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Relation between self-organized criticality and grain aspect ratio in granular piles
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We investigate experimentally whether self-organized criticality (SOC) occurs in granular piles composed of
different grains, namely, rice, lentils, quinoa, and mung beans. These four grains were selected to have different
aspect ratios, from oblong to oblate. As a function of aspect ratio, we determined the growth (β) and roughness (α)
exponents, the avalanche fractal dimension (D), the avalanche size distribution exponent (τ ), the critical angle (γ ),
and its fluctuation. At superficial inspection, three types of grains seem to have power-law-distributed avalanches
with a well-defined τ . However, only rice is truly SOC if we take three criteria into account: a power-law-shaped
avalanche size distribution, finite size scaling, and a universal scaling relation relating characteristic exponents.
We study SOC as a spatiotemporal fractal; in particular, we study the spatial structure of criticality from local
observation of the slope angle. From the fluctuation of the slope angle we conclude that greater fluctuation (and
thus bigger avalanches) happen in piles consisting of grains with larger aspect ratio.
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I. INTRODUCTION

For quite a long time scientists have studied the phe-
nomenon of self-organized criticality (SOC) [1], which man-
ifests itself in various processes: earthquakes [2], landslides
[3], forest fires [4], rice piles [5], magnetic avalanches in
superconductors [6], evolutionary bursts [7], and financial
markets [8]. Recently it was shown [9] that sheared granular
materials at high packing fractions can deform via slip
avalanches. This system might also be modeled as SOC.

In a SOC system, energy is added to the system at a low
rate, leading to the accumulation of instability. This instability
is later released in abrupt events of all sizes, usually called
avalanches. One of the characteristics of SOC is a power-law
distribution of avalanche sizes, meaning that quite big and even
system-wide avalanches have a not negligible probability of
happening. Often such large events have a catastrophic nature
(earthquakes, avalanches, forest fires, etc.), and, of course, it
will be beneficial in general to find a way to prevent them.
Many attempts have been undertaken to control avalanches,
but the SOC behavior has proven to be very hard to suppress.

Avalanches in sand piles as the most commonly used
paradigm for SOC behavior have been recently put under
question. Sand pile experiments have not shown size distri-
butions consistent with a power law, which is obligatory for
the presence of SOC in the system [10]. In our experiments,
to study avalanches in a controllable environment, instead of
sand, we use different types of grains: rice, lentils, quinoa,
and mung beans. These four grains were selected to have
different aspect ratios, from oblong to oblate. It was found
numerically in the anisotropic Oslo model [11] that anisotropy
introduced to sandpile systems changes the critical exponents.
Numerically the anisotropy can be introduced by changing the
toppling rules in the system, but experimentally one cannot
change the toppling rules directly. However, we can change the
grain aspect ratio and check the changes in critical exponents.

Numerical and experimental studies have been performed
on packing fraction and jamming of grains with different
aspect ratios [12–15]. It was shown that grains with high
and low aspect ratio can form structures with higher volume
fractions compared to the structures formed from spherical

grains. Moreover it was shown that long thin rods are able to
jam into a solidlike state [13], which can strongly influence
the avalanche behavior in such systems. Front velocity, area,
and height of avalanches on a rough inclined plane have
been already investigated experimentally for different grain
shapes [16].

In this paper we are investigating the surface avalanches in
granular piles and the dependence of their size distributions
and critical exponents on the grain aspect ratio. To gather
enough avalanche statistics, the experiments on each different
type of grain lasted more than 500 h. It was found that the piles
of rice clearly follow a power-law distribution of avalanche
sizes and that quinoa piles definitely do not have such a power-
law distribution. Avalanches in lentils and mung beans piles
look at first glance like they obey the power-law behavior of
avalanche size distribution, but further study shows that these
systems are not SOC.

In Sec. II details of our grain pile experiments are given. In
Sec. III we present results of our experiments and check the
piles for SOC behavior using different methods: power-law
distribution of avalanche size, universal exponent scaling
relation (UESR) of characteristic exponents, and finite size
scaling [17]. In Sec. IV we view SOC as a spatiotemporal
fractal; in particular we study the spatial structure of criticality
from local observation of the slope angle. We look into the
fluctuations of the slope angle and its dependence on the
aspect ratio of the grains. The relation between global and local
critical angles is considered. Final conclusions are presented
in Sec. V.

II. EXPERIMENTAL DETAILS

Our experiments were carried out on three-dimensional
piles of various grains: rice, quinoa, lentils, and mung beans
(see Fig. 1). These particular grains are chosen for their
different aspect ratios a, which are shown in Table I, although
they also differ in other aspects, e.g., size, mass, and surface
properties.

The pile is contained in a box with three closed sidewalls
and a floor area of 1 × 1 m2. The fourth side is open,
where grains can leave the box unimpeded; for a figure of
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FIG. 1. (Color online) Images of grains used in the experiments:
rice, lentils, quinoa, and mung beans. The black line in each subfigure
is a 10 mm scale bar.

the setup see Ref. [18]. At the opposite side, grains are
added continuously and uniformly across the top of the pile
at such a rate that the system is always in a slow-driving
regime [19]. The three-dimensional shape of the grain pile
is determined by monocular stereoscopy, using a pattern
of red-green-blue lines projected onto the pile [18,20]. A
charge-coupled device color camera with a resolution of
2560 × 1920 pixels captures images of the pile approximately
every 15 seconds. The time interval between two images is
much shorter than the interval between avalanches. These
images are analyzed to deduce the three-dimensional pile
surface topography and the avalanche size s as described in
Refs. [18,20]. By subtracting the shape of the pile before and
after an avalanche, the full three-dimensional shape of the
avalanche is determined. The size of an avalanche is defined
as the volume of grain displaced between two consecutive time
steps. The experiments presented here have only the “type-I”
boundary condition [21]; i.e., during the entire experiment the
foot of the grain pile rests on the horizontal plane of the box
and never comes close to its open edge.

For potential systems that can be modeled as a SOC, the
probability density for the avalanche size distribution is usually
checked for consistency with a power-law behavior:

P (s) ∼ s−τ , (1)

where the parameter τ is the avalanche size distribution
exponent, characteristic for the chosen system. For example
in the classical BTW sand pile models τ is very close to
1 [1,22], for the forest fires τ is close to 1.3 [4], and for
earthquakes τ ∼ 2 [23] (note that in this paper we use the
probability density to characterize the size distribution of

TABLE I. Properties of rice, quinoa, lentils, and mung bean
grains. An anisotropy parameter k is introduced to characterize the
deviation of the grains from the spherical form [see Eq. (7)].

Length Diameter Aspect Anisotropy
(mm) (mm) ratio (a) parameter (k)

Rice 7 2 3.50 3.50
Quinoa 1.13 1.56 0.73 1.37
Lentils 2.4 5 0.48 2.08
Mung beans 6 4 1.50 1.50
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FIG. 2. (Color online) Avalanche size distribution for rice grains,
which is consistent with a power law, P (s) ∼ s−τrice with τrice = 1.12.
A stretched exponential fit is also shown for comparison, P (s) ∼
exp(−[s/s0]ξrice ) with ξrice = 0.065. Blue dots are experimental points,
the solid red line is the power-law fit, and the dashed green line is the
stretched exponential fit.

our avalanches while in the earthquake literature mostly the
distribution function is used, which has exponent −1).

III. EXPERIMENTAL RESULTS

A. Avalanche size distribution

In order to obtain good avalanche size distribution statistics
we have performed experiments until at least 1000 avalanche
events were gathered for each type of grain. This corresponds
to about 500 hours of measurement each. The different grain
types vary significantly in shape and size (see Fig. 1 and
Table I) leading to different avalanche behavior. It is well
known that granular matter of high aspect ratio particles can
behave as a cohesive material [24] and create a scaffolding
structure. In other words, a pile of rice can grow very steep
slopes, thus accumulating much “potential energy” or local
instability, which can be later released via the avalanches.
Indeed the avalanche size distribution for the rice pile shows a
clear power-law behavior with very large maximum avalanche
sizes (comparable to the box size); see Fig. 2 (the parameter
ξ will be explained in the next section). To calculate τ from
Eq. (1) we fit the avalanche size distribution with a straight
line on a double logarithmic plot (the fit is the red solid line in
Fig. 2). The slope of this linear function is τ . Due to the finite
size of our experimental system the last point (or two) in the
avalanche size distribution is usually not very well defined, so
we are not taking it into account for the fit. For rice we thus
obtain τrice = 1.12.

In contrast to rice, quinoa grains are small, compact
particles with highly curved (round) sides. The aspect ratio
for quinoa is close to 0.73; i.e., due to their nearly perfect
oval form they are, within the four types of grain investigated
here, closest to a sphere. According to simulations [25]
and our experimental results shown later in this paper (see
Fig. 14), rounder particles (with a shape closer to a sphere)
have a tendency to form less steeper piles. In such piles
instability accumulation is less, leading to a smaller avalanche
probability; large avalanches in particular are suppressed.
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FIG. 3. (Color online) Avalanche size distribution for quinoa,
which is a stretched exponential, P (s) ∼ exp(−[s/s0]ξquinoa ) with
ξquinoa = 0.202. A power-law fit is also shown for comparison,
P (s) ∼ s−τquinoa with τquinoa = 1.06. Blue dots are experimental points,
the solid red line is the power-law fit, and the dashed green line is the
stretched exponential fit.

Figure 3 shows the quinoa avalanche size distribution, which
is definitely not a power law. We can still fit it with a power law
(using all points except the very last one), obtaining τquinoa =
1.06, but this value should not be taken seriously. Usually one is
interested in the probability of the largest, devastating, events,
for which case only the tail of the avalanche size distribution
is fitted with a power law giving τ tail

quinoa = 1.63 (using the last
seven points except the very last one). Note that τ tail

quinoa = 1.63
is much larger than τrice, indicating that the probability of
large avalanches occurring in a quinoa pile is much smaller in
comparison to the rice pile.

Lentils have an aspect ratio a = 0.48, and in contrast to the
slightly oval form of the quinoa grains, the lentils are rather
flat discs. A power law fits the avalanche size distribution quite
well, giving τlentils = 1.15; see Fig. 4.
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FIG. 4. (Color online) Avalanche size distribution for lentils,
which is consistent with a power law, P (s) ∼ s−τlentils with τlentils =
1.15. A stretched exponential fit is also shown for comparison, P (s) ∼
exp(−[s/s0]ξlentils ) with ξlentils = 0.062. Blue dots are experimental
points, the solid red line is the power-law fit, and the dashed green
line is the stretched exponential fit.
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FIG. 5. (Color online) Avalanche size distribution for mung
beans, which is consistent with a power law, P (s) ∼ s−τmung with
τmung = 0.76. A stretched exponential fit is also shown for com-
parison, P (s) ∼ exp(−[s/s0]ξmung ) with ξmung = 0.069. Blue dots are
experimental points, the solid red line is the power-law fit, and the
dashed green line is the stretched exponential fit.

Mung beans have an aspect ratio a = 1.50, and the
avalanche size distribution can be fitted quite well with a power
law, although for small sizes, the fit is worse than for rice; see
Fig. 5. We find τmung = 0.76, the smallest value of all grains
investigated here. Note that a smaller τ implies a larger relative
probability of extreme events. This τ value less than unity is
surprising in view of the different sandpile models [26–29]
where τ is in the range 1–1.6. Also in general the τ cannot be
less than unity for the whole range of s from zero to infinity,
because for τ < 1 the P (s) is non-normalizable; see Ref. [30]
for a discussion and possible solution. To compare τmung with
that of the other grains, we nevertheless use an experimentally
obtained value of τmung = 0.76 in the measured range of s.

One could argue that the higher local stability due to
the “scaffolding” structure of a rice pile leads to a greater
accumulation of the potential energy and hence to a larger
probability for extremely large avalanches. In view of our
finding here, τrice > τmung, this assumption is not proven to be
true. Later in this paper we will return to this question when
we investigate the local slope distribution.

B. Stretched exponential analysis

It was shown by Feder [31] for quite a number of natural
processes, which supposedly had SOC, that their event sizes
are not power law distributed. Feder demonstrated that for
these processes the event size distribution is fitted better by a
stretched exponential, and hence they cannot be SOC.

To investigate whether a real power-law behavior is ob-
served in the avalanche size distribution of the grains under
consideration here, we perform, like Feder, also a stretched
exponential fit (Figs. 2–5), using the formula

P (s) = A exp(−[s/s0]ξ ), (2)

where ξ is the stretching exponent. Stretched exponential fits
using Eq. (2) are shown in Figs. 2–5 by the dashed green lines.
Table II shows the values of τ obtained from fitting Eq. (1)
and ξ from Eq. (2).
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TABLE II. Values of τ and ξ obtained by fitting Eqs. (1) and (2)
to the avalanche size distribution of rice, quinoa, lentils, and mung

beans. R
2

shows the goodness of the corresponding fit.

τ R
2

Power law ξ R
2

Stretched exponential

Rice 1.12 0.998 0.065 0.997
Quinoa 1.06 0.947 0.202 0.997
Lentils 1.15 0.990 0.062 0.985
Mung beans 0.76 0.990 0.069 0.994

To decide which model fits our experimental size distri-
bution best, we use the adjusted coefficient of determination

R
2
as a goodness-of-fit parameter. Values of R

2
are presented

in Table II and show that judging by R
2

only, a power law fits
the rice and lentils data better, while a stretched exponential
fits the quinoa and mung bean data better. Especially in the

quinoa case the difference in R
2

is very much in favor of the
stretched exponential. However, the fact that ξ � 0.065 and
hence is very small for all cases except quinoa, means that the
corresponding size distributions differ only very slightly from
a power law. We note that if one would fit exact power-law
data with Eq. (2), one would find values of ξ close to zero. We
call ξ “small” if the stretched exponential fit is nearly a power
law [32]. As a preliminary conclusion at this point we can say
that the avalanche size distribution of rice and lentil piles shows
a clear consistency with a power-law behavior. These are the
grains with the largest (a = 3.50) and the smallest (a = 0.48)
aspect ratio a. Quinoa certainly does not have a power-law
distribution, while from all four grains it is closest to a sphere
(a = 0.73). For mung beans (with a = 1.50) the power-law
case is still undecided, and we need additional input. This is
the subject of the next section.

C. Universal scaling relations

According to [17] it is not enough for a system to have a
power-law distribution of event size to be SOC: If the system
is truly SOC, then various universal exponent scaling relations
should hold. Some of these relations are better accessible for
experimental verification than others. Here we focus on the
relation [17,33]

α/β = D(2 − τ ), (3)

which we will refer to as UESR. Interestingly, this UESR
relates surface exponents (l.h.s.) to avalanche exponents
(r.h.s.); namely, the avalanche size distribution is characterized
by τ [Eq. (1)], and the shape of individual avalanches is
characterized by their fractal dimension D, while the surface
of the pile is characterized by the roughness and growth
exponents, namely, α and β.

To find α and β in our systems, we analyze the surface of
our piles. Since we can precisely reconstruct the pile surface
at 15-sec intervals during the experiment, we know the height
of the pile h(x,y,t) at every point of the pile as a function of
time. We use the two-point correlation function of Barabasi to
analyze the surface [33]:

C2(�,t) = 〈[δh(x,y,t + t ′) − δh(x ′,y ′,t ′)]2〉, (4)

C
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FIG. 6. (Color online) Determination of the roughness exponent
from the two-point correlation function C(�) ∼ �α , yielding αrice =
0.63(4), αquinoa = 0.61(4), αlentils = 0.32(5), αmung = 0.45(4). From
top to bottom results are shown for rice, quinoa, lentils, and mung
beans (curves have been shifted vertically for clarity). Blue dots are
experimental points, the solid red line is the power-law fit.

where δh(x,y,t ′) = h(x,y,t ′) − h(t ′) and h(t ′) is the mean
height of the surface at time t ′. The correlation function scales
as

C(�,0) = C(�) ∼ �α, (5)

C(0,t) = C(t) ∼ tβ, (6)

where � =
√

(x − x ′)2 + (y − y ′)2. To obtain C(�,0) in Eq. (5)
and calculate α we average Eq. (4) over all x ′,y ′ at a radius �

from (x,y) and then subsequently average over all time steps.
To obtain C(0,t) in Eq. (6) and evaluate β we average Eq. (4)
over all points in the pile (x ′,y ′), but time averaging is done
over ensembles separated by a fixed time interval t .

The roughness exponent α was determined for every
experimental run separately using Eq. (5) and then averaged
over all experiments (more than 10) for each grain type. The
average values of α with statistical error in brackets are shown
in Table III. The corresponding power-law fits of Eq. (5) are
presented in Fig. 6. Blue dots correspond to the experimental
points, while the red line is the power-law fit.

For the determination of α we used the straight middle
section. The deviation from power-law behavior at small � �
3 mm is due to the fact that subgrain length scales are reached.
Large � are not used for the fitting because finite system size
effects are limiting the fluctuations. Note that an intrinsic width
effect [33] would give an upward curvature effect contrary to
the observed downward curvature.

Interestingly, the pile surface is smoothest for lentils
(αlentils = 0.32), probably due to the specific “scale-like”
arrangement of the disk-shaped particles. This may be related
to the very dense packing observed for M&M candies [12].

On the other hand, rice has the irregular complex scaffold-
ing surface structure of the elongated grains, and consequently
rice has the largest roughness exponent αrice = 0.63. Naturally,
mung beans with an intermediate shape, closer to a sphere,
have the intermediate αmung = 0.45. Surprisingly, quinoa
grains, which are even closer to spherical, have a quite large
αquinoa = 0.61, comparable to the value for rice. Possibly this is
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TABLE III. Universal exponents of rice, quinoa, lentils, and mung bean grains. Values in brackets show the error margin for τ , α, β and
Dexp. The anisotropy parameter k is defined by Eq. (7).

Aspect Anisotropy Avalanche size Roughness Growth Avalanche fractal
ratio (a) parameter (k) exponent (τ ) exponent (α) exponent (β) dimensions (Dexp)

Rice 3.50 3.50 1.12(1) 0.63(4) 0.34(2) 2.16(13)
Quinoa 0.73 1.37 1.06(6) 0.61(4) 0.42(4) 2.24(09)
Lentils 0.48 2.08 1.15(3) 0.32(5) 0.34(1) 2.11(10)
Mung beans 1.50 1.50 0.76(2) 0.45(4) 0.42(4) 2.18(11)

due to the fact that quinoa are the smallest and lightest grains,
leading to a larger role of friction, which, like the scaffolding
structure of rice, may have a stabilizing influence. The relation
between roughness exponent α and aspect ratio a is shown in
Fig. 7, where it is seen that lentils, mung beans, and rice follow
a similar law, while quinoa is an exception.

The growth exponent β was calculated in a similar way
as the roughness exponent α, now using Eq. (6). The growth
exponent was determined using the whole duration of a single
experiment and then averaged over all experiments for each
grain type. The average value of β is shown in Table III.
Figure 8 shows the corresponding power-law fits. Interestingly,
for all grain types the power-law behavior is very well defined
for C(t) down to the smallest periods of time. At long time
scales the correlation function starts to diverge from power-law
behavior. Therefore the data of large correlation times were
omitted from the fitting procedure.

The values of the growth exponent for rice and lentils are
equal at β = 0.34, and the values for quinoa and mung beans
are equal at β = 0.42. This similarity may be compared to the
anisotropy parameter

k = max(a,1/a), (7)

where a is the aspect ratio of the grains. For example kquinoa =
1.37 is close to kmung = 1.5, while rice and lentils are much
more anisotropic with krice = 3.5 and klentils = 2.08 relatively.
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FIG. 7. (Color online) Dependence of roughness exponent α on
the aspect ratio a for various grains. Blue dots are experimental points,
while the solid red line indicates the approximate linear relation α(a)
for lentils, mung beans, and rice. Labels R, Q, L, and M stand for
rice, quinoa, lentils, and mung beans, respectively.

The fractal dimension Dexp of the avalanches is calcu-
lated as follows. First, the three-dimensional shape of every
avalanche that does not touch any wall of the system is
determined from a subtraction of the pile surface before
and after the avalanche. Then the fractal dimension of the
avalanche is determined using the box counting method [34].
In this method, the number of boxes N (L) which contain a
part of the avalanche is a power-law function of the linear size
of the box L:

N (L) ∼ L−Dexp
.

For each individual avalanche, the box size ranged from 2 to
600 mm. The resulting fits are presented in Fig. 9.

To determine Dexp we used small values of L, since there
are many boxes of small sizes, making an accurate covering of
the avalanche by such boxes possible. However, large values
L were not used for the fitting, because there are just a few
number of boxes of such sizes, implying that the resolution
in number of boxes becomes poor and an accurate covering
is no longer achieved. In Table III, the values Dexp are an
average over all fits for individual avalanches for a single
grain type (with the error margin in brackets). Clearly the
fractal dimension Dexp for all grain types is similar, with Dexp

in the range 2.11–2.24.
Finally, after obtaining τ , α, β and Dexp from experiment,

we can check the validity of the UESR [Eq. (3)]. For this
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C
(t

)

100

100.5

101

101.5

102

102.5

102.5 103 103.5 104 104.5 105

β
lentils

=0.34

β
quinoa

=0.42

β
rice

=0.34

β
mung

=0.42

FIG. 8. (Color online) Determination of the growth exponent for
all grains using the two-point correlation function C(t) ∼ tβ , yielding
βrice = 0.34(2), βquinoa = 0.42(4), βlentils = 0.34(1), βmung = 0.42(4).
From top to bottom data is shown for rice, quinoa, lentils, and mung
beans (data is shifted vertically for clarity). Blue dots are experimental
points; the solid red line is a power-law fit.
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FIG. 9. (Color online) Determination of the avalanche fractal
dimensions Dexp by the box counting method, by fitting to N (L) ∼
L−Dexp

. We find D
exp
rice = 2.16(13), D

exp
quinoa = 2.24(09), D

exp
lentils =

2.11(10), and D
exp
mung = 2.18(11). From top to bottom results for rice,

quinoa, lentils, and mung beans are shown (data are shifted vertically
for clarity). Blue dots are experimental points; the solid red line is a
power-law fit.

purpose, we use Eq. (3) to calculate DUESR from τ, α,
and β and subsequently compare DUESR with Dexp. We
find DUESR

rice = 2.08, DUESR
quinoa = 1.53, DUESR

lentils = 1.17, DUESR
mung =

0.88. The value DUESR
rice = 2.08 corresponds nicely to D

exp
rice =

2.16; both are slightly larger than 2, which is a physi-
cally meaningful value. The unphysical DUESR

mung < 1 and also
DUESR

mung �= D
exp
mung, hence the violation of UESR, both imply

separately that avalanches in mung bean piles are not SOC.
For lentils we find the physically allowed value DUESR

lentils = 1.17;
however, this deviates so much from D

exp
lentils = 2.11 that we

find again a violation of UESR, and hence lentil piles are not
SOC. For quinoa, the values DUESR

quinoa = 1.53 and D
exp
quinoa = 2.24

are quite different leading to the provisional conclusion that
quinoa is not SOC. This becomes a firm conclusion after
realizing that the avalanche size distribution of quinoa clearly
is not a power law. Hence quinoa is also not SOC. At this point,
after applying the universal exponent scaling relation analysis,
we conclude that only rice piles can be truly modeled as SOC
systems in the regime we observe.

D. Finite size scaling

Avalanches in SOC systems are fractal objects and hence
a finite size scaling (FSS) analysis can be applied to them.
So another way to check whether our piles display SOC
behavior is to check whether FSS is obeyed. FSS requires that
the avalanche size distribution P (s,L) depends in a specific
manner on the size of the total system:

P (s,L) = s−τ f (s/LDexp
), (8)

where f (x) is an unknown function, constant up to some value
(corresponding to the cutoff scale) and going smoothly, but
fast to zero for large x. Usually for FSS analysis, experiments
with different system sizes L are performed. However, this
is difficult to implement in our case. Instead, we use a
moving window of certain linear size L to scan the surface
for avalanches. If an avalanche is detected and it fits within the
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FIG. 10. (Color online) Top: Rice avalanche size distribution
P (s,L) for different system sizes L = 100,200,400,600,800 mm.
Bottom: Corresponding finite size scaling data collapse.

window, then we take it into account for P (s,L); otherwise it is
ignored. By varying the window size L we obtain the avalanche
size distribution for different system sizes P (s,L) [20]. This
P (s,L) is checked for FSS behavior by plotting sτP (s,L)
versus s/LDexp

, i.e., by constructing the function f (x) from
experiment, using the experimental values for the parameters
τ and Dexp as found from the analysis above. If our avalanches
indeed obey FSS, then we should get a single curve f (x).

Our FSS results are shown in Figs. 10–13. We used the
values of τ and Dexp from Table III to build the function f (x),
shown in bottom parts of Figs. 10–13.

The nice data collapse for rice shows a clear constant
f (x) for small values of x = s/LD

exp
rice and well-defined tail,

as expected (Fig. 10). Hence, it can be safely concluded that
rice piles indeed can be modeled as SOC.

There is clearly no data collapse for quinoa (Fig. 11), as
was expected, since the quinoa avalanche size distribution is
not a power law but rather a stretched exponent. It should
be mentioned, however, that a collapse to a single f (x) for
quinoa can be obtained with τquinoa = 0.7 and Dquinoa = 1.5.
Of course, these fitting parameters are very far from the
experimentally obtained values, signifying again that quinoa
piles are not SOC.

For lentils (Fig. 12) a good data collapse is obtained for the
horizontal part, but not for the tail of the distribution where
the data are scattered. This confirms that the lentil avalanche
size distribution is indeed consistent with a power law, but that
FSS cannot be applied to this system using the experimentally
obtained D

exp
lentils, marking it as a weak or non-FSS.

For mung beans, the data collapse (Fig. 13) shows a small
“hunch” in the horizontal part of the distribution. Only if we
change the τmung value from the previously quoted value 0.76
to 0.65 do we get rid of this “hunch” and produce a very clear
(horizontal part and tail) cutoff function f (x). This is related
to the previously mentioned deviation at small s in Fig. 5.
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FIG. 11. (Color online) Top: Quinoa avalanche size distribution
P (s,L) for different system sizes L = 100,200,400,600,800 mm.
Bottom: Corresponding finite size scaling data collapse.

The lowering of τmung to 0.65 makes the UESR [Eq. (3)] even
worse. Hence, despite the power-law behavior of the avalanche
size distribution and possibly FSS, we conclude that mung
bean piles cannot be considered to be SOC systems.

Additionally for all grains we tried moment ratios FSS
scaling [35], where only the τ parameter needs to be fitted.
Essentially it provides the same results. In general, after
applying FSS analysis, only rice is found to be SOC,
confirming previous conclusions [21]. Quite obviously, FSS
cannot be applied to quinoa avalanche size distributions, since
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FIG. 12. (Color online) Top: Lentil avalanche size distribution
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Bottom: Corresponding finite size scaling data collapse.
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FIG. 13. (Color online) Top: Mung bean avalanche size distri-
bution P (s,L) for different system sizes L = 100,200,400,600,800
mm. Bottom: Corresponding finite size scaling data collapse.

they are not power laws. Lentils and mung beans turn out to
be weak FSS, which together with our previous conclusions
above signifies that they are not true SOC systems. Finally, we
note that FSS is a stringent test for the fractal nature of the
avalanches, even more than it is a test for SOC.

IV. CRITICAL ANGLES

A SOC system is a spatiotemporal fractal, with the
punctuated behavior of the avalanches defining the temporal
fractal character and their physical shape defining their spatial
character. Although the system as a whole is always critical,
avalanches may temporarily relax the system locally. By this
mechanism, a SOC pile will have a spatially modulated critical
structure, experimentally accessible by the observation of the
slope angle.

The correlation between the angle of repose of the pile
and the shape of the grains was investigated in Ref. [25]
by simulation and in Ref. [16] by experiment. It was found
that spherical grains have a lower angle of repose than
nonspherical grains and that for nonspherical grains the angle
of repose fluctuates much stronger. To check this finding in
our experimental system we calculate the slope angle from
the reconstructed images of our experiments; the results are
shown in Fig. 14. The slope angle γpile for the whole pile was
calculated as an average of the slope angles γ of small sections
(approximately 3.5 cm × 3.5 cm), together covering the whole
pile surface.

From Fig. 14 we find that the maximal slope angle is
proportional to the anisotropy parameter k; see the left-
hand panel of Fig. 15 and Table IV. Quinoa with kquinoa

closest to 1 has the smallest critical angle, while rice with
krice = 3.5 has highest critical angle. This finding seems in
agreement with the conjecture above that a large anisotropy
parameter of the grains enables larger local slopes and a larger
accumulation of instability. By defining the time T as the
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TABLE IV. Granular pile angle properties for rice, quinoa, lentils, and mung beans. γ max
pile is the highest angle that is reached in the

experimental 1 × 1 m2 pile before a system-wide avalanche occurs. γ max
local is the highest angle measured locally. Angle fluctuations 	γpile are

defined as deviation from mean slope angle for the duration of the experiment. The anisotropy parameter k is defined by Eq. (7).

Aspect Anisotropy Critical angle Angle fluctuations Critical angle
ratio (a) parameter (k) (pile) (γ max

pile ) (◦) (	γpile) (◦) (local) (γ max
local) (◦)

Rice 3.50 3.50 37 1.00 47
Quinoa 0.73 1.37 28.5 0.61 37
Lentils 0.48 2.08 30 0.50 40.5
Mung beans 1.50 1.50 29 0.82 35

whole duration of an experiment, we can introduce the slope
angle fluctuations 	γpile := [ 1

T

∑T
t=1(γpile(t) − 〈γpile〉t )2]1/2,

which are not influenced by the anisotropy parameter k, but
by the aspect ratio a itself (see right-hand panel of Fig. 15
and Table IV). For grains with a > 1 (the elongated grains
of rice and mung beans), we find quite large fluctuations,
corresponding to big, system-wide avalanches. By contrast,
for quinoa with aquinoa close to 1, we observe small angle
fluctuations, in agreement with the result of Ref. [25]. In
contrast to this simulation [25], we do observe rare large
jumps in angle. This difference may be due to the fact that
in the simulation, only a rather small number of particles (up
to 1800) was used. Even more interestingly, lentils show the
smallest fluctuations of the angle. Even the rare big jumps that
are observed in quinoa are absent for lentils. This may be due
to their disk shape, which enables the creation of a pile with
a very compact packing in the vertical direction (see, e.g.,
Ref. [12]). Thus even when an avalanche occurs, the height
profile does not change much.

We conclude that the angle γ max
pile is proportional to the

anisotropy parameter k. In other words, it depends on the
deviation of the grains from the spherical shape; see Fig. 15
(left). On the other hand, the angle fluctuations 	γpile depend
directly on aspect ratio a, although in a strongly nonlinear
manner 	γpile ∼ log a; see Fig. 15 (right).

In view of the spatiotemporal character of avalanches
discussed above, it is interesting to monitor not only the
average slope of the pile γ max

pile , but also the local slopes γlocal,
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FIG. 14. (Color online) Average slope angle γpile as a function of
time t (seconds) for different types of grains. Data for rice are shown
in blue, for quinoa in red, for lentils in black, and for mung beans in
green.

which can be significantly larger. Usually, at positions in the
pile where the slope has the largest angle, a new avalanche will
start. Figure 16(b) shows an example of such avalanche in rice,
which changed the pile from the state (a) to the state (c). Blue
areas in Fig. 16(b) correspond to removed grains, red areas
correspond to added grains, while green areas correspond to
zero net change. Green areas are usually between red and blue
areas or in areas completely untouched by the avalanche, for
example, in the lower-left corner in Fig. 16(b). Figures 16(a)
and (c) show angles measured locally (i.e. determined from
approximately 3.5 cm × 3.5 cm sections) in a rice pile before
and after a given avalanche (the value of the angle is coded by
color).

The global value of γ max
pile (rice) shown in Fig. 14 is close

to 37◦. However, it is seen from Figs. 16(a) and 16(c) that
locally angles can reach much higher values. In Fig. 16 the
lower angle threshold for the color scale was set to 37◦ to
visualize only angles higher than γ max

pile (rice). In quite large
areas of the pile surface local angles exceed γ max

pile (rice). It
was observed that when the local angle reaches approximately
γ max

local = 44 − 47◦, the avalanche starts from the corresponding
local area. We define the value of local angle always leading
to an avalanche as the local critical angle. In the case of
rice this is 47◦. However, depending on local conditions,
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γ max
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aspect ratio a for the various grains. Blue dots are experimental
points, while solid red lines are a linear (left) and logarithmic (right)
fits, showing the approximate proportionalities γ max
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FIG. 16. (Color online) Distribution of the local angles γ on the
rice pile surface, (a) before a particular avalanche, (c) after this
avalanche. Deep blue (dark) indicates relaxed part of the pile, and
other colors (bright) indicate part of the pile where γ > γ max

pile . (b)
Change of the pile height by this avalanche is shown. The avalanche
moves downward in the figure (from small to large y). Blue (upper
dark gray part of the image) indicates regions where particles are
removed, and red (lower part of the image) indicates regions where
particles are added.

we do observe the start of avalanches in a small range of
angles, spanning a few degrees below this value. After the
avalanche, the average slope is reduced to a value close to 35◦,
i.e., below the threshold of 37◦, and the instability is relaxed.
However, in the area where the avalanche stopped, a new local
instability appears due to the accumulation of new grains. In
the yellow regions of Fig. 16(c), large values for the local
angles have now appeared, with even γlocal > 42◦ (close to the
400 tick mark on the y axis). Thus, even after the avalanche,
local critical angles γlocal � γ max

local can be found, and the next
avalanche is likely to start at or pass through these locally
unstable regions. Clearly, even after an avalanche, the pile is
still in its critical state. In other words, criticality is preserved
by high values of the local angle, while the global angle can be
relaxed.
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FIG. 17. (Color online) Distribution of the local angles γ on the
mung bean pile surface, (a) before a particular avalanche, (c) after
this avalanche. Deep blue (dark) indicates relaxed part of the pile,
and other colors (bright) indicate part of the pile where γ > γ max

pile . (b)
Change of the pile height by this avalanche is shown. The avalanche
moves downward in the figure (from small to large y). Blue (upper
dark gray part of the image) indicates regions where particles are
removed, and red (lower part of the image) indicates regions where
particles are added.

The situation shown in Fig. 16 seems quite general and
not limited to the particular type of grain. For all our four
grains, we observe similar behavior. Even if the system is not
really SOC, like a mung bean pile, the avalanche behavior is
quite robust; see, for example, the pile relaxation due to a large
avalanche shown in Fig. 17. We thus observe the local structure
of criticality. Criticality is always preserved for the pile as a
whole, since there are always local regions with γlocal � γ max

local.
Interestingly, in our experiments always γ max

pile 	 γ max
local, since

usually only a portion of the pile is in a critical state. For
example, in Fig. 16(a) less than 15% of the pile has a local
angle close to γ max

local, but this leads to the avalanche shown in
Fig. 16(b) covering 85% of the pile. So even if the system is
globally critical it is not necessary for it to be locally critical
everywhere. After the avalanche, the percentage of the areas
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close to critical state in the relaxed pile [see Fig. 16(c) or
Fig. 17(c)] is very small; e.g., in the case of Fig. 16(c) it is less
than 2%. Still, due to the presence of even such a small portion
of the pile in a nearly critical state, criticality still exists in
the pile, and the critical state is globally preserved. This holds
true even for non-SOC grains, like the mung beans shown
in Fig. 17. Interestingly enough, the only true SOC system,
the rice pile, turns out to have the highest angle γ max

pile (and
also γ max

local) and has also the highest angular fluctuations 	γpile.
From this one might conjecture that a necessary criterion for
the transformation of simple criticality to SOC is a high value
of the threshold condition (in this case γ max

local), but this is the
subject for further investigations.

V. CONCLUSIONS

We have analyzed piles consisting of four different grains
of various shapes and aspect ratios. We investigated whether
the avalanches on these piles comply to the criteria for
self-organized criticality. The criteria for SOC we investigated
are a power-law avalanche size distribution, finite size scaling
(FSS), and a universal exponent scaling relation (UESR) of
exponents of avalanche size, surface roughness, and avalanche
fractal dimensions. Although previously systems were some-
times declared to be SOC on the basis of a power-law avalanche
size distribution only, we demonstrate here that power-law
behavior is possible without FSS and UESR and hence without
SOC. In our experiments only one out of three types of grain

with power-law distributed avalanches is confirmed to be truly
SOC. This is rice, and rice grains have a very high aspect ratio,
which enables them to create locally very stable scaffolding
structures. It is our conjecture that such local metastability is
an important enabling factor for SOC behavior.

From the fluctuation of the angle of the piles, we conclude
that larger fluctuations (and thus bigger avalanches) happen
in piles consisting of grains with a large aspect ratio.
Experimental results also show that only a fraction of the whole
pile needs to be near local criticality to cause a system-wide
avalanche. Even after a system wide avalanche, the pile locally
remains critical, from which a new avalanche may be initiated.

Because of the universality of SOC behavior (see the
introduction), we may prudently apply our conclusions to
many other systems, natural and manmade. In most cases,
SOC behavior is undesirable due to the catastrophic effects
of large avalanche-like events, which have a nonvanishing
probability to occur due to their power-law distribution. Hence
it is important to find out what makes a system SOC and what
can be done to get a system out of SOC. Here we presented
some findings which may be helpful for this aim, although
clearly more work is needed.
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[20] K. A. Lőrincz, Ph.D. thesis, Vrije Universiteit, 2008,

[http://dare.ubvu.vu.nl/bitstream/1871/13052/2/8402.pdf].
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