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Yield behavior of colloidal aggregates due to combined tensile-bending loads
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In this contribution, the yield behavior of a strongly flocculated colloidal structure subjected to a tensile-bending
load is micromechanically modeled. The yielding of a cluster is assumed to be triggered by the failure of one
bond (critical bond) and accompanied by massive breakage of further bonds. Thus, identifying the position of
the critical bond and evaluating its yield force are the main goals of this study. Interparticle bonds are considered
as flexible nanoscale bridges which fail when the force applied on them reaches a critical value. The yield of
the critical bonds can result from both tensile and bending stresses. By means of the yield stresses in the critical
bonds, the yield force of the whole cluster can be calculated.
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I. INTRODUCTION

A colloidal system is a solution consisting of two separate
phases: a dispersed phase (colloids in a solid phase) and
a continuous phase (or dispersion medium) which may be
solid, liquid, or gaseous. Colloidal systems exhibit a wide
range of rheological behavior and are often classified as soft
materials. They also appear in a wide range of products,
such as food, paints, and polymers. The term “colloid” is
specific to individual particles which are larger than atoms
but small enough not to immediately settle in the solution
(the typical range is from nanometers to a few micrometers).
Dynamic behavior of colloidal particles is governed by the
Brownian motion and forces of interparticle attraction and
sedimentation. Under these forces, the particles may remain
suspended in a liquid medium infinitely long. Sedimentation
or floating of clusters in a solution takes place when the
Brownian forces are not strong enough to overcome the
gravitational-hydrodynamic forces. For usual colloid sizes,
this can happen only for very large clusters.

Generally, colloids are microscopically dispersed through-
out the dispersion medium and form a gel-like structure at
high particle concentration or dispersed clusters at low particle
concentration. A cluster is a solidlike colony of particles,
formed by an aggregation mechanism. In this study, we mainly
discuss the yield behavior of single isolated clusters assumed
to be completely surrounded by the dispersion medium (see
Fig. 1).

Aggregation in colloidal systems is characterized by the
magnitude of interparticle forces. If attraction forces are
stronger than the thermal forces of particles (that result in
the Brownian motion), the particles join together and form
irreversibly aggregated clusters. They continue diffusing and
aggregating, although their growth rates are limited by the
particle diffusion rates. This aggregation mechanism, which
can describe the fractal dimensionality of the clusters, is called
diffusion limited cluster aggregation (DLCA). Meakin et al.
[1] proposed a cluster-cluster aggregation (CCA) mechanism
which describes the formation of large clusters from a
dispersed collection of smaller ones. In this mechanism, the
Brownian movement of small clusters and their irreversible
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flocculation with each other lead to the formation of larger
clusters.

Recently, the microrheology, flow, and yielding of colloidal
clusters have been subjected to many investigations both
theoretically [2–4] and experimentally [5,6]. In spite of that,
the yielding mechanism of colloidal clusters has not properly
been understood so far. This work addresses the yielding of
strongly aggregated clusters under applied tensile forces and
bending moments.

The cluster behavior is described by the interparticle forces
which are decomposed into centrosymmetric and tangential
ones. The mechanical behavior of a bond can be fundamentally
different depending on whether the bond is subjected to only
central forces or both central and tangential forces.

II. STATE OF THE ART

Different experimental and simulation results show that
the centrosymmetric forces play a major role in cluster
elasticity [7,8]. Different hypotheses consider the centrosym-
metric forces as a result of van der Waals forces [9,10],
surface chemistry [11,12], hydrophobic effects [13], depletion
interactions [14,15], or local immobilization in the dispersion
medium [16].

General understanding of tangential forces which resist
the bending moments is quite limited [17–19]. Tangential
forces also play an important role in describing the shear
resistance of singly bonded clusters formed by DLCA or CCA.
The presence of these forces was inferred from the exper-
imental observations of particle deposition [20], differential
electrophoresis [21], and laser tweezers [22].

Recently, Pantina and Furst [22] reported experimental
results confirming the resistance of the interparticle bonds
against bending moments. There are many tangential-force
models proposed for cluster simulations (for details, readers
are referred to [23]). However, most of them do not consider
bending moments between particles. The very first study on
this topic was published by Kantor and Webmann [24]. Con-
sidering the central and tangential forces between particles,
the energy of a chain of particles was approximated. Later,
Potanin [25] proposed that the energy of a chain of particles
connected by central and tangential forces is identical to the
energy of a thin elastic rod of the same length. Quite recently,
by means of special shape descriptors the energy of clusters
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FIG. 1. (Color online) (a) Formation of a backbone chain in an isolated cluster suspended in the polymeric solution. (b) Forces applied
on the cluster and the resultant stress paths. (c) The final backbone chain as the main stress path. A loopless zone in the backbone chain is
highlighted.

under large deformations was approximated on the basis of the
Kantor and Webmann model [26,27]. In another work [19],
the central forces are excluded while the tangential forces
are assumed to result from tangential springs with limited
elasticity range. Although the obtained result was identical to
that in [24], the micromechanical approach was fundamentally
different.

In order to minimize the computational costs, another model
was proposed where particles are replaced by a trimer of
particles and, accordingly, the new bonds are defined by the
superposition of central forces acting between trimers. Thus,
the new bonds can also support bending moments [17]. More
recently, Botet and Cabane [18] described an interparticle bond
by a number of springs connected to different random sites of
the particle surface. Each spring is activated if its end-to-end
distance becomes smaller than a specific value. Accordingly,
despite the cumbersome procedure of the parameters estima-
tion, the model can successfully take tangential forces into
account.

FIG. 2. (Color online) A schematic load-deformation behavior of
ductile and brittle materials in central direction.

Klüppel et al. [28,29] described the cluster yielding by
means of mechanics of interparticle forces. The influence of
tangential forces on cluster elasticity was taken into account.
Their contribution to yielding was, however, not considered.
Thus, a bond is supposed to yield when the centrosymmetric
force between particles starts to decrease under tension
[16,30]. Experimental results reveal, however, much smaller
yield forces than those predicted by the above mentioned
theories [31].

Recently, not only centrosymmetric but also tangential
forces have been taken into account in order to describe
interactions between particles [31,32]. Let us categorize the
interparticle interactions in each direction, regardless of their
source into two different regimes as follows (see also Fig. 2).

(i) Brittle regime. The bond is assumed to rupture without
significant deformation in the corresponding direction and
yields when the load reaches a maximum value, that is, max-
imum force F

y
c in the central direction or maximum moment

M
y
t in the tangential direction (see Table I). Accordingly, no

elasticity in the corresponding direction is assumed, although
the bond may exhibit elastic behavior in the other direction.

(ii) Ductile regime. The bond yields when the strain in
the corresponding direction reaches a specific value, that is,
maximum strain ε

y
c in the central direction and maximum

deflection angle �φ
y
t in the tangential direction (see Table I).

Beyond these values the stress decreases.
Hence, the elastic modulus and the yield strain in each

direction can be defined only if the material behavior in that
direction is ductile, since in the brittle regime no elasticity
range is assumed (see Table I).

TABLE I. Definitions of parameter in central and tangential
directions for different regimes.

Elastic 
Moduli Yield def. Yield load

Elastic 
Moduli Yield def. Yield load

Brittle

Ductile Q

Central direction Tangential direction

y
c

y
t

y
tMy

cF G

y
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For example, in a colloidal system where interactions are
ductile in the tangential and brittle in the central direction,
only the set of parameters {Fy

c ,Ḡ,�φ
y
t ,M

y
t } given in Table I

is required to describe the material behavior.
Our goal in this study is to define a new yield criterion

for single clusters subjected to combined tensile-bending
forces by representing the interparticle bonds by solidlike
beams. Specifying the interactions between particles in each
direction to be of brittle or ductile type, the yield behavior and
geometrical properties of the beam can be described.

III. KINEMATICS OF A CLUSTER

A colloidal cluster is an interconnected structure in which
a high number of stress paths are usually formed under
loading. Experimental studies explicitly show that one stress
path (normally the shortest one) transfers most of the applied
load [33]. The main stress pathways are then traced while
the rest of the cluster is considered to be stress free. This
stress path is called the backbone chain. In Fig. 3(a), a cluster
subjected to a force FT at two points and the resulting backbone
chain are depicted. The contribution of other stress paths to
the mechanical response of the cluster is neglected due to the
insignificant amount of transmitted load. Thus, the backbone
chain is considered as the principal source of mechanical
integrity of the cluster, and its failure results in the yield of
the cluster.

Generally, clusters are freely suspended inside the disper-
sion medium. Thus, except for the cases in which clusters
are partially held in stationary traps [3], they do not transmit
any moment. Consequently, in the equilibrium state the forces

applied to a cluster work along the end-to-end direction of the
backbone chain.

In any arbitrary backbone chain, one can identify certain
zones where all the stress paths converge and join the backbone
chain. These places are called loopless zones (see Fig. 1). Each
link of a backbone chain consists of either one or more particles
attached to each other.

In the case of yielding, a failure of any single-particle
link in the loopless zones would break the cluster into two
parts. The failure of the multiparticle links may result in a
formation of new backbone chains, in which the multiparticle
link is replaced by a new path [34]. In both of these scenarios,
considerable energy dissipation is expected, which further
results in a notable stress softening of the cluster. Hence, this
state can and will be referred to as yield point.

The end-to-end distance of the backbone chain in the virgin
state is considered to be equal to the cluster correlation length
denoted by ζ . The parameter ζ can be considered as the average
distance of two arbitrary points on the cluster surface [35].
Clusters are considered to be fractal at length scales up to
ζ and homogeneous at larger length scales. The correlation
length is related to the number of particles of the backbone
chain N , by

N =
(

ζ

l

)db

, (1)

where db denotes the fractal dimension of the backbone chain
and l is the diameter of a cluster particle. db characterizes
the tortuosity of the backbone chain resulting from the fractal
nature of clusters.

Let us assume the same mass and diameter l for all cluster
particles and consider the same length l and l̄ for all the bonds

FIG. 3. (Color online) (a) A schematic view of a cluster subjected to a tensile force and the corresponding backbone chain. (b) Vectorial
representation of the backbone chain with N bonds and illustration of the implemented angles and vectors. (c) The initial and deformed
positions of three adjacent particles within the backbone chain. Interactions between two particles are represented by two linear springs. (d)
Representation of interparticle bonds with solidlike beams and the deformation of these beams due to the applied combined loads.
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in reference and current configuration, respectively. Further,
li (i = 1,2, . . . ,N ) denotes a vector connecting the centers
of particles i − 1 and i in the backbone chain as shown in
Fig. 3(b). Then, the vector ri connecting 0th particle with the
ith particle is expressed by

ri =
i∑

j=1

lj . (2)

The angle between the bond i and the force direction FT is
represented by ωi , while φij denotes the angle between the
bonds i and j [see Fig. 3(c)].

IV. YIELD OF AN INTERPARTICLE BOND

Let us ideally represent an interparticle bond by an
isotropic, homogeneous solidlike beam of constant cross
section, as shown in Fig. 3(c). Due to the large tangential
displacements of adjacent particles, finite bending theory is
applied for the calculation of the yield stress [see Fig. 3(d)].
Accordingly, the normal stress in the cross section of a bond
is calculated by using the extended version of Euler-Bernoulli
beam theory for large bending deformations (see, e.g., [36]).
To this end, we consider the curvature radius ρ to be relatively
small ρ < 10h and assume the sections of the beam remain
flat under deformation.

Consequently, the maximum normal stress in the beam is
reached at the outer surface of the bond. In an arbitrary bond
i subjected to a combined tensile-bending load (FT ,MT

i ), the
maximum stress is thus given by

σ = FT cos ωi

Ab

+ MT
i

(
1

ρAb

+ 1

I

ρh

ρ + h

)
, (3)

where ρ and h represent the local bending radius in the
deformed state and half of the beam thickness along the
bending radius (see Fig. 4). I is the modified area moment
of inertia along the central axis given by

I = ρ

∫
A

h2

ρ + h
dA (4)

at the ρ place.
Further, MT

i is the bending moment applied to bond i and
Ab denotes the cross-sectional area of the bond. By considering
an identical yield stress σy for all bonds of the backbone chain,
the position and the yield force of the critical bond can be
determined by force and moment balance equations.

As mentioned above, interactions between particles can be
of ductile and brittle types depending on the type of particles.
For this reason, we study in the following each of these
regimes, separately.

A. Brittle regime

Apparently, a bond fails when the applied bending moment
exceeds M

y
t in the absence of the tensile force or the applied

tensile force exceeds F
y
c in the absence of the bending moment

[see Figs. 4(b) and 4(b)]. Accordingly [Eq. (3)], we obtain

σy = F
y
c

Ab

, or σy = M
y
t

I , (5)

h

FIG. 4. (Color online) Calculation of the yield stress as a result
of (a) combined tensile-bending load, (b) only bending moment, and
(c) only tensile force.

where

1

I = 1

ρAb

+ 1

I

ρh

ρ + h
. (6)

Due to the absence of elastic range in the brittle regime, the
following geometrical identity is obtained from (5)

Ab

I = F
y
c

M
y
t

. (7)

By the definition of the backbone chain, forces applied on
different bonds are equivalent and denoted by FT . Since
clusters are assumed to transmit no moments, the bending
moment applied to a bond MT

i results solely from the tensile
force FT . Thus,

MT
i = FT r ′

i . (8)

The parameter r ′
i = ‖r′

i‖ represents the length of the vector
rejection of ri from the force direction so that [see Fig. 3(b)]

r′
i = ri −

(
ri · FT

F T

)
FT

F T
. (9)

Hence, for an arbitrary bond i, one can introduce a critical
force F

y

i leading to the bond failure. The magnitude of this
critical force is obtained implicitly from

F
y

i =
{
F

y

i

∣∣∣∣σy = F
y

i

Ab

cos ωi + F
y

i r ′
i

I

}
. (10)

B. Ductile regime

By considering the interparticle behavior to be ductile in the
central, tangential, or both these directions, one can represent
the elastic material behavior in the corresponding direction(s)
by an averaged elastic modulus Q for the central direction, Ḡ

for the tangential directions, or both. For the central direction,
the elasticity equation for the bond i [see Fig. 3(c)] gives

σ = Qε ⇔ FT

Ab

· li
l

= FT

Vb

l cos ωi = F l cos ωi = Qε,

(11)
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where ε = l̄−l
l

represents the bond strain and FT = ‖FT ‖. The
parameter Vb = Abl denotes the volume of an interparticle
bond. The elasticity equation in the tangential direction gives

Mi = VbḠ�φij ⇔ FVb · ri = Fr ′
iVb = VbḠ�φij ,

j = i + 1, (12)

where �φij refers to the changes in the angle between bonds
i and j (j = i − 1 in case of bending, and j = i − 2 in case
of torsion). Accordingly, simplifying (11) gives

Fr ′
i = Ḡ�φij , F cos ωi = Q

l
ε, j = i + 1. (13)

The magnitude of the maximum load in each direction can be
calculated by means of the elastic moduli as

Fy
c = Qεy

c , M
y
t = Ḡ�φ

y
t . (14)

Similarly, representing a bond by a solidlike beam, its
deflection and elongation due to a combined tensile-bending
load are obtained by

�φ = MT
i l̄

EI
, εl = FT · li

EAb

, (15)

where E represents the elastic modulus of the beam. By
substituting (13) into (15), one gets

Ḡ = E

Vb

I

l̄
, Q = E, (16)

which further yields the following identity for the beam
geometry:

Ab

I
= Q

Ḡ

1

l̄2
. (17)

C. Critical force

Having F
y
c and M

y
t at hand for both regimes, we can

represent the bond yield stress as a result of tensile load,
bending load, and combined tensile-bending force in both
regimes as

F
y
c

Ab

= M
y
t

I = F
y

i

Ab

cos ωi + F
y

i r ′
i

I , (18)

which can be simplified to

1

F
y

i

= 1

F
y
c

cos ωi + r ′
i

M
y
t

. (19)

Using (17) or (7), Eq. (19) can be implemented for the brittle
or ductile regime, respectively.

V. YIELD OF A CLUSTER

Failure of the first bond (critical bond) in the backbone
chain is supposed to be accompanied by massive breakage of
further bonds, which finally leads to the cluster failure. Thus,
the yield force of the cluster Fy is considered to be the yield
force of the critical bond. Accordingly, Fy is formulated by

Fy = min
{
F

y

i

∣∣i ∈ N : n � N
}
. (20)

In view of (6) and (10), the magnitude of the yielding force is
strongly influenced by the direction and position of the critical

bonds. These bonds are placed far away from the end-to-end
vector and have the same direction with it. In the case of
large clusters, the minimal critical force is obtained when the
particles roll on each other. In this case, the following identities
hold:

(i) ρ = l̄ direct movement of particles on each other;
(ii) h = l̄

2 by assuming that the neutral axis remains in the
middle of the beam during deflection;

(iii) r ′
i = ζ

2 by considering a cluster to be a sphere of the
radius ζ

2 ;
(iv) cos ωi = 1 by assuming the bond to be in the direction

of the applied force.
Accordingly, using (19), the yield force of a cluster Fy is

obtained by

Fy = Fy
c

2M
y
t

2M
y
t + F

y
c ζ

. (21)

By excluding the tangential forces (lim�φ
y
t →∞ M

y
t = ∞), the

obtained yield criteria (21) reduces to the simple tension
failure criteria [28], where Fy = F

y
c . If interactions between

particles in both directions are considered to be ductile, in view
of (6), (17) gives

Ab

I = 1

l̄
+ Q

Ḡ

1

3l̄
. (22)

For the ductile regime, (19) can be further simplified by means
of (22) and (7) into

Fy = Fy
c

2

2 + ζ

l̄

(
1 + 1

3
Q

Ḡ

) . (23)

VI. EXPERIMENTAL VALIDATION

The model presented above assumes that the structure
breaks at a single bond. This is possible for clusters formed
by DLCA kinetics where most of particles in the backbone
chain act as single-bond links. In compact clusters formed by
other mechanisms, due to the existence of many stress paths,
one may find more than one backbone chain transmitting load.
Accordingly, in these clusters, the moments and forces at yield
may be divided up over several backbone chains. Moreover,
yielding of a backbone chain from a bond that is placed in
a loop may result in formation of another backbone chain.
The experimental observations, however, do suggest that the
aggregated clusters break in parts that are used by several stress
paths [17] [see Fig. 3(a)].

In order to validate the proposed model, its predictions
are compared against experimental values of the yield stress
for a colloidal gel network provided by Buscall et al. [5,37]
for several particle sizes and particle concentrations. In these
experiments, the mean yield stress Ty of strongly aggregated
polystyrene lattices in solution of barium chloride (BaCl2) has
been measured and reported.

When the network is formed by fractal clusters, the mean
cluster size of the network is approximated with respect to the
particle volume fraction φ by

ζ ≈ l

(
φ

φe

) 1
3−df

, (24)
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FIG. 5. (Color online) Rheological measurements of the yield stresses of the polystyrene aggregated structures in BaCl2 [5,37]. The yield
stress is measured with respect to particle concentration for different sizes of particles: (a) l = 0.5 (μm), (b) l = 1 (μm), (c) l = 2.6 (μm), (d)
l = 3.5 (μm). The experimental data are then compared with the tangential load criterion (26), central load criterion (28), and the combined
load criterion proposed here (29).

where df is the fractal dimension of clusters, and φe denotes
the particle volume fraction of a cluster which is determined
by cluster aggregation kinetics.

In order to show that the bond failure is more likely to
result from a combined tensile-bending load rather than from
pure tensile or pure bending load, we plotted and compared
the yield stresses estimated from these three methods against
the measured values from experimental results in Fig. 5.

Tangential load criterion. The influence of tangential loads
on the yield behavior of an interparticle bond was studied in
detail in [3]. By measuring deflections of polystyrene aggre-
gates in magnesium chloride solution, the authors identified a
critical bending moment M

y
t which expresses the limit of the

linear elastic response of the cluster. Having M
y
t at hand, the

yield stress of the gel network was further obtained by

Ty ∝ M
y
t

ζ 3
∝ M

y
t

l3

(
φ

φe

) 3
3−df

. (25)

In order to normalize the influence of the particle size
on the measured yield stresses Ty , the measured values are
scaled by l

5
3 . However, the magnitude for scaling exponent

is also reported by some authors, such as l
3
2 [31] or l2 [37].

Finally, (25) gives

Ty

(
l

lref

) 5
3

= a1
M

y
t

l3
ref

(
φ

φe

) 3
3−df

, (26)

where a1 is a fitting constant, and lref (m) is considered as a
reference particle size.

Central load criterion. In order to simulate the yielding of a
colloidal bond due to the maximum central load F

y
c , the value

of F
y
c is approximated by the theory of particle adhesion by

Johnson, Kendall, and Roberts [38]. For equal-sized particles
in the absence of tangential loads, the central yield force of an
interparticle bond F

y
c = 3

2Wslπl gives the yield stress of the
network as

Ty ∝ F
y
c

ζ 2
∝ F

y
c

l2

(
φe

φ

) 2
3−df

, (27)

where Wsl is the adhesion energy per unit area of particles [39].
Considering the particle size dependence of Ty , one has

Ty

(
l

lref

) 5
3

= b1
F

y
c

ζ 2

∣∣∣∣
l=lref

, (28)

where b1 is also a fitting constant.
Proposed combined criterion. By means of F

y
c and M

y
t ,

the critical force Fy can be calculated using (21). Then, the
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yield stress of the gel network is obtained by virtue of (28) and
(26) as

Ty

(
l

lref

) 5
3

= b1
Fy

ζ 2

∣∣∣∣
l=lref

+ a1
Fyr ′

i

l3
ref

(
φ

φe

) 3
3−df

=
(a1

2
+ b1

) Fy

ζ 2

∣∣∣∣
l=lref

, (29)

where r ′
i = ζ

2 . This criterion agrees best with experimental
results when compared to the two other criteria for different
particle sizes and volume fractions (see Fig. 5).

For evaluation, we consider common values for the parame-
ters of the close packed clusters formed by DLCA kinetics, that
is, lref = 1 (μm), df = 1.8 and φe ≈ 0.64 [40]. The maximum
tangential and central loads are set to M

y
t = 6 × 10−6 (nm) [3]

and Wsl = 11( lr ef

l
) (μ nm−1), respectively. Accordingly, the

corresponding values obtained for F
y
c are consistent with the

experimental observations about the minimum tensile yield
force of the aggregates, which should be above 15 (pN)
(see [22]).

Under cluster yielding, the bonds mostly fail due to the
combined tensile-bending loads, or sometimes due to pure
bending loads. Generally, a pure tension rarely results in a
bond failure [19]. Moreover, in the yielding procedure of a
cluster, it is unlikely that a single bond fails due to pure tension,
whereas pure bending failures and failures due to combined
tensile-bending loads do occur more frequently. In line with
previous studies, we claim that combined tensile-bending load
is the major factor for bond failure in strongly aggregated
clusters, as shown in Fig. 5. We believe that this is due to
the fact that a small tensile force can cause a large bending
moment in the curvilinear path of a backbone chain. Thus,
bending plays a major role in yielding of clusters in low particle
fractions, where most of the particles in a backbone chain act
as single-particle links.

If the predictions of the tangential and central load criteria
are close, both forces have notable contributions to the yielding
procedure. Thus, neglecting one of these criteria may result in
overestimation of the final result. Accordingly, the actual yield
stress is expected to be, and regularly is, somewhat lower than
the predicted values [see Fig. 5(a)].

Generally, in smaller clusters, the contribution of bending
is less than that one of tensile loads. Thus, at higher particle
concentrations (smaller clusters), the actual yield stress of
clusters is considerably higher than that predicted by pure
tensile loads and lower than that predicted by bending loads
[see Figs. 5(c) and 5(d)].

Thus, a combination of both loads is expected to influence
the yield behavior. The proposed combined load model shows
good prediction abilities in this regard.

Here, the predicted curves of tangential, central, and com-
bined load criteria are all fitted to the available experimental
points by means of one fitting parameter. Thus, despite
the limited number of points available, Fig. 5 represents a
comprehensible but concise comparison between the predic-
tion abilities of the three different criteria. The experimental
validation presented here can be improved in the future by
more detailed experimental data.

VII. CONCLUSION

In this contribution, a new micromechanical yielding
criterion for strongly aggregated colloidal clusters is proposed.
This criterion is based on the interactions between colloids.
These interactions are decomposed into centrosymmetric and
tangential directions. Thus, the failure load of an interparticle
bond is formulated as a function of both these load types. To
this end, an interparticle bond is represented as a nanoscale
solidlike bridge. The yield force required to break the bonds is
derived as a function of the position and deformed geometry of
the cluster bonds. Accordingly, the critical bonds are identified
as the bonds with the least yield forces. By means of the
failure force of critical bonds, the yield force of the cluster is
derived.

The proposed approach is independent of the nature and
source of the interactions between colloidal particles and thus
can be generalized to various colloidal systems.
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