. The superscript ν in |�ν(t)〉 refers to a
particular initial state. At a given time this vector represents the
state of the system. In order to study how the system explores
in the FEL, we study the overlap of the |�ν(t)〉 at two different
times. To quantify this overlap we define the overlap function
q(t) as

q(t) = 〈�ν(t)|�ν(0)〉
〈�ν(0)|�ν(0)〉 , (20)

where the averaging is implied over a set of chosen initial
states ν and 〈· · · | · · ·〉 denotes taking a scalar product of the

TABLE I. The free energy differences in units of β−1 at ρ0σ
3 =

1.1 and different temperature T ∗ from the dynamic approach and
density functional approach.

T Thermodynamic (DFT) Dyanmic (FNH)

1.0 0.16 0.3
0.8 − 0.04 − 0.04
0.6 − 0.15 − 0.5

0 1000 2000 3000 4000
t/τ

0.4

0.6

0.8

1

1.2

q(
t)

2000 3000 4000
t/τ

0.4

0.5

0.6

0.7

q(
t)

FIG. 7. (Color online) Order parameter q(t) [see text] as a
function of t/τ0 for n∗ = 0.9 and T ∗ = 1.2 (solid line), n∗ = 1.1
and T ∗ = 0.8 (dashed line), 0.6 (short dash-dotted line), and 0.4
(long dash-dotted line). In the inset we show the q(t) for large t/τ0 at
T ∗ = 1.0 (stars), 0.8 (circles), 0.6 (squares), and 0.4 (triangles) fitted
with KWW form (solid line).

two vectors. The definition of the overlap function q(t) ensures
that it is normalized to have value unity at t = 0.

Using directly the density field ρ(x,t) obtained in the
numerical solution of the NFH equations the correlation
functions q(t) is computed. If the system remains near the
same free energy minimum, this is indicated in a slow decay
of the correlation q(t). The hopping of the system from
one minimum to another is signaled by a quicker decay of
q(t) which therefore displays a faster relaxation at lower
temperatures. In Fig. 7 we show the time evolution of q(t)
for different density and temperature regimes. In the normal
liquid state (n∗ = 0.9,T = 1.2) the correlation q(t) freezes at
a constant value over long times or decays very slowly over
observed time scales. At higher temperature the correlation
persists for longer time, indicating that the liquid remains
confined to a single thermodynamic state. Simple fitting shows
that τ̃ grows as a power law (T

′
c − T )−a

′
with T

′
c = 1.54,

which is higher than the corresponding freezing point Tm

corresponding to a normal liquid state. Temperatures above
T

′
c signify liquidlike behavior. In the supercooled state (n∗ =

1.1,T = 0.6), on the other hand, q(t) does not remain constant
and it decays with time, indicating reduced overlap between
the states at two different times. The correlation becomes
weaker at higher densities, indicating that the system is no
longer confined to a single minimum and wanders in the
FEL. The long dash-dotted curve in Fig. 7 displays q(t) at
T = 0.4. A careful observation of the evolution of q(t) at
the low temperature reveals a two step process: Following an
initial decay at short time, the correlation function stays on
a plateau over an intermediate time window and eventually
decays to zero over longer times. This intermediate time
behavior indicates that the system remains trapped in one of
the glassy minima of the free energy. It eventually relaxes to
states with lower free energies via thermally activated hopping
transitions over free energy barriers. The behavior of q(t)
signifies the activated hopping process. The long time part of
q(t) follows a stretched exponential relaxation exp[−(t/τ̃ )β].

051501-6



METASTABLE-STATE DYNAMICS OF A LIQUID: A . . . PHYSICAL REVIEW E 85, 051501 (2012)

0.4 0.6 0.8 1
T*

0

2×105

4×105

τ~

FIG. 8. (Color online) Variation of τ̃ (see text) in LJ unit τ0 as a
function of T ∗.

The characteristic relaxation time τ̃ is the time scale over which
the system hops from one free energy minimum to other. The
fitting to a stretched exponential form is shown in the inset of
Fig. 7. The τ̃ as a function of T ∗ is shown in Fig. 8. It increases
with increase of T ∗.

The results obtained above suggest the following scenario
of the dynamics: At moderate supercooling the liquid largely
fluctuates around a liquid state minimum. The relaxation
time grows with increase of density. At this initial stage
of supercooling the liquid state dynamics is still controlled
by continuous fluid type motion of the particles. As the
temperature falls beyond a crossover value, the dynamics
is controlled by thermally activated hopping of the system
in the FEL to configurations with inhomogeneous density
distributions. In the low temperature state the system is caught
in a local minimum of the free energy with only vibrational
motion in the free energy basin. In real space this implies
that the particles vibrate around their mean positions lying
on disordered lattice structure. Dasgupta and Valls [13] in
their study of the supercooled liquid dynamics in the FELs
considered the RY functional expression [3] for the free
energy. Here the density fluctuations were computed with
Monte Carlo dynamics and the observed behavior is similar
to what is depicted above. The time scale over which the
system is moved to another adjacent free energy minimum is
about three orders of magnitude higher than the corresponding
microscopic time scale in the one component LJ system. While
this is the typical scale of the slow dynamics for computer
simulated supercooled liquids; it is much shorter than the very
long activated process seen in experimental systems generally
referred to in Goldstein’s original PEL picture [2].

IV. VACANCY DENSITY AND SLOW DYNAMICS

The earlier sections of the paper consider the description of
the supercooled liquid dynamics in the FEL paradigm. These
are obtained here from a direct solution of the equations of
NFH. In the present section we demonstrate how the same
data is further analyzed for studying the dynamics of a new
collective modes related to concentration of voids or free
volumes in the supercooled liquid. The latter has often been
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FIG. 9. (Color online) The number of vacant sites NV vs t/τ0 at
n∗ = 1.10 and T ∗ = 0.8. The corresponding result at n∗ = 1.10 and
T ∗ = 0.6 is shown in the inset.

used in the literature for phenomenological models of glassy
dynamics.

The numerical solution of the FNH equations obtains the
fluctuating density fields ρ(x,t) over the cubic lattice and is
saved at different times. Analyzing the fields it is observed
that during the evolution of time at some of the grid points the
densities become almost vanishing. We identify these points as
vacancies or voids. To be more specific, we define vacancies as
sites at which at a given time instant have reached a value less
than 1% of the average density ρ0. By studying the different
profiles of the n(x,t) from the solutions of the NFH equations at
different times, we observe that the location of the vacancies on
the lattice are not stationary. They shift through the underlying
lattice structure with time. Initially the number of vacant sites
increases as the system evolves from the initial nonequilibrium
state to a thermally equilibrated state and becomes steady
varying with 10% of an average value at high density. The
total number NV , though not a strictly conserved quantity
reaches a steady value. In the following we assume that the
number of vacant sites remain constant on the average; that is,
the average vacancy density �0 (say) remains constant at given
thermodynamic state. �0 is strongly dependent on temperature
and density. The vacancy density increases with decrease in
temperature and increase in density. In Fig. 9 we show the
number of vacant sites NV as a function of time t at n∗ = 1.10
for T ∗ = 0.8 and 0.6. In order to study the structural properties
and the dynamics of these vacancies we assign the vacant sites
with 1 and the rest of the sites (with nonzero density) as 0. Let
us denote this new vacancy density field as �(x,t), which is
1 or 0 depending on whether the lattice site is vacant or not,
respectively.

We obtain corresponding to the density field �(xi) ≡ �i at
the point xi on the grid, the two point pair correlation function
g̃(r) using the following definition:

g̃(r) =
〈
�i>j�i�jfij

�0
2�i>jfij

〉
, (21)

where the weight function fij = 1 if the separation between
mesh points i and j lies between r and r + �r (�r is a
suitably chosen bin size), and fij = 0 otherwise. The angular
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FIG. 10. (Color online) Pair correlation function g̃(r) vs r (in
units of σ ) at n∗ = 0.97 and T ∗ = 2.0 is shown in the main figure.
The corresponding result at n∗ = 1.10 and T ∗ = 0.6 is shown in the
inset.

brackets refer to an average over the noise. The correlation
function are computed after the time translational invariance
has been attained indicating a thermally equilibrated state.
The two equilibrium g̃(r) vs r/σ plots displayed in Fig. 10
respectively correspond to two states, T ∗ = 2.0; ρ∗

0 = 0.97
and T ∗ = 0.6; ρ∗

0 = 1.1. At the lower density the average �0 is
very low and g̃(r) does not show much of a structure, indicating
random occurrence of the vacant sites. At the higher density
g̃(r) has more oscillation around the average value 1. Next, the
relaxation dynamics of the vacancy is studied in terms of the
normalized time correlation function whose fourier transform
at wave vector q is defined as

C̃(q,t + tw,tw) = 〈�(q,t + tw)�(−q,tw)〉
〈�(q,tw)�(−q,tw)〉 . (22)

At equilibrium, the C̃(q,t + tw,tw) becomes a function of
t only; for example, C̃(q,t + tw,tw) = C̃(q,t). We calculate
the correlation functions at the wave number q = qm. The
equilibrated system at density ρ∗

0 = 1.1 for four temperatures
T ∗ = 1.0,0.8,0.7,0.6 is studied to obtain the C̃(t) as a function
of time t and the result is displayed in Fig. 11. It is observed
that unlike the correlation of density fluctuations the C̃(q,t)
has a very weak wave vector dependence. This is presumably
linked to the equal time structure factor having very weak
wave vector dependence. The time correlation functions C̃(t)
displays a stretched exponential relaxation. The corresponding
relaxation time τ̃α and the stretching exponent β̃ at a given
temperature are obtained by fitting a stretched exponential
form (KWW) to the equilibrium correlation functions C̃(t).
In Fig. 12 we show the variation of τ̃α as a function of
T ∗. In the same figure we show the τα calculated from
the equilibrium number density correlation function of the
occupied sites. These two relaxation processes are seen to be
of similar nature and occurring over comparable time scales.
The temperature dependence follows a power law growth
(T − Tc)−a with a Tc = 0.34 and exponent a = 2.62. The
corresponding exponent a from density correlation function
data [16] with Tc = 0.34 is obtained as 2.22. The temperature
dependence of the stretching exponent β̃ is shown in Fig. 13.
The corresponding exponent β for the stretched exponential
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FIG. 11. (Color online) Equilibrated C̃(t) vs t/τ0 for temperature
T ∗ =1.0 (circles), 0.8 (squares), 0.7 (triangles), and 0.6 (stars) at
n∗ = 1.10. The solid lines are the best fit curves having the KWW
form.

relaxation of the density correlation function is also displayed
in the same figure. The stretching increases with the fall of
temperature in both cases and is typical of slow dynamics.

V. DISCUSSION

From the evolution of the free energy functional computed
using the solution of the NFH equations we note that at high
temperature the system remains confined to single free energy
minimum over the time scale studied. This inhomogeneous
state corresponds to a metastable minimum of the free energy.
With increase of supercooling the free energy of this state
becomes less than that of the uniform liquid state. We also
demonstrate here that this behavior is in agreement with
results which follow from the equilibrium density functional
theory calculation using the same free energy functional. The
fluctuation of the free energy around the minimum value
in the high temperature regime accounts for the vibrational
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FIG. 12. (Color online) Relaxation time τ vs. temperature T

expressed in Lennard Jones unit. The solid circles represent the
relaxation time of vacancy auto correlation (τ ≡ τ̃α in text) and solid
triangles represent relaxation time for density auto correlation (τ ≡ τα

in text).The points in each case are fitted with power-law forms shown
respectively by solid and dashed lines.
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FIG. 13. (Color online) The stretching exponent β̃ vs T ∗ for the
autocorrelations of vacancy (main figure) and density (inset).

contribution, which is shown to be linear in temperature
dependence. At low temperature T ∗ = 0.4 the nature of the
dynamics is qualitatively changed. The system, contrary to
settling in one broad free energy basin at higher temperature
with a single minimum, now hops between different basins
representing highly inhomogeneous structures. It is important
to note in this regard that what we are referring to as free energy
is computed for a small number of particles in a finite size
system. The free energy density is therefore an approximation
of the thermodynamic quantity.

We have also investigated the nature of the inhomogeneous
states into which the supercooled liquid evolves with time.
For this the state representing the liquid at a given time is
defined in terms of a single vector involving the densities
at all the lattice sites as its components. The correlation
between the state vectors at different times is defined in terms
of the function q(t). At high temperature, q(t) freezes at a
persistent value signifying very high overlap for long time.
This indicates that the system is remaining near a single free
energy minimum. However, at low temperatures q(t) falls off
much faster with time, showing that the deeply supercooled
liquid is not remaining confined in a single free energy basin.

In Sec. III we describe the shifting of the representative
point for the system in the multidimensional FEL from one
minimum to another as a hopping process. In this regard it
is useful to note that the same term hopping has been used
in the literature for glassy dynamics in a somewhat different
context. The latter refers to an interpretation of the ergodicity
restoring mechanism in the mode coupling theory (MCT) for
the glassy dynamics. In the simplest form of the MCT, the
coupling of density fluctuations in the deeply supercooled
liquid gives rise to a feedback mechanism and leads to
an ergodic-nonergodic (ENE) transition. The autocorrelation
of the density fluctuations slows down sharply approaching
the mode coupling dynamic transition at a temperature Tc

[28–30] which lies between freezing point and the calorimetric
glass transition. A simple physical interpretation of this
feedback process is that the nonlinear interaction of the density
fluctuations signifies the cage effect for the single-particle
motion. The above ENE transition of simple MCT signals
the trapping of the single particle dynamics in the cage formed

by surrounding particles. It was subsequently demonstrated
from a careful consideration of the equations of NFH that
the 1/ρ nonlinearities present in these equations give rise to
mechanisms for removal of this sharp transition [19,31]. These
so called extended MCT models, however, assume expansions
about a single fluid type minimum of the free energy. No
activated process of hopping is involved between states of
different free energy minima in reaching the cutoff mechanism.
In some works [32,33], however, the ergodicity restoring
mechanisms have been interpreted as the “hopping process”
in the supercooled liquid, drawing a similarity between the
dynamics of supercooled liquids with the transport process in
strongly disordered semiconductors. A tagged particle motion
in the latter is characterized by phonon assisted hopping, which
is a result of static random potential produced by the impurities.
The metastable liquid does not contain any quenched disorder.
Phenomenological model for the Glass transition has been
formulated earlier using similar ideas of movement of free
volumes in the liquid [34]. This process of trapping of a particle
in the cage [35] formed by its neighbors can be interpreted as
being produced by a static random potential and the interaction
between currents and density fluctuations which smooth off the
ideal transition can be thought of as relaxation via jumps over
the almost static potential barriers.

In the present work, however, we see that the numerical
solutions of the equations of NFH at very low temperatures
show signatures of activated hopping between free energy
minima. The crossover seen from a continuous liquid type
dynamics to activated dynamics is demonstrated in terms of the
time correlations of a state vector |�α〉. Our findings here with
NFH equations are similar to that of Monte Carlo dynamics or
kinetic Ising type models. Analysis of the density distribution
obtained from the solution of the NFH equations, identifies
a vacancy density for the undercooled system. The vacancy
field here does not present a new slow variable since there is
no new conservation laws in the system. Dynamic correlations
of this vacancy density field �(x,t) are similar to that of the
particle density field ρ(x,t). The introduction of the vacancy
or void density field �(x,t) in the present work in the last
section is reminiscent of similar treatment of the fluctuating
hydrodynamic formulation by inclusion of extra slow modes
for the supercooled liquid [36–38].

Our primary focus in the present work is on the dynamic
behavior of the supercooled liquid in the FEL description. The
analysis involves using numerical solutions of the equations
of NFH for a set of coarse grained densities. These stochastic
partial differential equations have generally been used for
constructing field theoretic models for the dynamics of dense
liquids. Perturbative treatments of these nonlinear models give
rise, at the one loop order, to the MCT of glassy dynamics
described above. Complimentary to these continuum models
is the molecular dynamics simulation of a small number of
particles at high density or low temperature. Simulation studies
done using various kinds of equations of motion, like the re-
versible Newtonian dynamics or stochastic Brownian dynam-
ics, show similar long time relaxation behavior at supercooled
densities. Following this approach various microscopic studies
over the past decade have now established that the glassy state
is characterized by formation of spatiotemporal fluctuations.
Atoms in different environments move differently and at any
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given time, different regions of the deeply supercooled liquid
relax at different rates. The transient spatial fluctuations in
the local relaxation behavior have been termed as dynamical
heterogeneities of the glassy state [20,39–41]. However, in the
ergodic liquid state, the different types of dynamics in different
spatial environments hold only for a finite duration. Several
studies have indicated that the dynamical heterogeneities are
effectively quantified in terms of a dynamic correlation length
which can be identified from the study of four point correlation
functions [42–46] for the liquid state. The present study of the

time evolution of the coarse grained densities can be extended
to compute such higher order correlation functions [46,47] and
hence can be useful in the study of dynamical heterogeneities
from continuum models.
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[25] H. Löwen, J. Phys.: Condens. Matter. 2, 8477 (1990).
[26] C. Bennett, J. Appl. Phys. 43, 2727 (1972).
[27] D. M. Due and A. D. J. Haymet, J. Chem. Phys. 103, 2625

(1995); D. M. Due and D. Henderson, ibid. 104, 6742 (1996).
[28] U. Bengtzelius, W. Götze, and A. Sjölander, J. Phys. C 17, 5915
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[32] W. Götze and L. Sjögren, Z. Phys. B 65, 415 (1987).
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