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How does an ice block assembly melt?
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The melting of an assembly of ice blocks contained in a vertical cylinder and under an unidirectional load was
investigated. The total volume occupied by the ice blocks and the volume of ice were simultaneously measured
which allowed one to determine the volume fraction of the ice in the cylinder. While the ice volume continuously
decreases, sudden breakdowns of the total volume were observed. Large reorganizations of the whole assembly
occur. However, the maximal volume fraction found just after a large reorganization decreased with time. In
addition, the modifications of the pile structure were investigated using an x-ray tomography imaging before and
after one collapse. As the packing is better ordered along the walls, we suggest that the motion of the piston is
governed by the layer of ice blocks located along the container wall. This layer was modeled by a two-dimensional
assembly of disks. The model supports the idea that the geometrical frustrations explain the dynamics of the
successive reorganization due to the shrinkage of the grains. Finally, numerical simulations allow one to conclude
that the dynamics of the melting of the ice blocks is governed (i) by the confinement effect which induces defects
in the packing and (ii) by the low friction between the ice blocks.
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I. INTRODUCTION

When an assembly of spherical noncohesive grains is
poured into a vessel, the volume occupied by the grains is
a very debated subject since Kepler’s conjecture in 1611.
Even after the last two decades of intensive research in
granular materials, the problem remains an open question
[1,2]. The macroscopic value that reflects the volume occupied
by the grains is the volume fraction η, defined as the ratio
between the volume of the grains and the volume occupied
by the whole grain assembly. The ingredients that determine
the volume fraction of the pile are due to the geometrical
and to the mechanical constraints. Each grain is to reach a
stable position which is determined by the geometry of its
neighborhood. More precisely, a grain is stable either when
at least three contacts are established below its gravity center
or when grain-grain friction is sufficient to stop the grain.
The geometrical frustration and the friction are responsible for
arching and a so-called jamming of the pile [2,3]. Indeed, the
potential energy of the pile, given by the sum of all the potential
energies of the grains, is a local minimum of the energy in the
configuration space. A bead assembly contained in a box may
be assimilated to a glassy state [5]. Besides the friction between
grains, the shape of the grains is relevant for determining the
volume fraction of a packing. Since the seminal work by Donev
et al. on the packing of ellipsoids [6,7], the volume fraction
of more complex grains has been investigated like Platonic
solids [8].

Even more interesting is the manner to increase the volume
fraction (to increase the density) by tapping [9–12], by
shaking [13], by shearing [14,15], by thermal cycling [16],
by moving an intruder [17]. Generally speaking, the method
consists of breaking the contact network and then allowing a
reorganization that may conduct to a highest volume fraction.
This process is complex. For example, from one tap to another,
the potential energy of the pile jumps from one local minimum
to another characterized, maybe, by a higher volume fraction.

In this work, we envisaged a particular granular material
that was made of ice blocks. The ice grains (blocks) were
placed in a vessel at room temperature and under a mechanical
vertical compression. Basically, an assembly of ice blocks was
placed in a piston. During the melting of the ice blocks, the
piston went down because the size and shape of the grains
continuously change. Consequently, the contact geometry, the
contact network, and the force network were dynamical and
kept on changing. The natural question concerns the evolution
of the volume fraction: Does the volume fraction increase or
decrease during the melting of the ice blocks? Moreover, as
the grains are melting, the assembly becomes more and more
fragile. Large reorganizations are supposed to be observed
which must conduct to a packing which is robust enough to
sustain the load.

Ice blocks are particularly advantageous for our purpose:
(i) As the blocks were immersed, the ice grains are not
cohesive. Note that a recent paper approaches cohesive ice
grains [18]. (ii) The coefficient of friction between two melting
ice blocks is very low, about 0.02 [19], essentially because of
the lubrication film. These two first advantages allow one to
consider that the granular structure is mainly driven by the
geometrical frustrations. (iii) The grains are parallelepiped
rectangles. When blocks are well ordered, the volume fraction
is theoretically equal to one. On the other hand, when blocks
are poured randomly in a container, the volume fraction is
about 0.55 [20]. This allows a large possible range of variation
for the volume fraction. (iv) The ice and the water can be easily
discriminate using an x-ray tomography device. It is therefore
possible to investigate the internal structure of the packing.
(v) The proposed system, for which the size modification of
the grains and the subsequent reorganizations, mimics the
reorganization of grains that are completely surrounded by
a liquid. That situation can be observed on very different
scales like in ceramic science (liquid phase sintering) [20,21],
metallurgy (metal scraps melting) [22], and tectonics (partial
melting rocks in Earth’s crust) [23].
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The experimental results are first detailed according to
macroscopic observables like the total volume or the total
volume fraction in Sec. III A. The internal structure and
the local volume fractions are then analyzed in Sec. III B.
The interpretation is composed by two subsections: Sec. IV A.
the ideal packing and Sec. IV B. numerical simulations.

II. EXPERIMENTAL SETUP

A cylindrical piston was built for our purpose. Its dimen-
sions were Rc = 75 mm for the radius and 300 mm for the
height (Fig. 1). The piston was made of a disk that can move
freely in the cylinder without contact. The piston could be
overweighted by the addition of a load (load 1 = 21 N,
load 2 = 39 N, and load 3 = 57 N). The whole system
was surrounded by polystyrene in order to decrease the
exchange of heat with the exterior. The experiment duration
was consequently increased and the temperature was more
homogeneous through the sample. Several thermocouples
were set in the system. The temperature, about −3 ◦C was
stable during experiments and the fluctuations were below
1 ◦C. The thermal dilatation can be neglected as the thermal
expansion of the ice is about 10−6/K.

About 140 ice blocks for which dimensions were 35 × 25 ×
25 mm3, were introduced in the cylinder. Two liters of cold
(initially at 6 ◦C) salted water was added (100 g NaCl per liter).
With this amount of salted water, the piston and the load are
completely immersed (Fig. 1). Note that during the motion, the
water located below the piston is allowed to pass on the other
side of the piston. This salted liquid prevents the ice block
from soldering and ensures a better thermal homogeneity of
the system. Due to the buoyancy, the force exerted by the ice
on the piston is estimated to 3 N, thus much lower than the
load applied to the block assembly. The motion of the piston
is consequently fast when the pile reorganizes.

FIG. 1. (Color online) Schematic description of the experimental
setup. The ice blocks bathe in salted water. They are pushed downward
by the loaded piston. Two quantities are measured: the position of the
piston htot and the variations of the liquid level hf l that is related to
the time variation of the volume of ice Vice (see [4]).

The total volume was found by measuring the position htot

of the piston with respect to the bottom. The piston without
load is balanced by a counterweight using a pulley. When the
piston moves, the pulley turns. A potentiometer allowed one
to count the number of turns due to the motion of the piston
and, after calibration, allowed to measure the position of the
piston. The height htot was used to determine the total volume
Vtot occupied by the ice, namely,

Vtot(t) = πR2
chtot(t). (1)

In parallel to the total volume, we measured the ice volume
by following the variations of the fluid level hf l(t) contained in
the vessel (Fig. 1). The position of the surface was determined
using a floater for which the position was measured using a
proximity sensor. The melting of the ice decreases the liquid
level because the blocks are completely immersed and because
the density of the ice is lower than the density of the water.
Knowing the position of the floater, it is possible to determine
the amount of ice that melted since the beginning of the
experiment. The volume Vice of ice under the piston is given
by

Vice(t) = πR2
c (hf l(t) − hf l(∞))

ρw

ρw − ρi

,

where hf l(∞) means “when the ice has totally melted”; ρw =
1000 kg/m3, and ρi = 920 kg/m3 are the density for the water
and for the ice, respectively. Finally, the volume fraction η of
the ice packing is defined as the ratio between the volume of
ice and the total volume, namely,

η(t) = Vice

Vtot
= hf l(t) − hf l(∞)

htot

ρw

ρw − ρi

. (2)

An x-ray tomography apparatus (Siemens Somatom Sen-
sation 16) was used to determine the structure evolution of
the packing. For this purpose a square vessel in plexiglas was
built. The volume of interest measured 200 × 200 × 200 mm3.
In this case, about 380 ice blocks of 25 × 25× 20 mm3 was
mixed with cold salted water (6 ◦C) in the vessel. The density
contrasts between the water and the ice is such that it is possible
to discriminate the ice blocks from the surrounding liquid. The
volume fraction and the local density were measured during the
melting process. The accessibility of these quantities allows
one to characterize the internal structure of the pile [24].

III. EXPERIMENTAL RESULTS

A. Global measurements

The evolution of the total volume Vtot occupied by the
assembly (red lines, left scale) and the volume fraction η (blue
lines + triangles, right scale) with the time (sampling rate =
1 Hz) are represented in Fig. 2 for three loads, 21 N [Load
1, Fig. 2(a)], 39 N [Load 2, Fig. 2(b)], and 57 N [Load 3,
Fig. 2(c)]. For illustration purpose, a typical experiment can
be seen at Ref. [4] when the vessel is not thermally isolated.
The total volume starts at about 4 dm3. The total time for the
melting is about 35 h. A dependance of the total melting time
with the applied force is not observable in the present case.

The general behavior of the curves Vtot(t) is a monotonic de-
crease with time. The curves exhibit discontinuous variations
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FIG. 2. (Color online) Total volume Vtot (red line) and volume
fraction η (blue lines + triangles) evolutions with the time for three
different loads: (a) 21 N, (b) 39 N, and (c) 57 N. The dashed curves
in Fig. 2(a) represent the envelope of the volume fraction evolution
with time while the dashed lines in Fig. 2(b) illustrate the variations
of total volume by steps as described in the text.

during which the ice assembly shrinks and emits a loud sound.
The total volume Vtot evolves by steps. The time variation
of Vtot can be summed up as a succession of periods of low
decreases (calm periods) separated by sudden large collapses
(large discontinuities). One observes that the calm periods

become longer and less regular when the load is increased. In
average, a step lasts 2 h, 45 min before a breakdown occurs.
The typical variation of volume due to a large discontinuity
is about 5%–6% of the total initial volume (typically about
0.200 dm3). A close look at the calm period shows that even
calm periods are made of a succession of small steps [see zoom
at Fig. 4(a)]. Regarding the evolution during a calm period,
small discontinuities occur with a typical magnitude of 0.1% of
the total initial volume (typically about 0.004 dm3). Note that
the last step (t > 30 h) concerns the melting of a monolayer
of blocks in the piston. That explains the continuous decay of
the volume fraction towards zero. At this point, the volume
fraction measurement is difficult to obtain as it results from a
division.

The variations of total volume �Vtot(t) = Vtot(t + τ ) −
Vtot(t) where τ = 1 s (the inverse of the sampling rate)
have been statistically analyzed. In order to automatically
detect a discontinuity, three moving averages of Vtot were
considered [25]. They are noted 〈Vtot(t)〉n and defined by
1

2n

∑t+n
i=t−n Vtot(i). The moving averages have been computed

for n = 20, 50, and 100. From these averages, two differential
averages have been built d100,20(t) = 〈Vtot(t)〉100 − 〈Vtot(t)〉20

and d50,20(t) = 〈Vtot(t)〉50 − 〈Vtot(t)〉20. An arbitrary threshold
was fixed to define a discontinuity: A discontinuity was
detected when d100,20(t) is larger than 10−3 dm3, which is about
twice the value of the noise on the volume data. The time td
at which the discontinuity occurs is found when the sign of
the difference between d100,20(t) and d50,20(t) changes. The
amplitude of the discontinuity �Vd is given by the difference
between the average over the 50 values of Vtot just before and
just after td . Finally, the time delay between two successive
discontinuities is noted �td .

The cumulate distribution function (CDF) of �Vd is
reported in Fig. 3(a) and this for the three different loads. Two
populations can be evidenced: (i) The small decreases �VS

concern total volume variations between 10−3 and 10−2 dm3

and (ii) the collapses �VH concern variations between 10−2

and 1 dm3. The large collapses �VH are represented by open
black circles in Figs. 2(a)–2(c). The small decreases �VS are
observed during the calm period. The origin of the small jumps
can be attributed to small reorganization but we cannot reject
the hypothesis of some stick-slip of the piston. On the other
hand, the distribution of the large variations �VH is found to
be consistent with a log-normal distribution. The averages of
the distributions of �VH are found to be 0.195, 0.223, and
0.283 dm3 for the load 21, 39, and 57 N, respectively. This
evidences the influence of the load that increases the average
height of collapses.

In Fig. 3(b), the cumulate distribution function of the time
delays �td between two successive breaks is represented for
the three different loads. The cutoff time is located at 200 s
due to the choice of the mobile averages. However, at a first
approximation, the distributions have been fitted by a Weibull
function:

CDF = 1 − exp(−(�t/τ ))k, (3)

where τ is the characteristic time and k the exponent giving the
shape parameter. The values of τ are 524 s, 255 s, and 344 s for
the load 21, 39, and 57 N, respectively. The shape parameter
is found to be around 0.8. The value of k indicates that after a
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FIG. 3. (Color online) Cumulative distribution functions (CDF)
of (a) the total volume discontinuities �Vd and (b) the time delay
between two successive discontinuities for three different loads: 21
N (circles), 39 N (triangles), and 57 N (squares). (c) Correlations
between the variations of the high discontinuities �VH and the time
elapsed �tH between two high discontinuities for the three different
loads. The curves are guides for the eyes.

collapse, the probability of observing a new collapse decreases
with time. This fact can be interpreted by considering the
existence of a supporting structure through the pile (see later
in the article). A jump is always due to the weakest structure
present in the packing. The weak structures are the first to
break. This hypothesis is well supported by the correlation
found between the large collapse �VH and the waiting times
�tH between two successive large collapses. In Fig. 3(c), �VH

is reported as a function of �tH . The curves are guides for the
eye. This show that a long waiting time is correlated to a high
jump. A long waiting time is due to the presence of strong
arches in the packing and a subsequent large reorganization
is expected. The correlation between the waiting time and
the amplitude of the event is typical of a “fragile medium”
under a constraint and is found in numerous phenomena:
self-organized critical systems [26], fracture of a solid under
a constraint [27], earthquake frequency and intensity [28],
bursting of bubbles in a foam [29], noise emission in geological
phenomenon [30], rupture of fuse networks [31], etc.

The signal Vtot(t) may be also decomposed into a series of
steps. We define a step as the variation of the total volume at
the moment just after a large collapse until the moment just
after the next large collapse. Such steps are represented as a
dashed line in Fig. 2(b) and a zoom is presented in Fig. 4(a). In
so doing, a step is composed of a calm period during which the
system shrinks nearly continuously and of a sudden decrease of
the total volume. The total volume variation of a step �VH,tot,
given by the difference between the total volume just after a
large jump and the total volume just after the next large jump,
can be decomposed into a part of nearly continuous variation
and a large jump �VH . In Fig. 4(b), �VH is plotted as a
function of the total step �VH,tot. After a linear fit, the sudden
jump �VH is found to be about 80% of the total step �VH,tot.
Remarkably, this ratio seems to be a rule for the considered
system of ice blocks. From Figs. 3(c) and 4(c), we conclude
that the shape of the steps is conserved because the waiting
time is correlated to the amplitude of the large collapse which
is correlated to the total variation of volume during one step.

The volume fraction η of the ice contained in the considered
Vtot(t) is also plotted versus time in Fig. 2 (blue lines) in
parallel with the variation of the total volume for the three
loads. The initial volume fractions are situated around 0.6.
That is consistent with the values found in the literature for a
packing of blocks [20]. The volume fraction exhibits a saw-
tooth behavior (i.e., smooth and continuous decrease periods
are brutally interrupted by sudden jumps towards higher
volume fractions). Indeed, during slow decrease periods, the
volume of ice decreases faster than the total volume occupied
by the ice blocks. It results in a decrease of the volume fraction
of ice. When a sudden decrease of Vtot occurs, the volume
fraction increases; the system gets denser. We also remark that
the ice tends to occupy less and less space in the total volume
as the general trend of the saw-tooth curve is to decrease with
time as suggested by the envelope delimited by both dashed
curves in Fig. 2(a). This also emphasizes that the load can be
supported by a block assembly less and less dense.

In order to better understand the trend towards the decrease
of the volume fraction, we compared the variation of the
total volume �VH,tot during one step and variation of the
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FIG. 4. (Color online) (a) During the melting, the piston expe-
riences steps. Here is a typical step (series 39 N) for which size is
�VH,tot and duration �tH . The contribution of the sudden jump is
�VH . (b) Contribution of the sudden collapse variation �VH to the
total variation of volume during one step �VH,tot for three loads (see
legend). The line is a linear fit to the whole data presented. (c) Ratio
between the variation of the ice volume during a step �Vice and the
variation of the total volume �VH,tot is represented as a function of
the volume fraction η0 measured at the beginning of a step.

ice volume �Vice during the same period, we found that the
total volume variation is, in most of the cases, larger than the
ice volume variation. This fact may seem to be a paradox as
a decrease trend of the volume fraction was observed. This
can be explained by considering the definition of the volume
fraction. Let η0 the volume fraction just after one step at t = t0.
This volume fraction is given by the ratio Vice(t0)/Vtot(t0). Just
after the next large collapse at t = t1, the volume fraction η1

is given by

η1 = Vice(t0) − �Vice

Vtot(t0) − �VH,tot
. (4)

After some basic manipulations, one finds that the value η1

is smaller than η0 when �Vice/�VH,tot > η0. In Fig. 4(c), we
report the ratio �Vice/�VH,tot as a function of η0. We observe
that the ratio is larger than the initial value of the volume
fraction in most of the cases. That clearly shows that, under
a constant vertical stress, the volume fraction of a confined
assembly of melting blocks naturally decreases with time.
Even if large and sudden reorganizations occur, the volume
fraction trend is a decrease with time.

To summarize the observations, the total volume evolves
by steps. The shape of the steps can be rescaled as revealed
by empirical laws which link the amplitude and the waiting
time of a step. The statistical analysis of the successive steps
shows that the probability of a collapse decreases with time.
After several large collapses, the ice block assembly is less
dense than the initial packing. However, the pile is still able to
support the load.

B. Internal structure

The internal structure of a melting ice block’s packing
has been investigated using x-ray tomography. A three-
dimensional (3D) reconstruction can be seen in Fig. 5. The
x and y axes are located in a horizontal plane while the z

axis is oriented along the vertical direction (for illustration, see
Fig. 5). The bottom of the vessel corresponds to z = 0. A movie

FIG. 5. (Color online) Typical 3D reconstruction of a pile of ice
block by x-ray tomography (see also [4]). The size of the pile is
200 × 200 × 200 mm3.
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FIG. 6. (Color online) Total volume divided by the initial volume
Vn (circles) and volume fraction η (triangles) evolutions with time
obtained from X-tomography measurement. A re-arrangement occurs
around t ≈ 0.25 h.

was made using OSIRIX [32]; the movie shows the packing seen
from a vertical plane that scans the whole vessel [4]. The x-ray
tomography provides density maps of slices along the x axis.
A scan has been performed every 10 min in order to obtain
the dynamics of the melting. After thresholding the pictures
using IMAGEJ [33], the volume fraction is obtained by taking
the ratio between the number of pixels belonging to the ice
and the total number of pixels inside the vessel. Macroscopic
variables such as the total volume and the volume fraction
of ice are easily deduced from image analysis. Moreover,
the tomography allows one to obtain local properties like the
density profile along an arbitrary direction by averaging the
density of a slice orthogonal to the concerned direction.

In Fig. 6, the normalized volume Vn = Vtot(t)/Vtot(0) and
the global volume fraction of ice η are reported as a function
of the time. The curves are arbitrary interpolations in order to
recall the behaviors observed in Fig. 2. In Fig. 6, a collapse
occurs between t = 0.17 and 0.35 h and is represented by a
dashed line. Due to the collapse, the normalized volume Vn

changes by about 5%. Two situations were carefully analyzed,
that is, before (t = 0.16 h) and after the jump (t = 0.35 h).
Both situations are indicated by large symbols in Fig. 6 (solid
symbols before and open symbols after the jump).

The density profiles were calculated along two orthogonal
directions, namely y and z, and are presented in Figs. 7(a)
and 7(b), respectively. For each direction, two situations are
analyzed, namely before (plain red circles) and after (open
blue circles).

In Fig. 7(a), the density profile along the y axis is reported.
On the measurements before and after the collapse, large
oscillations can be observed close to the walls. This reflects
that the grains are ordered along the walls. Moreover, the
volume fraction is found to be the largest along the wall. That
strongly contrasts with the center of the pile which is less dense
and less organized. It is noticeable that after the collapse, the
oscillation amplitude of the density profile increased. Due to

FIG. 7. (Color online) (a) Local volume fraction dependance with
the horizontal coordinate y (y = 100 mm corresponds to the center
of the vessel). (b) Local volume fraction dependance with the vertical
coordinate z in the vessel (z = 0 corresponds to the bottom). The
plain red symbols and the open blue symbols correspond to t = 0.17 h
(before the collapse) and to t = 0.35 h (after the collapse).

the reorganization, the grains located along the walls becomes
more organized.

According to the vertical z axis [Fig. 7(b)], the curves
corresponding to the density profile before and after the jump
present oscillations close to the bottom (close to z = 0 mm).
This shows that the pile is rather well organized in layers
at the bottom. After the collapse, the total height of the pile
decreases by about 10 mm as can be seen in Fig. 7(b) (close
to z = 200 mm). Larger oscillations of the density profile are
observed close to the top of the pile (open circles).

From the local density profiles, we observe that the blocks
are organized along vertical layers that are located along
the wall of the container. Note that such an organization is
also found in the case of spheres (experimentally [34] and
numerically [35]) and in the case of ellipsoid grains [36]. This
structure is a signature of the confinement of the granular
material, in other words when the size of the grains are
comparable to the size of the container. The local volume
fraction is also the largest along the vertical walls and at
the bottom of the container while the center of the pile is
the less dense. After the collapse, the pile becomes even better
organized and denser along the walls, at the bottom and at the
top while the center remains not organized and less dense. The
structure of the ice block assembly evolves toward a dense and
organized shell of blocks that surrounds a not well-organized
and less dense core of blocks.

IV. INTERPRETATION

From these observations, it is possible to establish a
scenario for the evolution of the melting granular material
under an external constraint. As for any noncohesive granular
material, the stability of the pile is ensured by the geometrical
frustration and by the friction between the grains. In the case
of ice blocks, the geometrical frustration is the predominant
mechanism for the generation of arches as the block-block
friction is very low. When the grains (ice blocks) melt, they
occupy less and less space; their shape becomes rounded.
Consequently, the geometry of the contact network reorga-
nizes. The experimental facts evidence that two kinds of
reorganization processes may occur. In the first one, called
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the calm period, small jumps may be observed. The grains are
melting; the change of ice volume is faster than the change
of total volume. Consequently, the volume fraction decreases
with time. The reorganization of the contact network is
supposed to be continuous or at least very smooth during calm
periods. The second reorganization process corresponds to the
sudden collapses. Within a second, the total volume drops. A
noise can be heard. Macroscopic motion of ice blocks can be
observed [4]. As the ice volume remains constant during the
breakdown, the volume fraction increases. The reorganization
is discontinuous. We showed that the total volume evolves by
successive steps. This fact does not seem to be influenced by
the value of the load. This suggests again that the geometrical
structure of the pile plays a key role in the reorganization
process. Regarding the internal structure, we evidenced that
the blocks are better organized along the walls as the density
is larger. These blocks form a dense envelope around a less
dense core of blocks. As the friction between the grains is very
low, we may surmise, as a first approximation, that the pile is
more resistant to the load when it is well ordered (i.e., along
the walls). Even if the blocks geometry is rather complex as
the grains are rounded polyhedrons, these particular blocks
can be seen as a two-dimensional (2D) vertical structure.

As mentioned, the geometry of the packing plays an
important role as the friction between the grains is very
low. Moreover, as the size of the blocks are about one-tenth
of the size of the container and as the piston goes downward,
the confinement plays also a key role. First of all, when
the size of the blocks and the size of the container are not
commensurable, topological defects are generated and this
even if spheres are envisaged. As the grains are melting, their
size continuously decreases but also the total volume of the
container. We showed that (i) the total volume decreases faster
than the total volume of ice [�Vice/�VH,tot < 1; Fig. 4(c)]
and (ii) the volume fraction is found to globally decrease with
time (Fig. 2). That indicates that the confinement increases
with time. This is supported by the numerical simulation of
confined granular material by Desmond et al. [37].

In the following, as a first step towards the description of the
melting of a granular assembly, we consider a 2D system. First,
we discuss the melting of an ideal infinite, frictionless packing
of disks. Afterwards, using numerical simulations based on
molecular dynamics, we investigate the behavior of a pile of
disks constrained under a load. Two cases will be discussed:
when the friction is equal to 0.8 and when the friction is null.
The numerical simulation approach allows one to evidence the
role of the friction and of the confinement. We will show that
the reduction to a 2D grain assembly constitutes a heuristic
and fruitful system.

A. Ideal melting packing

Let us start from a hexagonal lattice of disks of radius r ,
r = R being the initial value of the radius [Fig. 8(a)]. The pile
is made of a succession of disk layers, numbered from 1 to
4 in Fig. 8 (No. 1 is the lowest layer). We grayed the layers
Nos. 1 and 3 to better visualize the layers. We define a cell of
the lattice that contained three particles. The width w and the
height hc of the cell are equal to 2R and to 3

√
3R, respectively.

Such a cell is represented by a rectangular box in Fig. 8(a). The

FIG. 8. Evolution of the hexagonal lattice of disks when the
radius r of the disks are decreased. (a) r = R, (b) R > r > R/

√
3

(r = R/
√

2 corresponds to a tilt square lattice), (c) r = R/
√

3 (tilt
hexagonal lattice), (d) r = R/2 (square lattice), and (e) r = R/2
(hexagonal lattice).

surface fraction ηc of disks is given by ηc(r = R) = π/2
√

3 ≈
0.907, . . . .

The radius r of the disks is then continuously decreased
keeping constant the horizontal coordinates of the center of
mass of the disks and keeping the pile mechanically stable.
Consequently, the width w of the cell remains constant at w =
2R. On the other hand, the height hc and the surface fraction
ηc depend on the ratio x = r/R. On Fig. 8(b), we present the
situation when r has been slightly decreased. Two particular
radii r have to be taken into account: (i) when r = R/

√
3, the

layers Nos. 1 and 3 are in contact [Fig. 8(c)] and (ii) for a
radius just below r = R/2, the lattice becomes mechanically
unstable and the lattice switches from a square to a hexagonal
lattice [Figs. 8(d) and 8(e)]. The height hc of the cell and the
surface fraction ηc are given by

R > r > R/
√

3 hc = 3
√

4r2 − R2,

ηc = πr2/
√

4r2 − R2,

R/
√

3 > r > R/2 hc = 2r +
√

4r2 − R2,

ηc = πr/(2R).

These equations are plotted in Fig. 9. The continuous curve
(red) and the continuous curve decorated with triangles (blue)
correspond to the evolution of hc/R and ηc, respectively, with
the ratio x. The minimum of ηc(x)/R is due to the fact that
the squared (tilted) lattice is obtained when x = √

2/2. The
maximum is obtained when the lattice is hexagonal, x = 1 and
x = √

3/3 (the lattice is tilted). A sudden transition occurs
at x = 0.5. The lattice transits from a squared lattice to a
hexagonal one. The height of the cell drops at about 15%. On
the other hand, the surface fraction jumps from the surface
fraction of the squared lattice ηc = π/4 to the one of the
hexagonal lattice ηc = π

√
3/6. After this reorganization, the

pile evolves in a similar way. The step shape is conserved.
This basic model exhibits the main features observed in the

dynamics of the melting ice block assembly. (i) The evolution
of Vtot and hc is continuous during the melting of the blocks.
(ii) The curvatures of the total volume evolutions Vtot(t) is
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FIG. 9. (Color online) Calculated variation of the height hc/R

(continuous red curve) of a lattice cell and the surface fraction of
disks ηc (continuous blue curve decorated with triangles) placed in a
hexagonal close-packed configuration due to the decrease of the disk
size reduction factor x.

the same as hc(x). (iii) A discontinuity occurs. (iv) The step
shape is conserved. (v) The surface fraction evolves in saw
teeth. To sum up, the evolution of the ideal packing due to the
melting is governed by the evolution of the lattice: hexagonal
→ tilt square → tilt hexagonal → square which is unstable
and should collapse into an hexagonal lattice again.

Three remarks should also be pointed out. First, let us recall
that in the experiment, the shape of the grains is complex and
far from the ideal sphere or disk. Moreover, a block located
along a wall may also be ejected from the layer. However,
the model reproduces pretty well the main observations.
Secondly, the probability of rearrangement was experimentally
found to decrease with time [Fig. 3(b)]. The origin of this
behavior has been related to confinement effects [37]. Third,
a similar argument applies to an ideal 3D system of melting
spheres. However, the story is different whether we start with a
hexagonal close-packed (HCP) or a face-centered cubic (FCC)
lattice. Starting from an HC packing, when the size of the
spheres decreases, the lattice evolves to a stack of aligned
graphenelike plane of spheres. As the grains are vertically
aligned, the structure becomes unstable and collapses. The
situation after collapse is less clear than in the 2D system. On
the other hand, starting from an FCC structure, the assembly
evolves toward a cubic lattice which is unstable and collapses
toward an HC or an FCC structure.

B. Numerical simulations

On the basis of the observations and of the theoretical
considerations about the melting of an assembly of disks,
numerical simulations were performed in order to capture the
role of the confinement and of the friction in a 2D assembly
constrained in a piston. The numerical simulations are based
on a molecular dynamics algorithm described in more detail
in Refs. [38–40].

In the simulation, N = 1000 disks of initial radius R were
dropped in the piston for which the width is about 60R. For the
initialization of the packing, the disks are randomly distributed

FIG. 10. (Color online) Numerical simulations are as follows:
initial configuration of the packings (left) μ = 0 and (right) μ = 0.8.
The piston is the green layer of grains at the top.

in the box avoiding any contact. The disks are then released
and arranged at the bottom of the box under the action of the
gravity. Their positions are the ballasted piston which sets the
upper limit of the pile at about twice the weight of the grains.
We compare the melting behavior for two values of the friction
μ between the beads (i.e., μ = 0 and μ = 0.8). Starting with
disks of radius r = R, the radius r of the disk is continuously
decreased until r = R/2. A simulation step lasts until the pile
is at the equilibrium. Knowing the position of the piston, it is
very easy to determine the total volume Vn normalized by the
total volume when r = R and the surface fraction η.

In Fig. 10, both initial situations (r = R) are represented.
On the left, the friction is zero while in the picture on the right,
the friction μ equals 0.8. By comparison, the frictionless pile
is much more crystallized than with friction. Large hexagonal
arrangement domains can be observed. On the other hand,
the pile obtained with friction is characterized by numerous
defects. Consequently, the total volume of the initial situation
is larger in the friction case.

The origin of the defects is different whether the friction is
considered or not. In the frictionless case, the confinement and
the incommensurability between the grains and the vessel gen-
erate defects which geometrically propagate through the whole
pile. On the other hand, the friction sculptures arch across the
assembly. These structures deviate the vertical weights of the
disks towards the wall (Jansen effect). The force network is
then inhomogeneous and the surface fraction lowered.

At the following link [4], a movie of the melting of the
disks can be seen in both situations (μ = 0 and μ = 0.8). In
the frictionless case, the defects are very mobile and start from
the walls (when the grain size is incommensurable with the
size of the vessel). On the other hand, when the friction is not
negligible, the “motion” of the defect is rather smooth. They
disappear during the melting. In Figs. 11(a) and 11(b), the
normalized volume Vn and the surface fraction η are plotted
as a function of the evolution of the disk radius r normalized
by the initial radius R. The general behavior of the normalized
volume is a monotone decrease in both cases. However, in
the frictionless case, Vn decreases by a succession of steps. In
Figs. 11(c) and 11(d), two zooms of Fig. 1(a) are proposed in
order to show the steps. The behavior of Vn in the friction case
is smoother.

The contrast between the behavior of the melting with and
without friction is more revealed by the evolution of the surface
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FIG. 11. (Color online) Evolution of the normalized volume Vn of the pile under the piston (red curves) of the surface fraction η (continuous
blue curve decorated with triangles) as a function of the radius of the disks r normalized by the initial size of the disks R. (a) μ = 0, (b)
μ = 0.8, (c) and (d) zooms of Fig. 11(a).

fraction. In the frictionless case, the surface fraction evolves
as a regular saw tooth. At the beginning (when the grains are
the largest compared to the size of the vessel, jumps in both Vn

and η can be observed) [Fig. 11(a)]. The jumps evidence the
sudden reorganization of the packing when a defect disappears.
The behavior becomes more “periodic” for smaller values of
r and reminds one of the ideal behavior found in Fig. 9 and
the experimental results in Fig. 2. When the friction does play
a role, the surface fraction evolves irregularly which strongly
contrasts with the frictionless case. That suggests that for large
load, the friction between the ice blocks starts to play a role.
This is pretty clear when comparing the regular behavior of the
volume fraction in Fig. 2(a) for a 21-N load and the irregular
behavior in Fig. 2(c) for a 57-N load.

The theoretical systems that we considered here (ideal
packing and numerical simulations) do not include the shape
modification of the grains due to the melting and are only
2D. However, they contain enough physical ingredients to
reproduce the continuous and discontinuous variations of both
the total volume and the volume fraction. Moreover, these basic
approaches allowed one to evidence the role of the friction and
of the confinement.

V. CONCLUSION

We investigated the behavior of a granular pile under an
external vertical constraint (the load) while the grains are
melting. The total volume occupied by the blocks decreases

by successive steps. The total volume decreases continuously
until a sudden large collapse occurs. The time duration and
the amplitude of the steps are correlated which shows that
the steps may be rescaled. In parallel, the volume of the
ice was measured which allowed one to evaluate the volume
fraction of the ice in the packing. The volume fraction exhibits
saw-teeth behavior because of the sudden collapse of the
total volume. However, the volume fraction observed after a
collapse decreases after several steps. X-ray tomography was
performed in order to investigate the internal structure of the
ice block pile. The grains are organized and the density profile
is high along the wall. After a collapse, the layers are denser
and better organized than before, even at the bottom and at
the top of the pile. Consequently, after several collapses, the
structure of the pile may be pictured as a dense and organized
“crust” of ice blocks that surrounds a less organized and less
dense core.

Because the friction between the blocks is very low, we
suggest that the ordered part of the assembly (the grains
along the walls) is responsible for the stability. The layer
along the wall has been modeled by a 2D pile of disks for
which radii decreases continuously (shape-invariant model).
We investigated (i) a perfect 2D packing of melting disks
(calculations) and (ii) confined 2D disk packing with and
without friction (simulations). The perfect 2D packing is able
to reproduce qualitatively these observations: (i) continuous
and sudden reorganizations and (ii) the amplitude of the step is
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related to the waiting time between two steps. The simulations
allowed one to lighten the role played by the confinement
which generates defects through the 2D frictionless disk’s
assembly. During the melting, discontinuities in the volume
fraction are observed. They are due to (i) the discontinu-
ous transition between a hexagonal and square lattice and
(ii) to the disappearance of defects. The observed behaviors are
essentially due to confinement effects and to the low friction
between the ice blocks. This work also suggests investigating
in detail the role of the confinement on 2D structures.
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