
PHYSICAL REVIEW E 85, 051203 (2012)

Structure and phase behavior of two-Yukawa fluids with competing interactions in planar slit pores
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A density functional perturbation theory, which is based both on the modified fundamental-measure theory
and on the first-order mean-spherical approximation for long-range attractive and repulsive interactions, has
been developed for studying the structure and phase behaviors of a competing system restricted to slit pores.
The hysteresis loop for the adsorption and desorption curves indicates that the system exhibits vapor-cluster and
cluster-liquid transitions which depend on the pair potential parameters and the slit width (H ). The periodic
spacing (D) of the cluster is commensurate with the periodicity of modulation in the particle density distribution
and more closely related to the vapor-cluster and cluster-liquid phase transitions of the system. For the cluster
phase, we find the transition from a single liquidlike slab to a multi-liquidlike slab with increasing the slit
width. The multi-liquidlike slab is formed depending on the periodicity of modulation by finite-size artifacts.
The cluster-related phase transitions, such as the vapor-cluster or cluster-liquid transitions occur for H > D,
while for H < D the system only exhibits the vapor-liquid transition. At a low amplitude, the vapor-liquid
transition disappears and the cluster-liquid transition only occurs for H < D. The coexistence curves for the
confined phase diagram are contained within the corresponding bulk liquid-vapor coexistence curve. For a wide
slit pore (H > D), the system exhibits two tricritical points, joined to one another by the line of second-order
transition. The results support the conclusion that the confinement effect plays an important role in determining
the equilibrium phase transition.
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I. INTRODUCTION

Over the past years, considerable progress has been made
in the understanding of microphase formation induced by
competing interactions, which are attractive at a short distance
and repulsive at a long distance [1–13]. An effective potential
such as the competing interaction can be found in colloid-
polymer mixtures. The interaction between the colloids may
be influenced by the presence of other species, and the mixture
experiences attractive and repulsive interactions, i.e., compet-
ing interactions. In a colloid-polymer mixture, the long-range
repulsion arises from the colloids being charged, while the
attraction at a short distance stems from the depletion forces
associated with nonadsorbing polymers. Such competing
interactions give rise to various microphase separated phases,
including the cluster phases, because the attraction favors bulk
phase separation and the repulsion disfavors it. A balance
between these interaction yields finite-size mesophases. The
cluster morphology depends on the ranges of the competing
interactions and on the density, but also the temperature can
have a role.

Many studies have been carried out to investigate the bulk
phase behaviors of competing systems due to their ability
to represent many real fluids in two- and three-dimensional
systems [1,2,7,10,12–16]. For the three-dimensional system,
Archer and Wilding [7] used the grand canonical Monte
Carlo simulation for studying the structure and phase be-
haviors in the bulk phase. They reported many inhomo-
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geneous structures which depend on the value of ampli-
tude: spherical and cylindrical liquidlike clusters, single and
multi-liquidlike slabs, and cylindrical and spherical bubbles.
However, their studies were restricted to particular amplitudes
because of the great computational expenditure. Furthermore,
their theoretical studies are limited to the random phase
approximation (RPA), which is the simplest approximation
for the long-range competing contribution. It is known that
the density functional perturbation theory based on the
RPA, which was used for structure and phase behaviors of
competing fluids, does not overcome the low-temperature
and high-density problems of studying the structure and
phase behaviors of the hard-core Yukawa (HCY) fluid with
attractive and repulsive interactions at interfaces. However,
the general behavior of confined complex fluids, such as
those undergoing microphase separation, has received very
limited attention, even though the theory of simple fluids
under confinement is well developed. Confinement induces
new pattern morphologies, which might not appear at all
in the bulk, and modifies the pattern morphologies. A few
studies regarding the influence of confinement on the phase
behaviors of competing systems have reported only on two-
dimensional systems [6,9,12]. One of the important questions
we consider is how the geometry of the pores, the size of the
pores, and the competing interaction affect the structure and
phase behaviors of confined competing fluids. Actually, the
introduction of the surface force and the competition between
fluid-surface and fluid-fluid forces lead to interesting surface-
induced phase changes, since the periodic spacing of the
modulated structure is commensurate with the periodicity
of modulation in the particle density distribution. On the
other hand, the precise nature of the phase behaviors of a
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competing system in a slit pore, such as the vapor-cluster and
the cluster-liquid transition, is not well understood. The present
study aims to fill this gap.

The potential model that we consider is a simple hard-core
model with a two-Yukawa tail potential of the form

βφ(r) = ∞, r � σ,

= −ε exp[−z1(r/σ − 1)]

(r/σ )

+ A exp[−z2(r/σ − 1)]

(r/σ )
, r > σ, (1)

where β = 1/kBT is the inverse temperature and σ the
particle diameter. In this model potential z1 and z2 are the
ranges of interactions, and the amplitudes are ε > 0 and
A > 0. For a fixed value of A, the amplitude ε plays a
role somewhat akin to an inverse temperature. Depending
on the values of the set of potential parameters z1, z2, A, ε,
and number density ρ, the two-Yukawa fluid may exhibit
various microphases in the bulk. In the theoretical approach for
competing fluids, it is known that integral equations such as the
Percus-Yevick (PY) and hypernetted-chain (HNC) equations
fail to describe the new phase transition in the bulk [9,13].
These integral equations have the weakness that they cannot
be directly applied to explain the modulated fluid structure
of the two-Yukawa fluid confined in slit or spherical pores.
The density functional perturbation theory has proved to be a
powerful tool in the analysis of these problems and provides
an accurate result for the structure and phase behaviors
of the hard-core Yukawa fluids restricted to the special
pores. The key point is how to approximate the free energy
functional for the two-Yukawa fluid to overcome the low-
temperature and high-density problems. Recently, Tang [17]
and Karanikas et al. [18] applied the first-order contribution
of the Yukawa direct-correlation function (DCF) based on
the first-order mean-spherical approximation (FMSA) [17]
and calculated the effect of wall-particle and particle-particle
interactions on the solvation forces at interfaces. The main
advantage is to use an analytic DCF expression for the
long-range competing contribution [19,20]. They have shown
that the density functional perturbation theory, which is
based on the modified fundamental-measure theory (MFMT)
[21,22] for hard spheres and the FMSA for the perturbation
contribution, compares with the computer simulation for
the structure of a HCY fluid at interfaces. However, their
applications are restricted to only the structure of an attractive
or repulsive HCY fluid, and do not address the structure and
the phase behaviors of competing fluids with long-range
attractive and repulsive interactions. In this work, we focus
on the part of the structure and phase diagram in which the
system in a slit pore still displays the vapor-cluster, cluster-
liquid, and vapor-liquid transitions, and investigate how this is
affected as one gets close to the stability limit of the confined
liquid phase by increasing the intensity of the attractive part
of the interaction. In the work presented in this paper, the
density functional perturbation theory imposes the constraint
that the particle density distribution may only vary in the
direction perpendicular to the slit walls. Thus, the microphases
[7], which have been identified in the bulk phase, are not
distinguishable in all of these phases. For example, to see the

microphases with cylinders the particle density distributions
have to assume variations in two dimensions, whereas for
spheres the particle density distributions must vary in all three
dimensions. In this case, great computational expenditure is
needed for calculating the particle density distributions.

The present paper is organized as follows. In Sec. II we
will develop the density functional perturbation theory which
is based both on the MFMT [21,22] for hard spheres and on the
FMSA for the long-range competing interaction. In Sec. III,
we apply it for investigating the structure and phase behaviors
of a competing system confined in a slit pore. The structure
and phase behaviors of competing fluids confined in a slit pore
have been studied in detail. We discuss the results obtained for
the microphase transition in a slit pore and the paper is closed
with concluding remarks.

II. THEORY: DENSITY FUNCTIONAL PERTURBATION
APPROACH

In the framework of a density functional perturbation theory
[23] the grand potential �[ρ], which is a functional of the
local density ρ(�r), is defined as the Legendre transform of the
intrinsic (Helmholtz) free energy functional F [ρ],

�[ρ] = F [ρ] +
∫

d�rρ(�r)[uext(�r) − μ], (2)

where uext(�r) is the external potential and μ is the molecular
chemical potential. Following the density functional pertur-
bation theory, the intrinsic free energy functional F [ρ] can
be divided into the ideal free energy Fid [ρ], the hard-sphere
repulsion Fhs[ρ], and the long-range contribution Fcomp[ρ]
arising from the competing interactions:

F [ρ] = Fid [ρ] + Fhs[ρ] + Fcomp[ρ]. (3)

The ideal free energy contribution Fid [ρ] is exactly expressed
as

βFid [ρ] =
∫

d�r ρ(�r)[ln ρ(�r) − 1], (4)

where the de Broglie thermal wavelength � = h/
√

2πmkBT

has been suppressed since it does not have any effect on the
particle density distribution.

At equilibrium, the particle density distribution ρ(�r) sat-
isfies the stationary condition δβ�[ρ]/δρ(�r) = 0. Then, after
some manipulations, the particle density distribution is given
by

ρ(�r) = eβμ exp
{− βuext(�r) + c

(1)
hs (�r; [ρ]) + c(1)

comp(�r; [ρ])
}
,

(5)

where c
(1)
hs (�r; [ρ]) and c(1)

comp(�r; [ρ]) are the one-particle direct-
correlation functions (DCFs) corresponding to the fluid in the
pores, which are defined as c

(1)
hs (�r; [ρ]) = −δβFhs[ρ]/δρ(�r)

and c(1)
comp(�r; [ρ]) = −δβFcomp[ρ]/δρ(�r). For calculating the

particle density distributions, we need the expression for
the excess free energy functionals Fhs[ρ] and Fcomp[ρ]
of the two-Yukawa fluid originating from the particle in-
teractions. To approximate the free energy Fhs[ρ] corre-
sponding to the hard-sphere contribution, we here adopt
the MFMT [21,22], which is known to be the most
successful theory for a hard-sphere system based on the
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Boublik-Mansoori-Carnahan-Starling-Leland (BMCSL) re-
sults [24,25],

Fhs[ρ] =
∫

d�r�hs[nα(�r)], (6)

where �hs[nα(�r)] is the excess free energy of a hard-
sphere system per volume, nα(�r) = ∫

d�sρ(�s)ωα(|�r − �s|) is
the system-averaged fundamental geometric measure of the
particles, and ωα(r) is the weight function depending on the
geometrical properties of species. Here, we did not describe
the functional �hs[nα(�s)] in detail since it has been well
documented elsewhere [21,22]. In this case, the one-particle
DCF c

(1)
hs (�r; [ρ]) is simply given by

c
(1)
hs (�r; [ρ]) = −

∫
d�s

∑
α

∂�hs[nα(�s)]

∂nα(�r)
ωα(|�r − �s|). (7)

The excess free energy functional Fcomp[ρ], which cor-
responds to the contribution of the long-range competing
interactions, can be calculated from the density functional
approximation as

βFcomp[ρ] = −1

2

∫
d�r

∫
d�s c(2)

comp(|�r − �s|; ρ)ρ(�r)ρ(�s), (8)

where c(2)
comp(r,ρ) is the two-particle DCF for a uniform model

fluid with a competing interaction and ρ is the bulk density of
a system. It should be mentioned that Eq. (8) differs from
the other approximations based on the density functional
expansion of the free energy about the bulk density. For
the particle density distribution in a confined system, the
present theory, however, yields the same result as the other
approximations based on the density functional expansion
[19,20,23]. On the other hand, the advantage is that the present
theory provides the expression for the excess free energy in
the bulk phase, which is needed for calculating the phase
diagram. We use the analytic DCF expression, c(2)

comp(r,ρ), for
the two-component Yukawa tails, which is known as the FMSA
proposed by Tang [17]. In the FMSA [17], c(2)

comp(r,ρ) becomes

c(2)
comp(r,ρ) = ε

exp[−z1(r/σ − 1)]

(r/σ )
− A

exp[−z2(r/σ − 1)]

(r/σ )
,

r > σ,

= ε{exp[−z1(r/σ − 1)]/(r/σ ) − Q(z1)P (r,z1)}
−A{exp[−z2(r/σ−1)]/(r/σ ) − Q(z2)P (r,z2)},

r � σ, (9)

where

Q(z) = [S(z) + 12ηL(z)e−z]−2,

P (r,z) = S2(z)[e−z(r/σ−1)]/(r/σ ) + 144η2L2(z)

× [ez(r/σ−1)]/(r/σ ) − 12η[(1 + 2η)2z4

+�(1 + 2η)z5](r/σ )3 + 12η[S(z)L(z)z2

−�(1 + η/2)z6](r/σ ) − 24η[(1 + 2η)2z4

+�(1 + 2η)z5] + 24ηS(z)L(z)(σ/r), (10)

with S(z) = �2z3 + 6η�z2 + 18η2z − 12η(1 + 2η), L(z) =
(1 + η/2)z + 1 + 2η, and � = 1 − η. Here, ρ is the bulk
density of the system and η = πρσ 3/6 is the packing fraction.
We note that Archer et al. [8,10] introduced c(2)

comp(r,ρ) as the

perturbation potential such that

c(2)
comp(r,ρ) = ε − A, r � σ,

= −βφ(r), r > σ, (11)

where −ε + A is the value of βφ(r) at contact, i.e., at r = σ+.

III. RESULTS AND DISCUSSION

A. Bulk phase diagram

In the present theory, the chemical potential μ and pressure
P can be calculated from Eqs. (3), (4), (6), and (8). The
chemical potential μ = (1/V )[∂F (ρ)/∂ρ]V.T becomes

βμ = ln ρ + (8η − 9η2 + 3η3)

(1 − η)3
− 4πρ

∫ ∞

0
dr r2c(2)

comp(r,ρ)

− 2πρ2
∫ ∞

0
dr r2

(
∂c(2)

comp(r,ρ)

∂ρ

)
, (12)

where V is the volume of the system. The pressure βP =
βρμ − ρ[βF (ρ)/N ] becomes

βP = ρ
(1 + η + η2 − η3)

(1 − η)3
− 2πρ2

∫ ∞

0
dr r2c(2)

comp(r,ρ)

−πρ3
∫ ∞

0
dr r2

(
∂c(2)

comp(r,ρ)

∂ρ

)
, (13)

where N is the number of particles. The liquid-vapor coex-
istence curve (the binodal) can be obtained by equating the
pressure and chemical potential,

μl = μv and Pl = Pv, (14)

where the subscripts v and l denote the vapor and liquid phases,
respectively. In this case, the coexistence densities are given
in terms of the bulk density ρ and the parameters ε and A.
The liquid and vapor spinodal densities correspond to the
locus (∂P/∂ρ)T = 0 and the critical point corresponds to the
maximum of the spinodal curve, i.e., (∂/∂ρ)(∂P/∂ρ)T = 0.

The bulk phase diagram of the two-Yukawa fluids based
on the FMSA treatment is displayed in Fig. 1 along with

FIG. 1. Bulk phase diagram of a competing system, where A =
0.5, z1 = 1, and z2 = 0.5. The solid and dashed lines denote the
present and RPA theories, respectively.
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the RPA treatment, where the pair potential parameters are
chosen as A = 0.5, z1 = 1.0, and z2 = 0.5 [7]. (Throughout
this work, we have fixed the pair potential parameters such as
A = 0.5, z1 = 1.0, and z2 = 0.5 since it is difficult to calculate
the topology of the phase diagram in the full space of A

and ε.). The calculated results show different phase behaviors
compared with the RPA treatment; i.e., at the critical point the
amplitude and density are ε−1

c = 0.6120 and ρcσ
3 = 0.3567

for the present theory, whereas they are ε−1
c = 0.5761 and

ρcσ
3 = 0.2491 for the RPA treatment. The λ line in the bulk

phase has been determined from the structure factor S(k,ρ) at
k = kc, where kc represents the wavelength at which the system
becomes unstable, forming microphases [7]. The structure
factor in the present theory is given by

S(k,ρ) = 1

1 − ρ
[
c

(2)
hs (k,ρ) + c

(2)
comp(k,ρ)

] , (15)

where c
(2)
hs (k,ρ) is the two-particle DCF of hard spheres.

We have calculated the two-particle DCF c
(2)
hs (k,ρ) from the

MFMT for hard spheres [21]. Figure 1 shows that the present
theory predicts a λ line enclosing the region of the phase
diagram containing the liquid-vapor critical point. Above
ε−1 � 0.739, the system forms a homogeneous fluid phase.
Note that the λ line in the RPA treatment meets the spinodal as
a tangent. However, the FMSA does not meet this condition. It
seems that the structure of the FMSA theory is very different
from the RPA theory.

B. Structure and phase behaviors of the confined
two-Yukawa fluids

For the hard slit pore comprising two planar surfaces, the
two-Yukawa fluid interacts with the slit wall via

βuext(z) = 0, σ/2 < z < H − σ/2,

= ∞, otherwise, (16)

where H denotes a wall separation. For the slit pore, the
equilibrium particle density distribution just depends on z by
a symmetric property, but not on x and y; ρ(�r) = ρ(z). Thus,
we define the z axis to be perpendicular to the walls. In this
case, the particle density distribution, Eq. (5), becomes

ρ(z) = eβμ exp

[
c

(1)
hs (z; [ρ])

+
∫ H−σ/2

σ/2
dz′c(2)

comp(|z − z′|,ρ)ρ(z′)

]
,

σ/2 < z < H − σ/2 (17)

with the planar averaged c
(1)
hs (z; [ρ]) =

2π
∫ ∞

0 dRRc
(1)
hs (

√
R2 + z2; [ρ]). For the numerical

calculation, the trapezoidal method with �z = 0.01σ

and the standard Picard iteration technique were used to
calculate the particle density distribution.

The adsorption and desorption isotherms of a two-Yukawa
fluid confined in a slit pore with H = 20σ are displayed in
Fig. 2(a), where ε−1 = 0.55 below the critical point ε−1

c =
0.6120. Notice here that in the bulk phase the saturated
vapor and liquid densities at ε−1 = 0.55 are ρlσ

3 ≈ 0.021

FIG. 2. (a) Adsorption (solid line) and desorption (dashed line)
curves of the confined two-Yukawa fluid as a function of the
bulk density ρσ 3 (H = 20σ and ε−1 = 0.55). The dot-dashed lines
denote the equilibrium transition lines. (b) The corresponding grand
potential β�[ρ(z)]/A. The crosses on the curves represent the loci
of equilibrium transition points.

and ρvσ
3 ≈ 0.806, respectively. The mean density ρ̄ inside a

slit pore has been calculated as

ρ̄ = 1

(H − σ )

∫ H−σ/2

σ/2
dz ρ(z), (18)

where the mean density ρ̄ is related to the excess adsorption �

defined as � = ∫ H−σ/2
σ/2 dz[ρ(z) − ρ] = (H − σ )(ρ̄ − ρ). To

find the phases (vapor, cluster, and liquid) to be stable under
a range of intermediate conditions, we calculated the particle
density distribution twice: once starting with a high density
(liquid) initial condition and once with a low density (vapor)
initial condition. The adsorption curve which is plotted by the
solid line in Fig. 2(a) shows that the mean density ρ̄σ 3 has two
sudden jumps at ρσ 3 ≈ 0.058 and 0.861, while the desorption
curve denoted by the dashed line in Fig. 2(a) shows two
sudden drops at ρσ 3 ≈ 0.034 and 0.719. These two solutions
imply the presence of metastable states within the intervals
0.034 < ρσ 3 < 0.058 and 0.719 < ρσ 3 < 0.861. The equi-
librium transition point can be determined by analyzing the
dependence of the grand potential of the system in a slit pore
as a function of the chemical potential βμ [26],

βP = −β�[ρ(z)]

V
= − β�[ρ(z)]

A(H − σ )
, (19)

where A = ∫
dx

∫
dy is the area of a planer interface. The

corresponding grand potential β�[ρ(z)] in a slit pore is
depicted in Fig. 2(b), where the grand potential becomes, from
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Eqs.(2), (4), (6), and (8),

β�[ρ(z)]

A

=
∫ H−σ/2

σ/2
dz ρ(z)[ln ρ(z) − 1] +

∫ H−σ/2

σ/2
dz�hs[nα(z)]

− 1

2

∫ H−σ/2

σ/2
dz ρ(z)

∫ H−σ/2

σ/2
dz′ρ(z′)c(2)

comp(|z − z′|; ρb)

−βμ

∫ H−σ/2

σ/2
dz ρ(z). (20)

The cross on the curve of the grand potential versus the
chemical potential represents the locus of the equilibrium
transition point, i.e., the phase coexistence point. The point at
which the curve crosses itself has two solutions with distinct
morphologies. Note that we have plotted the grand potential
as a function of the bulk density ρσ 3 corresponding to the
chemical potential for comparison with Fig. 2(a). These points
are illustrated in Fig. 2(b), where the interaction points at
ρσ 3 ≈ 0.0401 and 0.8161 indicate the equilibrium transition
points. The vertical dash-dotted lines in Fig. 2(a) locate the
average densities in a slit pore at which the thermodynamic
equilibrium between two states occurs. Figure 2 indicates
that there are three states and two transition points: the
vapor-cluster transition at a low density and the cluster-liquid
transition at a high density.

In Fig. 3 we have displayed the calculated particle density
distribution ρ(z)σ 3 for the case when ρσ 3 = 0.04, 0.40, and
0.82, where ε−1 = 0.55, H = 20σ , and 30σ . It should be
mentioned that ρσ 3 = 0.4 corresponds to the cluster phase
with a large liquidlike slab, while ρσ 3 = 0.04 and 0.82
correspond to the metastable phases near the equilibrium
transition points ρσ 3 ≈ 0.8161. As can be seen from Fig. 3(a),
the vapor phase shows monotonic density behaviors with

FIG. 3. Particle density distributions ρ(z)σ 3 of the confined two-
Yukawa fluid (ε−1 = 0.55). (a) ρσ 3 = 0.04 (the solid and the dashed
lines denote the vapor and the cluster phases, respectively). (b) ρσ 3 =
0.82 (the dashed and the solid lines denote the cluster and the liquid
phases, respectively). (c) The cluster phase (ρσ 3 = 0.40) at H =
20σ . (d) The cluster phase (ρσ 3 = 0.40) at H = 30σ .

ρ(z)σ 3 ≈ 0.04 except near the walls, and the mean density
ρ̄σ 3 ≈ 0.047 is almost the same as the bulk density ρσ 3 =
0.04. The cluster phase exhibits modulated density behavior
with maximum density at H ≈ 3.2σ and 16.8σ . In this case,
the mean density ρ̄σ 3 ≈ 0.249 is much greater than the bulk
density ρσ 3 = 0.04. However, the density at the pore middle
is much smaller than the bulk density. This result indicates that
the two-Yukawa fluid transforms from the initial vapor state to
the cluster state with a stable liquidlike slab at ρσ 3 ≈ 0.0401. It
is here noted that we consider only the morphologies in which
the system forms the cluster phase parallel to the surfaces.
These morphologies only require one-dimensional solutions to
the particle density distribution (when the system is confined
in the xy plane, the particle density distribution becomes
more complicated depending on the size of a rectangular
pore.) Thus, we cannot clearly distinguish the spherical shaped
voids from the cylindrical shaped voids which were predicted
by the computer simulation [7]. Actually, to see cylinders
the particle density distributions have to assume variations
in two dimensions, whereas for spheres the particle density
distributions must vary in all three dimensions. In this case,
we need a great computational expenditure for the particle
density distributions ρ(x,y,z). With increasing bulk density
[see Fig. 2(a)], the vapor phase disappears. The fluid is
more strongly modulated by the competition between the
configurational entropic effect and the packing effect. A strong
density distribution is found near the walls. At a high density
ρσ 3 = 0.82 corresponding to the metastable region for both
the cluster and the liquid phases, we find a cluster with a
large vaporlike void in the pore middle. The density within the
cluster is close to that of the uniform liquid and the density in
the voids is low, close to that of the uniform vapor, while the
liquid phase exhibits a layered structure with bulk density at the
pore middle due to the strong packing effect. Finally, for ρσ 3 >

0.87 the cluster with a large vaporlike void disappears and the
liquid phase only occurs at a slit pore. This result demonstrates
that with increasing bulk density the confined two-Yukawa
fluid transforms from a vapor to a cluster with a large liquidlike
slab, and from a cluster with a large vaporlike void to a liquid.
In Figs. 3(c) and 3(d) we have depicted the cluster phases with a
large liquidlike slab for H = 20σ and 30σ , where ε−1 = 0.55
and ρσ 3 = 0.4. The cluster phase shows a double liquidlike
slab for H = 20σ , whereas there is a triple liquidlike slab
for H = 30σ . This implies that, as the slit width increases, the
transition from a cluster with a single liquidlike slab to a cluster
with a multiple liquidlike slab occurs, where the multiple
liquidlike slab is formed depending on the periodicity of mod-
ulation by finite-size artifacts. This result is perhaps related
to the microdomain spacing in the bulk phase, i.e., the range
of the competing potential βφ(r). In this case a balance
between the intensity of the attractive and repulsive parts of
the potential yields the finite-size microphases.

The particle density distribution for the modulated struc-
ture in the bulk is displayed along with the free energy
βF [ρ(z)]/AH in Fig. 4. For the bulk phase, the cluster has
periodic spacing D. The system would prefer to form the
modulated structure at the equilibrium bulk spacing D, but
it cannot do so if the separation between the walls H is
not an integral multiple of D. The periodic spacing must
be commensurate with the periodicity of modulation in the
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FIG. 4. (a) Helmholtz free energy for ρσ 3 = 0.4 and ε−1 = 0.55,
where the microdomain spacing is D ≈ 12.6σ . (b) Helmholtz free
energy for ρσ 3 = 0.25 and ε−1 = 0.65, where the microdomain
spacing is D ≈ 12.6σ . (c) Modulated structure with the bulk spacing
D ≈ 12.6σ . (d) Modulated structure with the bulk spacing D ≈
11.1σ .

particle density distribution. The periodic spacing has been
determined by the minimization of the free energy with respect
to variation in H ; i.e., ∂βF [ρ(z)]/∂H = 0. For ρσ 3 = 0.4
and ε−1 = 0.55, the microdomain spacing is D ≈ 12.6σ .
Notice here that the periodic spacing D depends on the
potential parameter ε and the bulk density ρσ 3; for example,
the microdomain spacing is D ≈ 11.1σ for ρσ 3 = 0.25 and
ε−1 = 0.65. In this case, the particle density distribution does
not exactly match as can be seen from Figs. 3(c) and 4(b). In
a confined phase, we find the density oscillation near the pore
wall and slightly a narrow liquidlike slab compared with that
of the bulk phase.

At ε−1 = 0.5, the adsorption and desorption isotherms of
a confined two-Yukawa fluid and the corresponding grand
potential β�[ρ(z)]/A are presented in Fig. 5. For the adsorp-
tion curve, there are two sudden jumps at ρσ 3 ≈ 0.048 and
ρσ 3 ≈ 0.961. The desorption curve shows two sudden drops
at ρσ 3 ≈ 0.005 and ρσ 3 ≈ 0.840, and one sudden jump at
ρσ 3 ≈ 0.295. Figure 6 shows the particle density distributions
at the cluster phase and the cluster-liquid transition points. It
should be mentioned that the cluster-liquid transition point as
well as the periodic spacing of the cluster depends on the slit
width. For example, the cluster-liquid transition point is ρσ 3 ≈
0.915 for H = 30σ . In this case, the mean densities in a slit
pore are ρ̄σ 3 ≈ 0.812 for the cluster phase and ρ̄σ 3 ≈ 0.943
for the liquid phase. For H = 40σ the cluster-liquid transition
point is ρσ 3 ≈ 0.915 and the mean densities for the cluster and
liquid phase are ρ̄σ 3 ≈ 0.714 and ρ̄σ 3 ≈ 0.934, respectively.
As can be seen from Figs. 5 and 6(a) for H = 30σ , we find

FIG. 5. The same as in Fig. 2, except for H = 30σ and ε−1 = 0.5.

a cluster with a single liquidlike slab [the dashed line in
Fig. 6(a)] at the pore middle for the desorption curve and
a cluster with a double liquidlike slab for the adsorption

FIG. 6. Particle density distributions ρ(z)σ 3 of the confined two-
Yukawa fluid (ε−1 = 0.5). (a) H = 30σ and ρσ 2 = 0.6 (the cluster
phase). (b) The cluster and the liquid phases at the cluster-liquid
transition point (H = 30σ and ρσ 2 = 0.914). The dashed and the
solid lines denote the cluster and the liquid phases, respectively.
(c) H = 40σ and ρσ 2 = 0.6 (the cluster phase). Notice that the single
liquidlike slab at the pore middle cannot be distinguishable from the
triple liquidlike slab. (d) The cluster and the liquid phases at the
cluster-liquid transition point (H = 40σ and ρσ 2 = 0.914).
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one. For H = 40σ [Fig. 6(c)], we also find a cluster with
a single liquidlike slab at the pore middle for the desorption
curve, even though we cannot see a single liquidlike slab in
Fig. 6(c); a single liquidlike slab with maximum density at
H = 20σ is almost the same as the case of the cluster at the
pore middle among the triple liquidlike slabs of an adsorption
curve. The desorption curve seems to show that there is a phase
transition from a single liquidlike slab to a multi-liquidlike slab
near ρσ 3 ≈ 0.295. However, the grand potential of Fig. 5(b)
explains that the cluster with a triple liquidlike slab is more
stable than that with a single liquidlike slab. This means that
at the fixed slit pore the system does not transform from the
single liquidlike slab to the multi-liquidlike slab. Figures 6(b)
and 6(d) show cluster and liquid structures near the equilibrium
coexistence point. The cluster exhibits a large vaporlike void
depending on the periodicity of modulation and forms an
array of parallel slabs, while the liquid state shows a layered
structure originating from the packing effect. A comparison
with Fig. 3(d) illustrates that the periodic spacing of the cluster
increases with increasing intensity of an attractive part of the
potential.

Figure 7(a) shows the mean density ρ̄σ 3, at which the
equilibrium transition occurs, as a function of the slit width
H , where ε−1 = 0.55. It is here noted that the phase diagram
has been obtained from the grand potential analysis in a slit
pore. We find the vapor, cluster, and liquid phases with the
two phase transition points as can be expected from Fig. 2.
For H > 12.7σ , the phase transitions from the vapor to the

FIG. 7. (a) Phase diagram of the confined two-Yukawa fluid
as a function of the slit width (ε−1 = 0.55). (b) Particle density
distributions of the confined two-Yukawa fluids (H = 10σ ). An inset
shows the particle density distribution at the vapor-liquid transition
point (ρσ 3 ≈ 0.05). The solid and the dashed lines denote the vapor
and the liquid phases, respectively.

cluster and from the cluster to liquid are found. However, for
the narrow slit pore (H � 12.7σ ) we observe one hysteresis
loop at a low density, which indicates a metastable region
for both the vapor and liquid phases. Notice here that the
slit width H ≈ 12.7σ , at which the phase transition from
the vapor to the liquid phases occurs, almost coincides with
the microdomain spacing in a bulk phase. This result can be
understood by considering the range of competing interactions
in a slit pore. At a narrow slit pore the attractive interaction
between molecules more strongly contributes to development
of the particle density distribution in a slit pore compared
with the repulsive interaction between molecules. Perhaps
a balance between the attractive and repulsive parts of the
potential yields the finite-sized microphases in a slit pore: the
periodic spacing must be commensurate with the periodicity
of modulation in the particle density distribution. Thus, the
vapor-liquid transition at a narrow slit pore occurs as in the
confined model fluids with purely attractive potential such as
the Lennard-Jones and hard-core Yukawa fluids. The particle
density distributions for the vapor and liquid phases are
displayed in Fig. 7(b) near the phase transition point ρσ 3 ≈
0.05, where H = 10σ . An inset shows the particle density
distribution for the mean densities at which the equilibrium
transition occurs. At a low density, a high density distribution
is found at the pore middle due to the attractive interaction
between molecules, while at a high density the packing effect
is dominant. A strong density development is found at the
slit walls with the usual oscillatory behavior around the bulk
density in the pore middle.

At ε−1 = 0.60 near the critical point ε−1 = 0.6120, the
calculated mean density ρ̄σ 3 is presented in Fig. 8(a).
Figure 8(b) shows the particle density distributions for differ-
ent mean densities along with those of the cluster and liquid
phases near the equilibrium transition point ρσ 3 ≈ 0.718,
where H = 20σ . The cluster exhibits a large vaporlike void
in the pore middle. The density within the cluster is close
to that of the uniform liquid and the density in the voids is
low, close to that of the uniform vapor. The system forms
an array of parallel slabs. At high densities, the system still
forms a regular array of bubbles, i.e., within the bubbles the
density of particle is low, but in between the bubbles the local
density is that of the liquid. One interesting thing is that, for
H � 11.8σ , we only find one hysteresis loop for the adsorption
and desorption curves, which indicates a metastable region for
both the cluster and the liquid phases: the phase transition
from a cluster with a large vaporlike void to a liquid [see the
inset in Fig. 8(b)]. In this case, the repulsive interaction of
the potential dominantly contributes to develop the particle
density distribution in the slit pore. The vapor-liquid transition
does not occur, as can be expected from Fig. 8(a). We find
the cluster-liquid transition for the slit width greater than
the periodic spacing of the cluster. However, the hysteresis
loop becomes much narrower with decreasing slit width and
eventually disappears at H ≈ 11.8σ . In this case, we only find
the liquid phase since the cluster is not commensurate with the
periodicity of modulation in the particle density distribution.
This result supports the conclusion that the confining wall
effects as well as the intensity of the competing interaction
exert a strong influence on the equilibrium structure and phase
behaviors of the system in a slit pore.
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FIG. 8. (a) Phase diagram of the confined two-Yukawa fluid as a
function of the slit width (ε−1 = 0.60). (b) Particle density distribu-
tions (H = 20σ ). An inset shows the particle density distribution at
the cluster-liquid transition point (ρσ 3 ≈ 0.718). The dashed and the
solid lines denote the cluster and the liquid phases, respectively.

Figure 9 depicts the phase diagrams of the two-Yukawa
fluids within a slit pore with H = 10σ and H = 20σ . At H =
10σ , as the value of ε−1 is increased, the first-order transition
line between the vapor and the liquid phases terminates at a
critical point. At the critical point in the silt pore, the amplitude
and density are ε−1

c ≈ 0.578 and ρcσ
3 ≈ 0.146, respectively.

Notice here that, at the bulk critical point, the amplitude and
density are ε−1

c = 0.6120 and ρcσ
3 = 0.3567. This means that

the critical point within a slit pore is shifted toward a high
amplitude compared with that of the bulk one. The coexistence
curves for the confined phase diagram are contained within the
corresponding bulk liquid-vapor coexistence curve. The reason
is that close to the critical point the correlation length increases,
thus in one direction perpendicular to the walls the correlations
are restricted due to the confinement, which results in weaker
tendency toward phase separation. In this case, the cluster
phase does not occur, as can be expected from Fig. 7, since
the slit width is smaller than the periodic spacing required to
form the cluster in a slit pore. At H = 20σ , as the value of ε−1

is increased, the coexistence lines meet at a particular value.
This meeting point is the tricritical point. Above the tricritical
points, the phase transition is second-order. The phase diagram
exhibits two tricritical points, joined to one another by the line
of the second-order transition. The low tricritical point is at
ε−1
tc ≈ 0.604 and ρtcσ

3 ≈ 0.133, and the higher density one is
at ε−1

tc ≈ 0.678 and ρtcσ
3 ≈ 0.607. The phase diagram shows

that the cluster phase is more stable than the vapor one even

FIG. 9. Phase diagram of the confined two-Yukawa fluid. (a) H =
10σ . The dot-dashed and dashed lines denote the λline and binodal
curve in the bulk phase, respectively. (b) H = 20σ .

for the higher amplitude. Before closing this section, we point
out that we did not calculate the λ line corresponding to the
second-order transition in a slit pore. Perhaps the cluster phase
for the confined phase diagram is contained within the bulk
λ line, and the λ line in a slit pore meets at two tricritical
points as can be expected from the coexistence curves for the
confined phase diagram [Fig. 9(b)]. This is another problem to
overcome presently. On the other hand, it is expected that, in
the case of a wide slit pore, the λ line is comparable with that
of the bulk phase.

IV. CONCLUDING REMARKS

In this paper, we have employed the density functional
perturbation theory, which is based both on the MFMT for
hard spheres and on the FMSA for competing interactions,
to investigate the structure and phase behaviors of competing
fluids in a slit pore. The calculated results suggest that the
confinement effect as well as the intensity of the compet-
ing interactions plays an important role in determining the
equilibrium structure and phase behaviors in a slit pore. The
cluster is commensurate with the periodicity of modulation in
the particle density distribution. Therefore, the vapor-cluster
and cluster-liquid transitions do not occur at a slit pore smaller
than the periodic spacing of the cluster. For high amplitude, we
only find one hysteresis loop for the adsorption and desorption
curves, which indicates a metastable region for both the cluster
and the liquid phases. In this case, only the phase transition
from a cluster with a large vaporlike void to a liquid is found.
The hysteresis loop becomes more narrow with increasing
amplitude and eventually disappears at a particular slit width.
In this case, we only find the liquid phase.
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Note that Lutsko et al. [27] and Kim et al. [28] have recently
shown that, for a value of the chemical potential corresponding
to a stable liquid phase in the bulk system and a metastable
vapor phase, fluid systems such as a Lennard-Jones fluid and
a polymer chain fluid with a short-range attractive interaction
in a hard spherical pore undergo a phase transition whereby
the vapor is the stable phase at small volumes and the liquid
is the stable phase at large volumes. This is an inverse of the
expected behaviors in a canonical ensemble, where we expect
a condensed phase to occur at low volume and a gas at high
volume. However, we cannot find an inverse of the expected
liquid-vapor transition in a slit pore, which demonstrates the
surface-induced liquid-vapor transition. Here, one interesting
thing is the relationship between the inverse liquid-vapor
transition and the cluster-liquid transition, which depends
on the repulsive interaction of the potential: the repulsive
interaction of the potential reduces the inverse liquid-vapor
transition in a slit pore. Thus, the vapor-cluster transition
occurs prior to the vapor-liquid one as the pore size is reduced.
On the other hand, in this paper we have only solved for
the one-dimensional particle density distribution and phase,
assuming invariance along the silt wall, which is bound to
miss, for instance, spherical and cylindrical clusters that have
been identified in the bulk phase. Thus, the phase diagrams
derived in this paper are partially incomplete. To overcome

this problem, we need the three-dimensional particle density
distributions. We can estimate the evidence for the existence
of the first-order phase transition between the spherical shaped
and cylindrical shaped voids, which were reported by Archer
and Wilding [7] through a computer simulation, from the grand
potential of the competing systems in a slit pore. Furthermore,
we did not calculate the λ line of the competing systems in a
slit pore. This is another problem to overcome presently. It is
very interesting to study formation of a droplet of the liquid
phase from the metastable gas phase of two-Yukawa systems.
In this case, a very weak long-range repulsive potential has a
profound effect on nucleation [29]. Finally, the present theory
suggests that the application of the FMSA theory for studying
the phase behaviors of competing fluids should be restricted
to spherical cavities [27] and to chain polymer fluids with the
competing interaction in a slit pore [28]. We will investigate
these problems in a near-future study.
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