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Sufficiently fine granular systems appear to exhibit continuum properties, though the precise continuum limit
obtained can be vastly different depending on the particular system. In the present paper the continuum limit of
an unconfined, dense granular flow is investigated. To do this a two-dimensional dense cohesionless granular jet
impinging upon a target is used as a test system. This is simulated via a time-step-driven hard-sphere method
and apply a mean-field theoretical approach to connect the macroscopic flow with the microscopic material
parameters of the grains. It is observed that the flow separates into a cone with an interior cone angle determined
by the conservation of momentum and the dissipation of energy. From the cone angle a dimensionless quantity
A − B that characterizes the flow is extracted. This quantity is found to depend both on whether or not a dead
zone, i.e., a stationary region near the target, is present and on the value of the coefficient of dynamic friction.
A theory is presented for the scaling of A − B with the coefficient of friction that suggests that dissipation is
primarily a perturbative effect in this flow rather than the source of qualitatively different behavior.
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I. INTRODUCTION

In surprising experiments by Cheng et al. [1], it has been
shown that a dense cohesionless granular jet impact can behave
like a water flow of the same geometry. The experiment
consists of a jet, either granular or liquid, being projected at
some speed at a cylindrical target. The fluid forms a cone upon
leaving the target and the interior angle of the cone is measured
(Fig. 1). The granular flow, despite being cohesionless, is
observed to form a collimated cone when leaving the target.
The interior angle of this cone quantitatively agrees with the
cone angles observed when a water jet impinges upon a target
of the same geometry [2]. Furthermore, the Reynolds number
of the water jet is very large, suggesting that dissipation is
not involved in determining the angle of the cone in the water
flow. The comparison between the water flow and granular
flow is therefore even more surprising, as the granular flow has
strong dissipation from inelasticity and friction. This suggests
somehow that despite the presence of large dissipation in the
granular flow, that dissipation is not strongly influencing the
bulk properties of the flow.

This is in contrast to the majority of granular systems, in
which the dissipation is critical in determining their behaviors.
For example, granular shear flows exhibit ordering depending
on their inelasticity [3,4] and continuum theory of granular
flows has a singularity with respect to the dissipation [5]. Even
more surprising, flow past an obstacle, which has virtually the
same geometry as the jet impact experiment, has very different
phenomena when the granular flow is more dilute, which seems
more in line with the dissipation-dominated picture of granular
flows. Granular flows impinging upon obstacles have been
observed to form shock waves in both experiment [6] and
simulation [7]. The behavior of these shocks and the drag
on immersed objects is seen to be dependent on inelasticity,
whereas the cone angle observed in the dense granular flow
seems to be completely independent of the inelasticity of the
material used in the experiments [1].

There is an additional aspect of the dense granular flow
that makes its correspondence to water flows surprising: The
granular jet forms a dead zone, a region in which particles are

trapped in a static arrangement, near the target. This type of
flow structure is seen in granular column collapse, in which
a certain part of the column does not displace throughout
its dynamics [8–10]. This is a manifestly granular behavior
that does not appear anywhere in the corresponding liquid jet
case. Changing the target shape influences the cone angle for
water [11], but adding this dead region in the granular flow does
not seem to alter the agreement between the water flow cone
angle (which lacks such an internal shape) and the granular
flow cone angle. One might expect that the dead zone would
have a similar impact on the granular flow as a wedge would
on the water flow, but instead it seems to have a much smaller
effect. This paper attempts to address the effect of granular
properties, i.e., the dead zone and grain-grain dissipation, upon
the cone angle of the leaving flow in order to understand why
the granular and liquid flows are so broadly similar even though
they are microscopically distinct.

The tool for addressing this problem will be simulation.
Simulations of the two-dimensional (2D) granular jet impact
have been performed using a molecular dynamics approach
[12]. The grains in these simulations are of finite rigidity,
which introduces a fast time scale to the problem (relative
to the time scale due to relative motion between grains). In
such simulations, this fast time scale limits the time step used
and therefore the overall computational cost of the problem.
Instead, in this work a hybrid time-step-driven rigid-body
collision method [13] is used that approximates perfectly
rigid grains. The perfect rigidity is an approximation that is
considered supported by the large difference in pressure scale
in the experimental jet (on the order of 100 kPa, based on glass
beads at 10 m/s [1]) and the Young modulus of the grains (on
the order of 50 GPa for glass).

In these simulations the grain properties and the boundary
condition can be varied precisely in ways that are difficult
to access experimentally. It is expected that the cone angles
observed in 2D simulations will not quantitatively agree with
those observed in 3D experiments. However, we are interested
in what various granular properties do to the cone angle and
such effects are expected to be qualitatively the same in two and
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FIG. 1. (Color online) Geometry of the granular jet impact.
Grains are projected from the left at a target on the right and form
a cone with interior angle �0. In the granular experiments, gravity
acted in the downward direction but was negligible compared to the
velocity scale of the impact. The effect of gravity was not simulated
in the present simulations.

three dimensions, as experimentally measured A − B values
are reproduced with the 2D simulations. In order to compare
to a corresponding fluid flow, we can use exact 2D solutions
of the Euler equations [14]

d �u
dt

+ �u · �∇ �u = �∇P, �∇ · �u = 0. (1)

First, the general structure of the flow, including the dead
zone, will be addressed. Granular material dropped onto a
surface forms a static pile with a particular characteristic angle,
the angle of repose, which is determined by the properties of
the individual grains: their shape and the grain-grain friction.
It is proposed that the dead zone in granular jet impacts may
be a similar feature. Rather than being held in place by gravity
though, it is held in place by the pressure from the incoming
granular jet. If this is the case, then a necessary element for
the formation of the dead zone should be whether or not there
is friction between the grains and the target. If the target is
frictionless, force chains must come in perpendicular to its
surface and a static pile cannot be supported.

Next, the effects of dissipation in the system will be
addressed. There are two sources of dissipation: the coefficient
of restitution (inelasticity) and microscopic friction. The
restitution coefficient appears to have no effect on the cone
angle in experiments and the friction is experimentally difficult
to control. Simulations are used to precisely control these
parameters and investigate the behavior of the cone angle and
find that there are in fact small effects whereby the friction in
particular can influence the cone angle. Inelasticity is observed
to have almost no effect on the cone angle unless there is
absolutely no friction and so it is not focused upon too heavily
here. It is proposed that friction is playing a mostly perturbative
role in this impact geometry, in which case the effect of
changing the grain friction can be predicted by computing
the total amount of dissipation expected in a homogeneous
assemblage of individual grain-grain collisions. This then acts
as an envelope for the amount of dissipation experienced by
the granular jet and tells us how the cone angle should change.

This theoretical prediction is compared to measurements from
the present simulations and good quantitative agreement is
found.

II. CONE ANGLE

The cone angle may be understood as the combination of
two factors: transfer of momentum from the target to the jet
and dissipation that occurs between the inflow and outflow. A
derivation for the functional form of the cone angle �0 in three
dimensions appears in Ref. [2]. However, care must be taken
as the result is different in two dimensions. A version of the
derivation is presented here that takes into account an arbitrary
dimension d.

We begin with the flux of momentum parallel to the jet
(the y direction) per unit time. This is qy = QU0, where Q

is the mass flux Q ≡ ρU0σj , with σj the cross-sectional area
of the jet, and U0 is the inflow speed. The target exerts a vertical
force on the jet equal to Ft = AρU 2

0 σt , where σt is the area of
the target and A is a dimensionless geometric factor. As such,
the y component of the leaving velocity is Uy = (qy − Ft )/Q.

We now use conservation of energy to compute the leaving
velocity. Some dissipation will occur associated with the
deformation of the flow around the target. We assume that
this dissipation is, to first order, proportional to the area of the
target and so Uf ≈ U0(1 − B σt

σj
). This restricts us to situations

in which the target area is much smaller than the scale of the
overall flow.

Putting these results together, we have an expression for
�0:

cos(�0) =
1 − A σt

σj

1 − B σt

σj

. (2)

We define χ ≡ σt

σj
= ( Dt

Dj
)d−1 and Taylor expand the denomi-

nator

�0 ≈ cos−1[1 − (A − B)χ ]. (3)

The asymptotic behavior of this equation as χ → 0 is �0 ∝
(A − B)

√
χ , [where χ = ( Dt

Dj
)d−1]. In three dimensions this

means that the cone angle asymptotically approaches a linear
dependence on the ratio of the target diameter to the jet
diameter, with a slope equal to A − B. In two dimensions,
however, the cone angle asymptotically approaches a square
root dependence on the target-to-jet ratio, with the prefactor
A − B. The factor A − B describes the combined effect of
flow geometry due to the target A and dissipation B and in
the limit of the small target-to-jet ratio is independent of the
size of the jet with respect to the target and so provides a
useful quantity for characterizing the behavior of the cone
angle across both two and three dimensions.

In simulations we measure this cone angle for χ < 2 by
accumulating all grains that have moved past the target at
least 200 grain radii. We divide the resultant grains into those
that have x coordinates greater than the centerline coordinate
(right) and those that have x coordinates less than the centerline
coordinate (left). We accumulate the average y component of
the velocity weighted by grain mass v̄y and the average x

component of the rate of travel away from the centerline v̄x

(so grains right of the centerline contribute vx and grains left
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FIG. 2. (Color online) Cone angle measured as a function of
Dt/Dj in 2D granular jet impact simulations. Unlike in three
dimensions, the cone angle scales as the square root of the ratio
of the target to the jet diameter. We show data for both stick and slip
boundaries at μ = 0 and 1. The dashed black line is the theoretical
curve for A − B = 0.35. Note that, despite the fact that the theoretical
curve is for the asymptotic limit where χ 	 1, in practice, the data
follow this curve up until χ ≈ 2.

of the centerline contribute −vx). In our coordinates v̄y < 0.
We use these velocities to determine the cone angle �0 = π −
tan−1(−v̄y/v̄x). When χ � 2 this technique runs into problems
as much of the outflow remains above the target for the span of
our simulation domain. In these cases we must relax the 200
grain radius cutoff and instead use a cutoff that grains should
have traveled at least 200 grain radii along the direction of the
target’s surface before we consider them.

The predicted 2D square root scaling is demonstrated in
Fig. 2. Note that while the scaling only necessarily applies in
the asymptotic limit as χ → 0, it is in practice obeyed over
almost the entire range of behavior until �0 → 90◦. As such,
we may use χ = 0.5, which gives us a good combination of
resolution of flow structures (improved by a large target) and
resolution of the outflow cone (best for angles near 45◦) and
still extract A − B from this relation.

III. DEAD ZONE

Experimentally, a granular jet impinging upon a steel target
produces a dead zone in which the particles are held in place
by pressure from the incoming jet. In order to test whether
the dead zone arises from tangential support at the target
surface, the boundary condition at the target is varied in the
present simulations. Two different boundary conditions are
implemented: slip and stick (Fig. 3). In order to implement a
slip boundary condition the perpendicular velocity of grains
that impact the target is reversed, but otherwise they are

y

x

(a)

y

x

(b)

FIG. 3. Profiles of the L1 norm of the velocity for (a) slip and (b)
stick boundary condition simulations with μ = 1.0 and χ = 0.5. In
the simulation with a slip boundary condition, the velocity linearly
approaches zero at the stagnation point, whereas in the simulation
with the stick boundary condition there is a cusp-shaped dead zone
within which the velocity decays exponentially. The flow is from the
top and the shaded square is the target.

left unchanged. The stick boundary condition corresponds
physically to a rough target, one that is decorated with a layer
of grains. Any grain that impacts the target surface is caused
to adhere and so subsequent grains collide with the decorated
target, using the collision rules for grain on grain collisions.
These boundary conditions are the two extreme limits of a
continuum of possibilities. In practice, the experimental target
has some coefficient of friction for grain-target collisions,
which may be different from that for grain-grain collisions.
In order to more directly address the matter of the presence
or absence of the dead zone, we ignore the extra degree of
freedom here.

The present simulations consist of a jet 100 grains in
diameter, with grains being constantly injected into the
simulation domain to form the jet and deleted as they leave
the simulation domain. When the system is fully developed,
it contains approximately 140 000 grains, varying somewhat
with cone angle. As this is a system comprised of perfect
hard spheres, the only dimensionless groups are Dt

Dj
and Dt

dg

(where dg is the diameter of a single grain) and so the present
results are independent of the jet velocity and the grain density.
A polydisperse set of grains uniformly distributed in radius
between 0.8 and 1.2 is used to prevent crystallization. The
grain density is held constant and so the grain mass scales as
the square of the grain radius. The jet is initialized by placing
grains randomly in space in an inflow region and then allowing
them to relax their positions to avoid overlap. The result is a
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FIG. 4. (Color online) Profile of the transverse x velocity along
a line displaced 0.25Dt from the centerline. Data are shown for two
different values of the friction coefficient μ and for stick and slip
boundary conditions. In the case of stick boundary conditions, the
constraint that the velocity be zero at the target results in a local
maximum in the transverse velocity.

packing fraction of φ = 0.82, which is close to jamming. In
this paper we will generally discuss results for a fixed geometry
Dt

Dj
= 0.5. This is well within the scaling regime in which �0

obeys the theoretical prediction of Eq. (3). As shown in Fig. 2,
simulations were done at several target-jet ratios to determine
the quality of this scaling assumption and the data fall precisely
upon the predicted curve at these values of χ .

For the present grain material properties a coefficient of
restitution of 0.9 is chosen, which is consistent with the glass
beads used in the experimental jet impact. However, it is also
found that the present results do not significantly depend on the
choice of restitution coefficient as the frequency of collisions is
large enough that almost all available energy is dissipated very
quickly. There is Coulomb friction between the grains, with
a coefficient of friction μ that is varied. Due to the presence
of tangential forces, both the velocity and angular velocity of
grains are tracked. For the purposes of observing the dead zone,
it should be noted that whether or not a dead zone is obtained
is insensitive to the choice of μ, which is varied from 10−3

to 10. This can be seen in Figs. 4 and 5, which show that the
general character of the velocity profiles is strongly dependent
on the boundary condition, but only weakly depends on μ.

The time-averaged velocity profiles near the target are
measured for both stick and slip boundary conditions. It is
found that in the case of a stick boundary condition, the
near-target velocity contours have a cusped structure. Within
that contour, the velocity decays exponentially toward zero,
with a decay length scale of a few grain diameters [Figs. 3(b)
and 5]. This is consistent with the experimentally observed
dead zone. However, no dead zone is observed regardless of
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FIG. 5. (Color online) Profile of the longitudinal y velocity along
the centerline. Data are shown for two different values of the friction
coefficient μ and for stick and slip boundary conditions. In the case of
stick boundary conditions, the velocity decays exponentially toward
zero near the target, whereas in the slip case it decays linearly.

the grain-grain friction coefficient chosen. Instead a stagnation
point is observed, where the velocity linearly approaches
zero [Figs. 3(a) and 5]. Surprisingly, the velocity contours
around this stagnation point quantitatively agree with the exact
solution of the 2D Euler equation for this geometry, suggesting
that even despite the high amount of dissipation in the system,
the flow near the target is dominated by the interaction of
geometry and the conservation of momentum [14].

IV. FRICTION EFFECTS

We now turn to the effect of dissipation. Almost no
dependence of the cone angle on inelasticity in the system
is observed when there is also friction [Fig. 9(b)]. However,
the friction appears to have a weak but measurable effect. It
is this effect that we will try to explain. In principle, friction
could give rise to a change in dead-zone geometry that alters
the geometric contribution to the reaction force of the target on
the jet. However, as shown in the preceding section, this effect
is very small (Figs. 4 and 5). As such, we will proceed by
neglecting the influence of friction with dead-zone geometry
and observe whether this approximation successfully explains
the behavior of A − B.

Consider a gas of grains with random velocities. If we take
two such grains, then the angle between the vector between
them and their relative velocity will be random. We can then
restrict ourselves to pairs of grains that will collide given their
current trajectory. The result is that only a narrow band of
angles will lead to a collision, but that within that band all
angles should be equally likely. The further apart the grains,
the narrower the band of angles. This situation is pictured in
Fig. 6. The width of the angle distribution is a function of the
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FIG. 6. Schematic of the set of angles of approach that will bring
two grains starting at a distance λ to collision.

mean distance between grains λ:

	θ = tan−1

(
2r

λ

)
. (4)

The collision parameter b is defined to be the offset between
the centers of the grain perpendicular to their relative velocity
at contact, normalized by the sum of the grain radii. The
fraction of energy lost in a collision can then be expressed
as a function of b. The distribution of collision parameters in
random collisions in this granular gas is computed, given an
initial distance and uniform distribution over colliding values
of θ .

If the two grains approach at an angle θ , then b is

b = ξ
√

1 − η2 +
√

1 − ξ 2η, (5)

where ξ ≡ sin(θ ) and

η ≡ ξ

(
λ

2r

√
1 − ξ 2 −

√
1 −

(
λ

2r

)2

ξ 2

)
. (6)

Transforming the uniform distribution in θ to P (b) gives us

P (b) = 1

	θ

1

|P ′(θ (b))| . (7)

Figure 7 shows P (b) for various values of λ.
If we take the limit where λ → 2r , then we have a situation

in which grains are constantly in collision with each other.
This corresponds to a dense granular pack. While this limit is
somewhat questionable, as now there can be a strong ordering
in the pack, if the way that the pack is driven by exterior forces
is random, the basic assumption of no correlation between the
angle of the velocity of a grain and the angle of their contact
still holds. In this limit, we observe that b → sin(θ ) and so
P (b) asymptotically behaves as

P (b) ∝ 1√
1 − b2

. (8)

This result also applies to polydisperse grains in contact, as
the grains do not move between collisions and so the entirety of
the distribution is determined by the random choice of relative

10−4
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10−2

P
(b

)

10−2 10−1 100

1 − b

(λ − 2r)/r = 0
(λ − 2r)/r = 0.1
(λ − 2r)/r = 1
(λ − 2r)/r = 0.01, Polydisperse

r2rb

FIG. 7. Distribution of collisions with collision parameter b

for different average distances between grains. When the average
distance between grains approaches the sum of their radii, the
collision distribution diverges with a square root singularity near
b = 1. Data from a mean-field collision simulation using uniformly
distributed polydisperse grains of radii [0.8,1.2] is shown for λ =
2.1r and is indistinguishable from the monodisperse distribution.

velocity and not the grain geometry. This can be seen to hold
even away from the close-packed limit in Fig. 7, where data are
presented both from analytic calculation of the distribution and
from a random sampling of 5 × 107 polydisperse collisions.
For polydisperse grains, a constant λ is not well defined and so
instead the distance between the surfaces of the grains is held
constant (corresponding to λ − 2r in the monodisperse case).

We now look at the energy dissipated in an individual
collision occurring at collision parameter b, with coefficient of
restitution ε and friction coefficient μ. We assume that these
grains have no relative rotation when they come into contact
with each other in order to simplify the calculation.

The impulse experienced by colliding grains can be
separated into a normal component IN in the direction r̂ and
a tangential component IT in the direction t̂ . If two grains
approach in the center-of-mass frame with a momentum �pi

and no relative rotation, these components are

|IN | = (1 + ε)| �pi · r̂|, (9)

|IT | = min

(
μ(1 + ε)| �pi · r̂|, �pi · t̂

3

)
. (10)

The factor 1
3 in |IT | assumes that the grains are homogeneous

disks. In general, this factor is 1
1+mr2/I

, where I is the moment

of inertia of the grain. Observing that �pi · r̂ = |pi |
√

1 − b2 and
�pi · t̂ = |pi |b, we can express these impulses in terms of the
collision parameter b. Given these impulses, we can compute
the fraction of energy lost in the collision γ ≡ 1 − Ef

E0
. If
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FIG. 8. Fraction of energy dissipated in a collision as a function
of the collision parameter b.

b/3 < μ(1 + ε)
√

1 − b2, then

γ<(b) = (1 − ε2)(1 − b2) + 5b2

9
; (11)

otherwise,

γ>(b) = 2(1 + ε)(1 − b2 + μb
√

1 − b2)

− (1 + ε)2(1 + μ2)(1 − b2). (12)

This dissipation function is plotted in Fig. 8. As the coefficient
of friction increases, only collisions closer and closer to b = 1
are affected. However, for a dense pack the probability density
of such collisions diverges and so these glancing collisions are
where the effect of higher friction dominates. We estimate the
total amount of dissipation with the integral

D(μ) =
∫ 1

−1
P (b)γ (b)db. (13)

It is expected that this dissipation integral should control
the dimensionless parameter B in the quantity A − B. When
μ → 0, A − B is expected to be controlled mostly by the
geometric contribution (although inelasticity still produces
some finite dissipation). As such, this asymptotic value is not
predicted by the present theory and is one fit parameter of this
model. Furthermore, the dissipation integral is an estimate
of the fraction of energy dissipated in a set of uniformly
distributed collisions rather than a particular flow. As such,
it is expected that the dissipation observed in the jet impact
will scale with D but will not be exactly equal to D. We
therefore have a second fit parameter, which is a constant of
proportionality that determines the influence of D upon the
quantity A − B. As such, it is expected that

A − B = C0 − C1D(μ). (14)

0.3

0.35

0.4

0.45

A
−

B

10−3 10−2 10−1 100 101 102

μ

(a)

Stick, χ = 0.5
Slip, χ = 0.5
Theory

0.3

0.35

0.4

10−2 100

(b)

FIG. 9. (a) Data for A − B from simulations at χ = 0.5 along
with fits to Eq. (14). The value of A − B is determined by inverting
the equation for the cone angle at a fixed value of χ . The error bars
are determined by measuring the cone angle at four different times
during the simulation and then computing the standard deviation of
the resultant A − B values. (b) The inset shows the dependence of
A − B on the coefficient of restitution for a fixed value of μ = 0.2.

To test this a series of simulations is performed for different
values of μ and A − B is measured in each case. Both slip and
stick boundary conditions are simulated to see if the presence
of the dead zone makes any difference in the scaling of A − B.
The data are shown in Fig. 9(a) along with fits of the dissipation
theory to the data. The values of μ at which A − B switches
between its asymptotic behaviors are predicted by the theory
with no adjustable parameters, as the two fitting constants do
not influence the μ dependence of the curve, only the vertical
scale. The first asymptotic regime seems to be fairly insensitive
to the details of the collision distribution. However, it is found
that if a different P (b) is used, e.g., P (b) ∝ (1 − b2)a , then as
a → 1 the location of the second asymptotic regime goes to
μ → ∞.

Agreement within error bars is obtained for both the stick
and slip boundary conditions. The effect of the target boundary
condition is a fixed offset between the curves; only the fit
parameter C0 differs between the two cases.

A. Polydispersity

The matter of polydispersity is also considered. A poly-
disperse collection of grains is generally used to prevent
crystallization (which can lead to markedly different behavior
in granular systems). The present theory of the cone angle
seems to be independent of any polydispersity in the system,
though it is a mean-field theory of a random pack and would
not be expected to capture anything depending on system-wide
ordering. If polydispersity impacts the macroscopic behavior
of the granular flow, it could be an interesting connection
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FIG. 10. (Color online) Correlation function of granular packs
above the target for polydispersities p = 0 and 0.4. The effect of
polydispersity is to decrease the correlation decay length.

between mesoscopic order within granular systems (e.g.,
partial crystallization) and bulk behavior.

The present method for generating the initial jet is to insert
grains at random in a volume of space well above the target.
The pack is continuously relaxed during flight to remove the
initially generated overlaps. As the jet has a free surface,
all overlaps are eventually resolved by this process (there is
no possibility of generating a pack that cannot somehow be
relaxed). The grains are generated with a uniform distribution
of width p, which parametrizes the polydispersity. Normally
p = 0.4 is used.

In order to determine whether this polydispersity has an
influence on A − B, simulations are performed with a stick
boundary condition and μ = 1, but with polydispersity values
0, 0.1, 0.2, and 0.3. The internal structure of these packs above
the target (at least 400 grain radii up) is examined to identify
how the polydispersity is influencing the microscopic order.
A two-point correlation function C(r) = 1

r

∑
ij δ(rij − r) is

computed, treating each grain as a δ function at its center.
The result is the correlation function of a solid with disorder
(Fig. 10), with several peaks whose amplitudes decay expo-
nentially. By measuring the decay constant of the exponential
for each polydispersity the length scale of the ordering can be
extracted. It is found that this length scale is at most 3.5 grain
radii even for the monodisperse pack and decreases to 2.8 for
p = 0.3. This suggests that ordering of the initial jet should
not play a large role in the dynamics of the impact as the length
scale does not depend strongly on the polydispersity. As the
polydispersity is increased, the range of the microscopic order
in the jet is decreased. However, even for monodisperse grains
a fully crystalline jet above the target is never achieved due to
our method of preparation.

Because the local crystalline clusters have a different length
scale than individual grains, it might be expected that there
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FIG. 11. (Color online) Effects of system size and polydispersity
for a stick boundary flow at μ = 1.

could be a system size effect associated with the polydispersity.
Simulations were performed for various system sizes for
polydispersities of p = 0, 0.2, and 0.4 (Fig. 11). It is found
foremost that the monodisperse case is significantly different
from the polydisperse cases, with a strong nonmonotonic
system size effect with a length scale of Dj/dg = 50. In
the monodisperse case, the total range of the system size
effect on A − B is approximately 0.045, which is comparable
in scale to the effect of the presence or absence of a dead
zone. Furthermore, it is not clear that the monodisperse case
has reached its asymptote by Dj/dg = 100 and so further
evolution of the behavior with respect to system size may
occur.

For the polydisperse cases, A − B increases with polydis-
persity. Aside from the monodisperse case, however, A − B is
not strongly influenced by polydispersity in the large system
limit. The scale of the effect observed in the present work is
approximately 0.004, an order of magnitude smaller than the
friction and dead-zone effects. Even in the polydisperse case,
a finite size effect is observed, but with a length scale smaller
than the monodisperse case (peaking at about Dj/dg = 25).
The overall impact of system size on A − B is also reduced
in the polydisperse case and it appears that Dj/dg = 100 is
approaching the asymptotic limit with respect to system size
(in the sense that the change of A − B between a system
size of Dj/dg = 50 and 100 is about 0.005 and so is about
2% on A − B). In the case of all polydispersities, the A − B

dependence on system size seems to follow the same curve
for very small systems. At these small values of Dj/dg , the
outflow is no longer coherent. This suggests that the behavior
is dominated more by random scattering than by bulk flow.
As the system size increases, the flow becomes collimated
(around Dj/dg = 25) and the curves diverge from each other.
The current model does not predict the polydispersity effect
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at all, but it seems clear that it is a higher-order phe-
nomenon that may not be capturable from a simple mean-field
approach.

V. CONCLUSION

The present work has shown that the behavior of a
granular jet impinging upon a target is well described by the
combination of a boundary condition effect at the target to
capture the geometrical effects of the target reaction force
as well as a microscopic model for the fraction of energy
dissipated in collisions within the jet. The boundary condition
determines whether or not a dead zone forms, which effectively
changes the target geometry. A boundary condition capable of
supporting horizontal stresses is needed in order to observe a
dead zone, whereas a slip boundary condition does not produce
a dead zone even if the friction between grains is large.

The presence or absence of the dead zone is responsible for
a fixed offset in the value of the constant A − B. In contrast,
friction between the grains seems to be well described as a
local, homogeneous effect, changing only the total dissipation
within the jet and not strongly influencing the large-scale
structure of the flow. While only a small direct change to
the velocity profiles due to friction effects is seen (Figs. 4
and 5), not corresponding to any macroscopically altered
flow structures, a change in cone angle consistent with a
microscopically homogeneous frictional effect is observed.
This paper has presented a calculation that estimates the total
dissipation within the jet as a function of the friction coefficient
and it was found that it predicts the crossover as a function of

μ between the asymptotic regimes of A − B corresponding to
no friction and infinite friction.

It is not a given that friction should behave in this way.
In general, factors such as surface tension or viscosity are
associated with length scales, which give rise to corresponding
extended structures in the flow (e.g., boundary layers) along
with any homogeneous effects they may have. In the theory
for the water jet, the influence of these factors on the cone
angle is restricted by going to the limit where the length scales
associated with surface tension and viscosity are much smaller
than other length scales in the system and so their effects have
asymptotically saturated [2].

In contrast, friction and inelasticity do not create any new
flow structures and do not introduce any new length scales
in this flow geometry. As such, the effects are well captured
by the homogeneous picture. If other granular systems are
considered, this approach should work so long as those
systems do not develop boundary layerlike structures as a
consequence of friction. The success of this microscopic
description suggests an explanation for the correspondence
between perfect fluid flow and the granular dynamics reported
in Ref. [14]. The effect of dissipation is a weak perturbation
and does not qualitatively affect the flow behavior.
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