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We study the statistics of heat transferred in a given time interval tM , through a finite harmonic chain, called the
center, which is connected to two heat baths, the left (L) and the right (R), that are maintained at two temperatures.
The center atoms are driven by external time-dependent forces. We calculate the cumulant generating function
(CGF) for the heat transferred out of the left lead, QL, based on the two-time quantum measurement concept
and using the nonequilibrium Green’s function method. The CGF can be concisely expressed in terms of Green’s
functions of the center and an argument-shifted self-energy of the lead. The expression of the CGF is valid in
both transient and steady-state regimes. We consider three initial conditions for the density operator and show
numerically, for a one-atom junction, how their transient behaviors differ from each other but, finally, approach
the same steady state, independent of the initial distributions. We also derive the CGF for the joint probability
distribution P (QL,QR), and discuss the correlations between QL and QR . We calculate the CGF for total entropy
production in the reservoirs. In the steady state we explicitly show that the CGFs obey steady-state fluctuation
theorems. We obtain classical results by taking h̄ → 0. We also apply our method to the counting of the electron
number and electron energy, for which the associated self-energy is obtained from the usual lead self-energy by
multiplying a phase and shifting the contour time, respectively.
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I. INTRODUCTION

Nonequilibrium systems are common in nature because
they are, in general, subject to thermal gradients or chemical
potential gradients or may be triggered by nonconservative
forces. Heat transport is one such example of nonequilibrium
systems where the heat carriers could be electrons, phonons,
magnons, etc. To study heat transport in phononic systems,
one considers a finite junction part, which can be an insulator,
connected to two heat baths that are maintained at different
temperatures. In the past decade, the main focus was on the
calculation of the steady-state heat current or heat flux flowing
through the junction part from the leads [1–10]. For diffusive
systems, the answer is given by Fourier’s law [11–13], which
is true only in the linear response regime, i.e., when the
temperature difference between the baths is small. However,
for harmonic or ballistic systems, the heat current is given
by a Landauer-like formula [3,7,10] which was first derived
for electronic transport. The Landauer formula, contrary to
Fourier’s law, is true for arbitrary temperature differences
between the leads. No such explicit expression for current
is known for transient states. Recently, several works [14,15]
have tried to answer what happens to current in the transient
regime. This is an important question from both the theoretical
and the experimental points of view.

Another aspect in phonon transport is on thermal devices
and on controlling heat flow [16]. With the advent of new
technology, it is now possible to study transport problems and
observe a single mode of vibration in small systems with few
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degrees of freedom [17]. These systems show strong thermal
fluctuations which can lead to instantaneous heat transfer from
colder to hotter lead and hence could be a violation of the
second law of thermodynamics. It is therefore necessary to talk
about the statistical distribution of heat flux for these systems.
In the electronic literature the distribution P (QL) of the charge
QL, flowing from the left lead to the junction part, was
answered by calculating the corresponding generating function
(GF), Z(ξ ) = 〈eiξQL〉, and is given by the celebrated Levitov-
Lesovik formula [18–20]. This methodology is also known as
the full counting statistics [21–30] in the field of electronic
transport. Experimentally the electron counting statistics has
been measured in quantum-dot systems [31,32]. However, few
experiments have been done on phonons [33]. In the phononic
case Saito and Dhar [34] gave an explicit expression of the
cumulant GF (CGF). Ren et al. gave results for two-level
systems [35,36]. Full counting statistics of energy fluctuations
in a driven quantum resonator was studied by Clerk [37]. The
main focus in these papers was on the long-time limit and
steady-state fluctuation theorem (SSFT) [38–43]. Using the
nonequilibrium Green’s function (NEGF) method [44,45] and
two-time measurement [41,42,46,47] concept, Wang et al. [40]
gave an explicit expression for the CGF which is valid for both
transient and steady-state regimes.

In this paper, we extend our previous work in Ref. [40] and
derive the CGF in a more general scenario, i.e., in the presence
of both a temperature difference and time-dependent driving
forces, for three different initial conditions of the density
operator [Eqs. (45) and (61)]. We analyze the cumulants of
heat QL by doing numerical simulations and study the effects
on both transient and steady-state regimes for these initial
conditions. We also derive the CGF for the joint probability
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distribution of left- and right-lead heat P (QL,QR), which
helps us to obtain the correlations between QL and QR . By
calculating CGF for P (QL,QR) we can immediately obtain
the CGF for the total entropy production in the reservoirs. We
present analytical expressions for the CGFs in the steady state
and discuss the SSFT. Our method can be easily generalized
for multiple heat baths and also in higher dimensions. Our
derivation is also formally valid for a finite size of the heat baths
and hence it is possible to study its effects on the cumulants and
also on the fluctuation theorem, which has recently received
much attention [48,49]. We do not, however, discuss this
effect here and consider the semi-infinite limit of the heat
baths, which is important for achieving irreversibility. We also
discuss another definition of CGF due to Nazarov [Eq. (10)]
and derive the corresponding long-time limit [Eq. (116)]. We
find that, using this definition, the GF does not obey the
Gallavotti-Cohen (GC) fluctuation symmetry, however, the
first two cumulants of heat are the same.

The plan of the paper is as follows. We start in Sec. II by
introducing our model. Then in Sec. III we define current and
corresponding quantum heat operator, followed by the CGF
for QL using the two-time measurement concept in Sec. IV.
In Sec. V we derive the CGF for a projected initial condition
[defined in Eq. (15)] using Feynman’s path integral method,
and in Sec. VI we use Feynman’s diagrammatic technique to
derive the CGF for the product initial state. The expressions
for the CGFs are true for any transient time and also for
any finite size of the leads. We show analytically that in the
long-time limit the CGFs are the same independent of the
initial distributions and also discuss the fluctuation theorems
in Sec. VII. In Sec. VIII we present numerical results for the
one-dimensional (1D) linear chain model, connected by Rubin
heat baths, for three different initial conditions. Then in Sec. IX
we obtain the CGF for the joint probability distribution of
heat transferred P (QL,QR) and discuss correlations and total
entropy production in the leads. In Sec. X we give the long-time
limit expression for the driven part of the full CGF. In Sec. XI
we obtain the classical limit for the GFs. In Sec. XII we discuss
Nazarov’s CGF. Finally, we conclude with a short discussion
in Sec. XIII. The appendixes give some details of a technical
nature. In particular, the electron system of a tight-binding
model is treated using our method.

II. THE MODEL

Our model consists of a finite harmonic junction of arbitrary
dimension, which we denote C, coupled to two heat baths, the
left (L) and the right (R), kept at two different temperatures,
TL and TR , respectively. To model the heat baths, we consider
an infinite collection of coupled harmonic oscillators. We take
the three systems to be decoupled initially and to be described
by the Hamiltonians,

Hα = 1
2pT

α pα + 1
2uT

α Kαuα, α = L,C,R, (1)

for the left, right, and finite central region. Masses are absorbed
by defining u = √

m x; uα and pα are column vectors of
coordinates and momenta. Kα is the spring constant matrix
of region α. Couplings of the center region with the leads are
turned on either adiabatically from time t = −∞, or switched
on abruptly at t = 0. The interaction Hamiltonian takes the

form

Hint = uT
L V LC uC + uT

R V RC uC. (2)

For t > 0, an external time-dependent force is applied to the
center atoms, which is of the form

VC(t) = −f T (t) uC, (3)

where f (t) is the time-dependent force vector. The driving
force couples only with the position operators of the center.
The force can be in the form of an electromagnetic field.
Coupling of this form helps us to obtain an analytical solution
for the CGF of heat flux. The full Hamiltonian for t > 0 (in
the Schrödinger picture) is

H(t) = H(0−) + VC(t) = HC + HL + HR + Hint + VC(t).

(4)

In the next section we define the current operator and the
corresponding heat operator based on this Hamiltonian.

III. DEFINITION OF CURRENT AND HEAT OPERATORS

The current operator I depends on where we want to
measure the current. Here we consider the current flowing
from the left lead to the center system and IL is defined (in the
Heisenberg picture) as

IL(t) = −dHH
L (t)

dt
= i

h̄

[
HH

L (t),HH (t)
] = pT

L (t) V LC uC(t),

(5)

where HH (t) is the (time-dependent) Hamiltonian in the
Heisenberg picture at time t . The corresponding heat operator
can be written as

QL(t) =
∫ t

0
IL(t ′) dt ′ = HL(0) − HH

L (t), (6)

where HL[= HL(0)] is the Schrödinger operator of the free
left lead and

HH
L (t) = U(0,t)HL U(t,0), (7)

and U(t,t ′) is the evolution operator corresponding to the full
Hamiltonian H(t) with the formal solution (assuming t � t ′)

U(t,t ′) = T exp

{
− i

h̄

∫ t

t ′
H(t̄) dt̄

}
, (8)

where T is the time-ordering operator and time increases
from right to left. Also, U†(t,t ′) = U(t ′,t). Note that Q of
noncalligraphic font is a classical variable.

In the following section we derive the CGF based on this
definition of heat operator and using a two-time measurement
scheme.

IV. DEFINITION OF THE GENERATING FUNCTION FOR
THE HEAT OPERATOR

Our primary interest here is to calculate the moments or
cumulants of the heat energy transferred in a given time
interval tM . Hence, it is advantageous to calculate the GF
instead of calculating moments directly. Correspondingly, the
probability distribution can be obtained by doing an inverse
Fourier transform of the GF. Since QL is a quantum operator,
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there are subtleties as to how exactly the GF should be
defined. Naively, we may use 〈eiξQL〉. But this definition fails
the fundamental requirement of positive definiteness of the
probability distribution.

Here we give two different definitions that are used to
calculate the GF for such problem. The first definition comes
from the idea of two-time measurements, and based on this
concept the GF can be written down as

Z(ξ ) = 〈
eiξHL e−iξHH

L (t)
〉′
, (9)

where the meaning of 〈· · ·〉′ is discussed just after Eq. (15).
The second definition of the GF is

Z1(ξ ) = 〈T̄ eiξQL/2T eiξQL/2〉, (10)

where T̄ is the anti-time order operator. The time (or antitime)
order is meant to apply to the integrand when the exponential
is expanded and QL is expressed as an integral over IL as in
Eq. (6). This definition is used by Nazarov et al. [21,22] mostly
for electronic transport. In the last section we show how this
GF can be derived starting from Z(ξ ) given in Eq. (9) under a
particular approximation and also present the long-time limit
expression for Z1(ξ ) for the harmonic model.

In the following we derive Eq. (9) based on a two-time
measurement concept. Our derivation is similar to Ref. [41]
except that the measured operator in this case is HL. Readers
who are familiar with two-time measurement may skip this
section and start from Sec. IV B.

A. Two-time quantum measurement

The heat operator in Eq. (6) depends on the left-lead
Hamiltonian HL at time 0 and t . The concept of two-time
measurement implies the measurement of a certain operator
(in this case HL) at two different times. Here the measurement
is in the sense of quantum measurement of von Neumann [50].

Let us first assume that the full system is in a pure state |�0〉
at t = 0. We want to do measurement of the energy associated
with the operator HL. According to quantum mechanics, the
result of a measurement can only be an eigenvalue of the
(Schrödinger) operator HL and the wave function collapses
into an eigenstate of HL. Let

HL|φa〉 = a|φa〉, �a = |φa〉〈φa|, (11)

where �a is the projector into the state |φa〉 satisfying
�2

a = �a , and
∑

a �a = 1. We assume that the eigenvalues
are discrete (this is always so if the lattice system is finite).
After the measurement at time t = 0, the wave function is
proportional to �a|�0〉 if the result of the measurement is
the energy a and the probability of such an event happening
is 〈�0|�2

a|�0〉. Let us propagate this state to time t and do
a second measurement of the lead energy, finding that the
result is b. The wave function now becomes proportional to
�b U(t,0) �a |�0〉. The joint probability of getting a at time 0
and b at time t is the square norm (inner product) of the above
(unnormalized) state.

If the initial state is in a mixed state, we add up the initial
probability classically, i.e., if

ρ(0) =
∑

k

wk

∣∣�k
0

〉〈
�k

0

∣∣, wk > 0,
∑

k

wk = 1, (12)

the joint probability distribution of two-time measurement
output is

P (b,a) =
∑

k

wk

〈
�k

0

∣∣ �a U(0,t) �b U(t,0) �a

∣∣�k
0

〉

= Tr[�a ρ(0) �a U(0,t) �b U(t,0)]. (13)

By definition, we see that P (b,a) is a proper probability in the
sense that P (b,a) � 0 and

∑
a,b P (b,a) = 1. Then the GF for

QL = a − b is defined as

Z(ξ ) = 〈eiξ (a−b)〉 =
∑
a,b

eiξ (a−b)P (b,a)

=
∑
a,b

eiξ (a−b)Tr[�a ρ(0) �a U(0,t) �b U(t,0)]

= 〈
eiξHL e−iξHH

L (t)
〉′

= 〈
eiξHL/2 e−iξHH

L (t) eiξHL/2
〉′
, (14)

where the prime indicates that the average is with respect to

ρ ′(0) =
∑

a

�a ρ(0)�a, (15)

which we call the projected density matrix [50].
If the initial state at t = 0 is a product state, i.e., ρ(0) =

ρ(−∞) = ρL ⊗ ρC ⊗ ρR , where the left, center, and right
density matrices are in equilibrium distributions correspond-
ing to the respective temperatures—ρα = e−βαHα /Tr[e−βαHα ]
for α = L,C,R and βα = 1/(kBTα)—then the initial pro-
jection operators �a do not play any role and 〈. . .〉′ =
Tr[ρ(−∞) · · ·] = 〈. . .〉.

B. Initial conditions

Here we derive the CGF for three initial conditions.
(1) The product initial state ρ(−∞); the coupling between

the leads and the center is suddenly switched on at t = 0 and
the system is let to evolve for a finite time tM by the dynamics
determined by H.

(2) The steady state as the initial state, i.e., ρ(0), which
we can obtain, starting with the decoupled Hamiltonians at
t = −∞; the couplings between the center region and the
leads are switched on adiabatically up to time t = 0.

(3) The projected density matrix ρ ′(0) considering ρ(0) as
the steady state, i.e., taking the effects of measurements into
account.

In the following sections we show analytically that the
CGFs corresponding to different initial conditions reach
the unique steady state in the long-time limit, hence are
independent of the initial distributions. However, the transient
behavior depends significantly on the initial conditions and
also on the measurements.

V. CALCULATION FOR Z(ξ ) USING THE FEYNMAN PATH
INTEGRAL FORMALISM FOR INITIAL

STATES ρ(0) AND ρ ′(0)

A. Removing the projection �a at t = 0

The projection by �a at t = 0 in Eq. (15) creates a problem
for formulation in path integrals. We can remove this by
putting it into part of an evolution of HL, just like the
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factor associated with the GF variable ξ , but we must pay
a price—the introduction of another integration variable, λ.
The key observation is that we can represent the projector by
the Dirac δ function

�a ∝ δ(a − HL) =
∫ ∞

−∞

dλ

2π
e−iλ(a−HL). (16)

For this to make sense, we assume that the spectrum of the
energy of HL is continuous, which is valid if we take the large
size limit first. Identifying �a as δ(a − HL) with a continuous
variable a introduces a constant proportional to the Dirac δ(0)
to ρ ′(0), since �a is now normalized as �a�b = δ(a − b)�a .
However, this constant can be easily fixed by the condition
Z(0) = 1. So using �a = δ(a − HL) will not cause difficulty.

Substituting the Fourier integral representation into the
expression for ρ ′, we obtain

ρ ′(0) ∝
∫

da �a ρ(0)�a (17)

=
∫

dλ

2π
eiλHLρ(0)e−iλHL . (18)

Using the symmetric form of Z , Eq. (14), we have

Z(ξ ) ∝
∫

dλ

2π
Tr{ρ(0)Uξ/2−λ(0,t)U−ξ/2−λ(t,0)}

=
∫

dλ

2π
Z(ξ,λ), (19)

whereUx(t,t ′) is the modified evolution operator of an effective
Hamiltonian given by

Hx(t) = eixHLH(t)e−ixHL, (20)

where x is a real parameter which, in this case, is ξ/2 − λ or
−ξ/2 − λ. Finally, Ux(t,t ′) is given by (t � t ′)

Ux(t,t ′) = eixHLU(t,t ′)e−ixHL

=
∞∑

n=0

(
− i

h̄

)n ∫ t

t ′
dt1

∫ t1

t ′
dt2 · · ·

∫ tn−1

t ′
dtn

×eixHLH(t1)H(t2) · · ·H(tn)e−ixHL

= T exp

{
− i

h̄

∫ t

t ′
Hx(t ′)dt ′

}
. (21)

It is important to note that substituting λ = 0 in Z(ξ,λ) gives
us the result for the initial density matrix ρ(0).

Now we give an explicit expression of the modified
Hamiltonian Hx which helps us to calculate the CGF using
the path integral.

B. Expression for the effective Hamiltonian Hx

The modified Hamiltonian is the central quantity for
calculating the CGF. It is the Heisenberg evolution of the full
Hamiltonian H(t) (in the Schrödinger picture) with respect to
HL. Since HL commutes with every term H̃ where H(t) =
H̃ + uT

LV LCuC , except the coupling term uT
LV LCuC , we can

write

Hx(t) = eixHLH(t)e−ixHL

= eixHL
(
H̃ + uT

LV LCuC

)
e−ixHL

= H(t) + (uL(h̄x) − uL)T V LCuC, (22)

where uL(h̄x) = eixHLuLe−ixHL is the free left-lead
Heisenberg evolution to time t = h̄x. uL(h̄x) can be obtained
explicitly as

uL(h̄x) = cos(
√

KLh̄x)uL + 1√
KL

sin(
√

KLh̄x)pL. (23)

The matrix
√

KL is well defined, as the matrix KL is positive
definite. uL and pL are the initial values at t = 0. The final
expression for Hx(t) is

Hx(t) = H(t) + [
uT

LC(x) + pT
LS(x)

]
uC, (24)

where

C(x) = (cos(h̄x
√

KL) − I )V LC, (25)

S(x) = (1/
√

KL) sin(h̄x
√

KL)V LC. (26)

The effective Hamiltonian now has two additional terms with
respect to the full H(t). The term uT

LC(x)uC is like the
harmonic coupling term which modifies the coupling matrix
V LC .

In the following we calculate the two-parameter GF Z(ξ,λ)
given in Eq. (19).

C. Expression for Z(ξ,λ)

The expression for Z(ξ,λ) can be written down on the
contour as (see Fig. 1)

Z(ξ,λ) = Tr[ρ(0)Tce
− i

h̄

∫
C
Hx (τ )dτ ], (27)

where Tc is the contour-ordered operator, which orders
operators according to their contour time argument; an earlier
contour time places an operator to the right. The contour
function x(τ ) is defined as 0 whenever t < 0 or t > tM , and
when 0 < t < tM , i.e., within the measurement time interval,
for the upper branch of the contour x+(t) = −ξ/2 − λ, and
for the lower branch x−(t) = ξ/2 − λ.

For the moment, let us forget about the other lead and
concentrate only on the left lead and center. The effect of
the other lead simply modifies the self-energy of the leads
additively, according to Feynman and Vernon [51]. Using the

t
0

t
M

FIG. 1. Complex-time contour in the Keldysh formalism. The
path of the contour begins at time t0, goes to time tM , and then goes
back to time t = t0. τ and τ ′ are complex-time variables along the
contour. t0 = −∞ and 0 correspond to Keldysh contours K and C,
respectively.
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Feynman path integral technique we can write

Z(ξ,λ) =
∫

D[uC]D[uL]ρ(−∞)e(i/h̄)
∫
K

dτ (LC+LL+LLC ).

(28)

Note that in Eq. (27), the contour C is from 0 to tM and back,
while that in Eq. (28) is on the Keldysh contour K , that is, from
−∞ to tM and back, to take into account adiabatic switch-on,
replacing ρ(0) with ρ(−∞). Their relation is

ρ(0) = U(0, − ∞)ρ(−∞)U(−∞,0). (29)

We can identify the Lagrangians as

LL = 1
2 u̇2

L − 1
2uT

LKLuL,

LC = 1
2 u̇2

C + f T uC − 1
2uT

C(KC − ST S)uC, (30)

LLC = −u̇T
LSuC − uT

L(V LC + C)uC.

For notational simplicity, we have dropped the argument τ . The
vector f or matrices C and S are parametrically dependent on
the contour time τ . They are 0 except on the interval 0 < t <

tM . f is the same on the upper and lower branches, while C
and S take different values depending on x(τ ).

Now the lead part can be integrated out by performing the
Gaussian integral [51]. To find exactly what it is, we convert
the path integral back to the interaction picture (with respect to
HL) operator form and evaluate the expression by the standard
perturbative expansion. The only difference is that now the
coupling with the center involves both uL and u̇L. The result
for the influence functional is given by [52]

IL[uC(τ )] ≡
∫

D[uL]ρL(−∞)e
i
h̄

∫
dτ (LL+LLC )

= Tr

[
e−βLHL

ZL

Tce
− i

h̄

∫
dτVx

I (τ )

]

= e− i
2h̄

∫
dτ

∫
dτ ′uT

C (τ )�x (τ,τ ′)uC (τ ′). (31)

In the influence functional, the contour function uC(τ ) is
not a dynamical variable but a parametric function. Vx

I (τ ) is
the interaction picture operator with respect to the Hamiltonian
HL and is given by

Vx
I (τ ) = pT

LSuC + uT
L(V LC + C)uC + 1

2uT
CST SuC

= uT
L(τ + h̄x(τ ))V LCuC + 1

2uT
CST SuC. (32)

The important influence functional self-energy on the
contour is given by

�x(τ,τ ′) = 
A
L (τ,τ ′) + 
L(τ,τ ′) + ST S δ(τ,τ ′), (33)


A
L (τ,τ ′) + 
L(τ,τ ′) = V CLgL(τ + h̄x(τ ),τ ′ + h̄x(τ ′))V LC

= 
L(τ + h̄x(τ ),τ ′ + h̄x(τ ′)), (34)

where we obtain a shifted self-energy 
L(τ + h̄x(τ ),τ ′ +
h̄x(τ ′)), which is the usual self-energy of the lead in contour
time with arguments shifted by h̄x(τ ) and h̄x(τ ′). We define
the self-energy 
A

L as the difference between the shifted
self-energy and the usual one 
L(τ,τ ′). 
A

L turns out to be
a central quantity for this problem, as we show that Z(ξ ) can

be concisely expressed in terms of the center Green’s function
G0 and 
A

L .
Substituting the explicit expression for the influence func-

tionals of both the left and the right leads to the path integral
expression given in Eq. (28), we have

Z(ξ,λ) =
∫

D[uC]ρC(−∞)e(i/h̄)
∫

dτLC IL[uC]IR[uC]

=
∫

D[uC]ρC(−∞)e
i
h̄
Seff , (35)

where the effective action is given by

Seff =
∫

dτ

[
1

2
u̇2

C − 1

2
uT

CKCuC + f T uC

]

− 1

2

∫
dτ

∫
dτ ′uT

C(τ )(
(τ,τ ′) + 
A
L (τ,τ ′))uC(τ ′), (36)

where 
 = 
L + 
R , taking into account the effect of both
leads. The ST S term in IL[uC] cancels exactly with the one
in LC . We can perform an integration by part on the u̇2 term,
assuming that the surface term does not matter (since it is at
t = −∞), we can write the expression in a standard quadratic
form,

Seff = 1

2

∫
dτ

∫
dτ ′uT

C(τ )D(τ,τ ′)uC(τ ′)

+
∫

f T (τ )uC(τ )dτ. (37)

D(τ,τ ′) is a differential operator and is given by

D(τ,τ ′) = −I
∂2

∂τ 2
δ(τ,τ ′) − KCδ(τ,τ ′)

− 
(τ,τ ′) − 
A
L (τ,τ ′)

= D0(τ,τ ′) − 
A
L (τ,τ ′). (38)

The above equation defines the Dyson equation on Keldysh
contour. The GF is obtained by doing another Gaussian
integration and is of the following form:

Z ∝ det(D)−1/2e− i
2h̄ f T D−1f . (39)

(The meaning of the determinant is explained in Appendix C.)
We define the Green’s function G and G0 by DG = 1 and
D0G0 = 1, or more precisely,∫

D(τ,τ ′′)G(τ ′′,τ ′)dτ ′′ = Iδ(τ,τ ′), (40)

and similarly for G0. G can be written in terms of G0 in the
following Dyson equation form:

G(τ,τ ′) = G0(τ,τ ′)

+
∫ ∫

dτ1dτ2G0(τ,τ1)
A
L (τ1,τ2)G(τ2,τ

′). (41)

We view the differential operator (integral operator) D and
D−1 as matrices that are indexed by space j and contour
time τ . f is a column vector. The exponential factor term
can also be written as a trace, f T D−1f = Tr(j,τ )(Gff T ). We
can fix the proportionality constant by noting that Z(ξ =
0,λ = 0) = 1. Since when ξ = 0, λ = 0, we have x = 0
and thus 
A

L (τ,τ ′) = 
L(τ + h̄x,τ ′ + h̄x ′) − 
L(τ,τ ′) = 0,
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so D = D0. The properly normalized GF is

Z(ξ,λ) = det
(
D−1

0 D
)−1/2

e− i
2h̄ f T D−1f . (42)

We do not need to do anything for the exponential factor for
the following reason. We note that

f T G0f =
∫ ∫

dτdτ ′f (τ )T G0(τ,τ ′)f (τ ′)

=
∑
σ,σ ′

∫ ∫
σdt σ ′dt ′f (t)T Gσσ ′

0 (t,t ′)f (t ′). (43)

Since the driven force f does not depend on the branch indices,
i.e., f +(t) = f −(t), we can take the summation inside and
obtain ∑

σσ ′
σσ ′Gσσ ′

0 = Gt
0 + Gt̄

0 − G>
0 − G<

0 = 0. (44)

Finally, making use of the formulas for operators or
matrices det(M) = eTr ln M and ln(1 − y) = −∑∞

k=1
yk

k
, we

can write the CGF in terms of 
A
L for the projected initial

condition case as

lnZ(ξ ) = lim
λ→∞

lnZ(ξ,λ)

= lim
λ→∞

{
− 1

2
Trj,τ ln

(
1 − G0


A
L

) − i

2h̄
Trj,τ (Gff T )

}

= lim
λ→∞

∞∑
n=1

1

2n
Tr(j,τ )

[(
G0


A
L

)n] − i

2h̄
f T Gf

= 1

2
Tr(j,τ )

(
G0


A
L

) + 1

4
Tr(j,τ )

(
G0


A
LG0


A
L

) + · · ·

− i

2h̄
f T G0


AG0f + · · · . (45)

This expression for CGF is valid for any transient time tM
present in the self-energy 
A

L and is the starting point for the
calculation in transient regime. The notation Tr(j,τ ) means trace
both in space index j and contour time τ (see Appendix C).
In order to obtain Z(ξ ) from Z(ξ,λ) we have to take the limit
λ → ∞ because Z(ξ,λ) approaches a constant as |λ| → ∞,
and hence the value of the integral is dominated by the value
at infinity. Since 
A

L (τ,τ ′) = 0 for ξ = 0 we have the correct
normalization Z(0) = 1.

Similarly, for the steady-state initial condition ρ(0), the
CGF is given by

lnZ(ξ ) = lim
λ→0

lnZ(ξ,λ). (46)

The difference in this two cases is in the matrix 
A
L .

Similar relations also exist if we want to calculate the CGF
for the right-lead heat operator QR . In this case one has to do
two-time measurement on the right lead corresponding to the
Hamiltonian HR . The final formula for the CGF remains the
same except 
A

L should be replaced with 
A
R .

Now in order to calculate the cumulants 〈〈Qn
α〉〉 with α =

L,R, we need to go to the real time using Langreth’s rule [45].
In this case, it is more convenient to work with a Keldysh
rotation (see Appendix C) for the contour functions while
keeping Tr(ABC . . .D) invariant. The effect of the Keldysh

rotation is to change any given matrix Dσσ ′
(t,t ′), with σ,σ ′ =

± for branch indices, to

D̆ =
(
Dr DK

DK̄ Da

)

= 1

2

(
Dt − D< + D> − Dt̄ , Dt + Dt̄ + D< + D>

Dt + Dt̄ − D< − D>, D< − Dt̄ + Dt − D>

)
.

(47)

In this case we define the quantities Dr , Da , DK , and DK̄ as
above. In particular, DK �= D< + D>, as one would usually
think it is.

Using the above definition for the center Green’s function
G0, we get

Ğ0 =
(

Gr
0 GK

0
0 Ga

0

)
. (48)

The GK̄
0 component is 0 due to the standard relation among

Green’s functions. But the K̄ components are not 0 for 
A
L and

G, as we compute later.
It is useful computationally to work in Fourier space even

if there is no time-translational invariance. We define the two-
frequency Fourier transform by

Ă[ω,ω′] =
∫ +∞

−∞
dt

∫ +∞

−∞
dt ′Ă(t,t ′)ei(ωt+ω′t ′). (49)

Since Ğ0 is time translationally invariant, it is “diagonal’:

Ğ0[ω,ω′] = 2πδ(ω + ω′)Ğ0[ω]. (50)

(The expressions for different components of Ğ0[ω] and 
̆[ω]
are given in Appendix A.) Using Ğ0[ω], we can save one
integration due to the δ function and, finally, have

lnZ(ξ ) = − 1
2 Trj,σ,ω ln[1 − Ğ0[ω]
̆A

L [ω,ω′]]

− i

2h̄
Trj,σ,ω[Ğ[ω,ω′] F̆[ω′,ω]], (51)

where Ğ0[ω]
̆A
L [ω,ω′] is viewed as a matrix indexed by ω

and ω′. The trace is performed on the frequency as well as
the usual space and branch components. (The meaning of the
trace in the frequency domain is defined in Appendix C.) F̆ is
given by

F̆[ω,ω′] =
(

0 2f [ω]f [ω′]T
0 0

)
. (52)

In the next section we derive the CGF for the product initial
condition using the Feynman diagrammatic technique.

VI. CALCULATION FOR Z(ξ ) FOR THE PRODUCT
INITIAL STATE ρ(−∞) USING THE FEYNMAN

DIAGRAMMATIC TECHNIQUE

In this section, we derive the CGF for the product initial
state; i.e., the density matrix at time t = 0 is given by
ρ(−∞) = ρC ⊗ ρL ⊗ ρR . Since this density matrix commutes
with the projection operator �a , the initial projection does not
play any role and hence the projection parameter λ is absent.
Working in the interaction picture with respect to the decoupled
Hamiltonian H(−∞) = ∑

α=L,C,R Hα , the interaction part of
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the Hamiltonian on the contour C = [0,tM ] is

Vx
I (τ ) = −f T (τ )uC(τ ) + uR(τ )V RCuC(τ )

+ uL(τ + h̄x(τ ))V LCuC(τ ). (53)

In the last term for uL, the argument is shifted by h̄x, where
x+(t) = −ξ/2, x−(t) = ξ/2 for 0 < t < tM , which is similar
to the result with λ = 0.

The density matrix remains unaffected by the transfor-
mation to the interaction picture, because it commutes with
H(−∞). The GF can now be written as

Z(ξ ) = Tr
[
ρ(−∞)Tc e− i

h̄

∫
C
Vx

I (τ ) dτ
]
. (54)

Expanding the exponential, we generate various terms of
the product of uα . These terms can be decomposed in
pairs according to Wick’s theorem [45]. Since the system is
decoupled, each type of u comes in an even number of times for
a nonvanishing contribution because 〈uC〉 = 0, 〈uCuL〉 = 0,
and we know that

− i

h̄
〈TCuα(τ )uα′(τ ′)T 〉ρ(−∞) = δα,α′gα(τ,τ ′). (55)

We collect the diagrams of all orders to sum the series. Since
VI contains only two-point couplings, the graphs are all ring
type. The combinatorial factors can be worked out as 1/(2n)
for a ring containing n vertices. We now make use of the
linked-cluster theorem [53], which says that lnZ contains only
connected graphs, and the disconnected graphs cancel exactly
when we take the logarithm. The final result can be expressed
as

lnZ(ξ ) = −1

2
Trj,τ ln[1 − gC
tot] − i

2h̄
f T Gf, (56)

where


tot = 
L(τ + h̄x,τ ′ + h̄x ′) + 
R(τ,τ ′) = 
 + 
A
L (57)

and 
 is the total self-energy due to both leads. G(τ,τ ′) obeys
the following Dyson’s equation:

G(τ,τ ′) = gC(τ,τ ′)

+
∫ ∫

dτ1dτ2gC(τ,τ1)
tot(τ1,τ2)G(τ2,τ
′).

(58)

The above expression for CGF can be written down more
explicitly, by getting rid of the vacuum diagrams. Let us define
a new type of Dyson’s equation,

G0(τ,τ ′) = gC(τ,τ ′)

+
∫

C

∫
C

dτ1dτ2 gC(τ,τ1)
(τ1,τ2)G0(τ2,τ
′),

(59)

where gC is the contour ordered Green’s function of the
isolated center. (The Green’s functions for an isolated single
harmonic oscillator is given in Appendix A.) Using this
definition we can write

1 − gC
tot = 1 − gC

(

 + 
A

L

)
= (1 − gC
)

(
1 − G0


A
L

)
. (60)

The two factors above are in matrix (and contour time) mul-
tiplication. Using the relation between trace and determinant,
ln det(M) = Tr ln M , and the fact, det(AB) = det(A) det(B),
we find that the two terms give two factors for Z , and the
factor due to 1 − gC
 is exactly 1. We then have

lnZ(ξ ) = −1

2
Trj,τ ln

[
1 − G0


A
L

] − i

2h̄
f T Gf, (61)

where the G(τ,τ ′) can now be expressed in terms of G0(τ,τ ′)
as

G−1 = G−1
0 − 
A

L . (62)

which is similar in form to Eq. (41), except that the current
one is on contour C.

Equations (45) and (61) are the central results of our paper,
which have the following importance for this particular model.

(1) The expressions for the CGFs are true for any arbitrary
measurement time tM , which need not be large.

(2) The effect of the measurement of HL is to shift the time
argument of the corresponding self-energy 
L by h̄x. The
information about the measurement time is contained in 
A

L .
(3) The expressions are true for systems of any dimensions,

and it is also easy to generalize to a system connected to
multiple heat baths; see Eq. (79).

(4) The expressions are also correct for a finite size of
the heat baths and it is an interesting problem to study the
corresponding effects.

(5) In the long-time limit the CGFs are the same indepen-
dent of the initial distributions, which confirms that the steady
state is unique for this model.

To compute the cumulants 〈〈Qn〉〉, we need to take
derivatives of lnZ with respect to iξ n times and setting ξ = 0;
i.e.,

〈〈Qn〉〉 = ∂ lnZ(ξ )

∂(iξ )
|ξ=0. (63)

Note that the shifted self-energy for 0 < t < tM is (for all three
initial conditions)


t
A(t,t ′) = 0, 
t̄

A(t,t ′) = 0,


<
A (t,t ′) = 
<

L (t − t ′ − h̄ξ ) − 
<
L (t − t ′), (64)


>
A (t,t ′) = 
>

L (t − t ′ + h̄ξ ) − 
>
L (t − t ′).

We note 
A
L (ξ = 0) = 0. The derivatives at ξ = 0 can be

obtained as
∂n
<

A

∂ξn

∣∣∣
ξ=0

= (−h̄)n
<,(n)
L (t − t ′),

∂n
>
A

∂ξn

∣∣∣
ξ=0

= h̄n

>,(n)
L (t − t ′), (65)

where the superscript (n) means derivatives with respect to the
argument of the function n times. In the following sections we
first show the explicit expression of the CGF in the long-time
limit and then discuss the SSFT.

VII. LONG-TIME LIMIT AND STEADY-STATE
FLUCTUATION THEOREM

For the long-time limit calculation we can use either
Eq. (51) or Eq. (61). For the convenience of taking the
long-time limit, i.e., tM large, we prefer to set the interval
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to (−tM/2,tM/2). In this way, when tM → ∞, the interval
becomes the full domain, and Fourier transforms of all the
Green’s functions and self-energy can be performed (where
translational invariance is restored). Applying the convolution
theorem to the trace formula in Eq. (61), we find that there is
one more time integral left with an integrand independent of
t . This last one can be set from −tM/2 to tM/2, obtaining an
overall factor of tM , and we have

Tr(j,τ )(AB · · · D) = tM

∫
dω

2π
Tr[Ă(ω)B̆(ω) · · · D̆(ω)]. (66)

In the long-time limit, 
A
L is given by Eq. (64), which be-

comes the function of time difference t − t ′. So by performing
Fourier transformation we obtain


>
A [ω] = 
>

L [ω](e−ih̄ωξ − 1) = a, (67)


<
A [ω] = 
<

L [ω](eih̄ωξ − 1) = b. (68)

We note that 
A
L is supposed to depend on both ξ and λ.

However in the long-time limit, the λ dependence drops out,
which makes the steady-state result independent of the initial
distribution.

Finally, we can express the CGF as

lnZ(ξ ) = −tM

∫
dω

4π
Tr ln

[
1 − Ğ0[ω]
̆A

L [ω]
]

− i

h̄

∫
dω

4π
Tr[Ğ[ω]F̆[ω, − ω]], (69)

where Ğ[ω] is obtained by solving the Dyson equation in the
frequency domain and, in the long-time limit, obeys time-
translational invariance. So the full CGF can be written as the
sum of contributions due to the driving force and due to the
temperature difference between the leads, i.e.,

lnZ(ξ ) = lnZs(ξ ) + lnZd (ξ ). (70)

In the following and subsequent sections we discuss Zs(ξ ) and
we return to Zd (ξ ) in Sec. XI.

In order to obtain an explicit expression for lnZs(ξ ), we
need to compute the matrix product

Ğ0[ω]
̆A
L [ω] = 1

2

(
Gr

0 GK
0

0 Ga
0

) (
a − b a + b

−(a + b) b − a

)
. (71)

To simplify the expression, we rewrite the term Tr ln(1 − M)
as a determinant and use the formula (assuming A to be an
invertible matrix)

det

(
A B

C D

)
= det(A) det(D − CA−1B) (72)

to reduce the dimensions of the determinant matrix by half.
The steady-state solution for Zs(ξ ) is given by

lnZs(ξ ) = −tM

∫
dω

4π
ln det

{
I − Gr

0�LGa
0�R[(eiξh̄ω−1)

×fL(1 + fR)+(e−iξh̄ω−1)fR(1 + fL)]
}
, (73)

with fα = 1/(eβαh̄ω − 1), α = L,R, the Bose-Einstein dis-
tribution function, and �α[ω] = i(
r

α[ω] − 
a
α[ω]). If we

consider the full system as a one-dimensional linear chain,

then because of the special form of �α matrices (only one
entry in the � matrices is nonzero), it can easily be shown that

det
[
I − (

Gr
0�LGa

0�R

)
�(ξ )

] = 1 − T [ω]�(ξ ), (74)

where �(ξ ) is any arbitrary function of ξ and T [ω] =
Tr(Gr

0�LGa
0�R) is known as the transmission function and

is given by the Caroli formula [1,10]. The GF Zs(ξ ) in the
steady state obeys the symmetry

Zs(ξ ) = Zs(−ξ + i A), (75)

where A = βR − βL is known as the thermodynamic affinity.
This relation is also known as GC symmetry [38]. The immedi-
ate consequence of this symmetry is that the probability distri-
bution for heat transferred, QL, which is given by the Fourier
transform of the GF, i.e., P (QL) = 1

2π

∫ ∞
−∞ dξ Z(ξ ) e−iξQL

obeys the following relation in the large tM limit:

PtM (QL) = eAQL PtM (−QL). (76)

This relation is known as the SSFT and was first derived
by Saito and Dhar [34] in the phononic case. This theorem
quantifies the ratio of positive and negative heat flux and
second-law violation.

The first cumulant or heat flux is given by

〈〈Q〉〉
tM

=
∫ ∞

−∞

dω

4π
h̄ ω T (ω)(fL − fR), (77)

which is known as the Landauer-like formula in thermal
transport. Similarly, the second cumulant 〈〈Q2〉〉 = 〈Q2〉 −
〈Q〉2, which describes the fluctuation of the heat transferred,
can be written as [34,54,55]

〈〈Q2〉〉
tM

=
∫ ∞

−∞

dω

4π
(h̄ω)2{T 2(ω) (fL − fR)2

+ T (ω) (fL + fR + 2 fLfR)}. (78)

Our formalism can be easily generalized for multiple heat
baths, and for N leads connected to the center C, the above
formula for lnZ(ξ ) can be written as

lnZs(ξ )

= −tM

∫
dω

4π
ln det

{
I −

N∑
m�=L

Gr
0�LGa

0�m

× [(eiξh̄ω−1)fL(1 + fm)+(e−iξh̄ω−1)fm(1 + fL)]

}
. (79)

In the following section we present numerical results for one
particle junction connected to Rubin heat baths, for different
initial conditions. Details about how to obtain cumulants
numerically are given in Appendixes D and E.

VIII. NUMERICAL RESULTS

The central quantity to calculate the CGF numerically is
the shifted self-energy 
A

L , which is given by


A
L (τ,τ ′) = 
L(τ + h̄x(τ ),τ ′ + h̄x(τ ′)) − 
L(τ,τ ′). (80)

Here τ is a contour variable which runs over the Keldysh
contour K = (−∞,∞) for the initial conditions ρ(0) and
ρ ′(0), whereas for ρ(−∞), τ runs over the contour C = [0,tM ]
(see Fig. 1). The contour function x(τ ) is 0 whenever t < 0 or
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t > tM , and for 0 < t < tM , x+(t) = −ξ/2 − λ, and x−(t) =
ξ/2 − λ. Depending on the values of t , t ′, and λ (λ → 0 and
λ → ∞ correspond to the steady-state initial state and the
projected initial state, respectively), 
A

L will have different
functional forms. If 0 < t,t ′ < tM , then 
A

L ’s are given by
Eq. (64). This is the region which dominates in the long-time
limit and gives steady state GF. If both t and t ′ lie outside the
measurement time, i.e., t,t ′ < 0 or t,t ′ > tM , then 
A

L is 0.
The main computational task for a numerical evaluation

of the cumulants is to compute the matrix series − ln(1 −
M) = M + 1

2M2 + · · ·. It can be seen that, due to the nature
of 
A

L , for the product initial state, exact n terms up to Mn are
required for the nth cumulants, as the infinite series terminates
due to 
A

L (ξ = 0) = 0. Numerically, we also observed for the
projected state ρ ′(0) that exact 3n terms are required (although
we do not have a proof) if the calculation is performed in the
time domain.

The computation can be performed in the time as well as in
the frequency domain. However, for projected and steady-state
initial conditions, since G0[ω] is time translationally invariant,
it is advantageous to work in the frequency domain. But for the
product state there is no such preference and one has to solve
Eq. (59) numerically. Details about obtaining 
A

L and solving
the Dyson equation numerically are given in Appendixes D
and E.

We now present some numerical results. In Figs. 2 and 3,
we show the results for the first four cumulants for both QL

and QR (measurement is on the right lead) for a 1D linear
chain connected by Rubin baths, starting with the projected
initial state ρ ′(0) and product state ρ(−∞), respectively. Rubin
baths [57,58] mean, in our case, a uniform linear chain with
a spring constant K and a small on-site K0 for all the atoms.
Only one atom is considered as the center. The atoms on the
left and right sides of the center are considered baths. We use
K = 1 eV/(uÅ2) and the on-site potential K0 = 0.1 eV/(uÅ2)
in all our calculations. First, cumulants greater than 2 are
nonzero, which confirms that the distribution for P (QL) or
P (QR) is not Gaussian. The generic features are almost the
same in both cases. However, the fluctuations are larger for
the product initial state ρ(−∞), as this state corresponds to
the sudden switching-on of the couplings between the leads
and the center, and hence the state is far away from the correct
steady-state distribution. On the contrary, for the initial state
ρ ′(0) the fluctuations are relatively small. For ρ ′(0), due to the
effect of the measurement, at the starting time, energy goes into
the leads, which is quite surprising. But for ρ(−∞), although
the initial measurement does not play any role, energy still
goes into the leads. This can also be shown analytically (see
Appendix B). At the starting time the behavior of both QL and
QR are very similar and can be understood since both the left
and the right leads are identical and the effect of a temperature
difference is not present. However, at longer times the odd
cumulants start differing and, finally, grow linearly with time
tM and agree with the corresponding long-time predictions.

In Fig. 4 we show the results for the steady-state initial
condition, i.e., ρ(0), which can be obtained by mapping the
projection operators as identity operators, i.e., taking the limit
λ → 0. So in this case the measurement effect is ignored and
the dynamics starts with the actual steady state for the full
system. The first cumulant increases linearly from the start,

〈Q〉 = tI , and the slope gives the correct prediction with the
Landauer-like formula. However, high-order cumulants still
show transient behavior. In this case the whole system achieves
steady state much more rapidly compared with the other two
cases.

IX. CORRELATION BETWEEN LEFT- AND
RIGHT-LEAD HEAT

A. Product initial state

In this section, we derive the CGF for the joint probability
distribution P (QL,QR) for the product initial state ρ(−∞). In
order to calculate the CGF we need to measure both HL and
HR at time 0 and at time tM . Since the Hamiltonians for the
left and the right lead commute at the same instant in time, i.e.,
[HL,HR] = 0, this type of measurement is allowed in quantum
mechanics, and also Nelson’s theorem [59] guarantees that
P (QL,QR) is a well-defined probability distribution. The
immediate consequence of deriving such a CGF is that the
correlations between the left- and the right-lead heat can be
obtained, and it is also possible to calculate the CGF for total
entropy flow (defined below) to the reservoirs. To calculate the
GF we need two counting fields ξL and ξR and the GF in this
case can be written as [41]

Z(ξL,ξR) = 〈
ei ξL HL+i ξR HR e−i ξL HH

L (t)−i ξR HH
R (t)

〉′
, (81)

where the average is defined as

〈· · ·〉′ =
∑
a,c

�L
a �R

c ρ(0) �L
a �R

c . (82)

�L
a and �R

c are the projectors onto the eigenstates of HL and
HR , with eigenvalues a and c, respectively, corresponding to
the measurements at t = 0. Here we consider only the product
state ρ(−∞); thus initial projections �L

a and πR
c do not play

any role. We can proceed as before, and finally, the CGF can
be written down as

lnZ(ξL,ξR) =
∞∑

k=1

1

2k
Tr(j,τ )

[(
G0

(

A

L + 
A
R

))k]
; (83)

i.e., in this case we need to shift the contour-time arguments for
both left- and right-lead self-energies. In the long-time limit
Z(ξL,ξR) becomes a function of the difference in counting
fields ξL and ξR , i.e., ξL − ξR . The explicit expression for the
CGF in the long-time limit is

lnZ(ξL − ξR) = −tM

∫
dω

4π
ln det

{
I − Gr

0�LGa
0�R

× [(ei(ξL−ξR )h̄ω−1)fL(1+fR)

+(e−i(ξL−ξR )h̄ω−1)fR(1+fL)]
}
, (84)

where G0 obeys the same type of Dyson equation as Eq. (59).
This CGF in the steady state obeys the same type of GC
fluctuation symmetry, which in this case is given by

Z(ξL − ξR) = Z(−ξL + ξR + iA). (85)

Now performing Fourier transform of the CGF, the joint prob-
ability distribution is given by P (QL,QR) = P (QL) δ(QL +
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FIG. 2. (Color online) Cumulants 〈〈Qn
L〉〉

and 〈〈Qn
R〉〉 for n = 1, 2, 3, and 4 for a one-

dimensional linear chain connected by Rubin
baths, for the projected initial state ρ ′(0). Black
(solid) and red (dotted) curves correspond to
〈〈Qn

L〉〉 and 〈〈Qn
R〉〉, respectively. The tempera-

tures of the left and right leads are 310 and 290
K, respectively. The center (C) consists of one
particle.

QR). The appearance of the δ function is a consequence of the
energy conservation in the steady state, i.e., IL = −IR . In the
steady state, knowing the probability distribution for either QL

or QR is sufficient to know the joint probability distribution.
The cumulants can be obtained from the CGF

by taking derivatives with respect to both ξL and
ξR; i.e.,〈〈Qn

LQm
R〉〉 = ∂n+m lnZ/∂(iξL)n∂(iξR)m, substituting

ξL = ξR = 0. In the steady state the cumulants obey
〈〈Qn

LQm
R〉〉 = (−1)m〈〈Qm+n

L 〉〉 = (−1)n〈〈Qm+n
R 〉〉. The first

cumulant gives us the left- and right-lead correlation
〈〈QLQR〉〉 = 〈QLQR〉 − 〈QL〉〈QR〉 and, in the steady state,
is equal to −〈〈Q2

L〉〉.
In Fig. 5 we plot the first three cumulants for a 1D linear

chain connected by Rubin baths where the center consists of
only one atom. Initially the cumulant 〈〈QLQR〉〉 is positively
correlated, as both QL and QR are negative, however, at
a longer time, since QL = −QR the correlation becomes
negative. We also give plots for 〈〈Q2

LQR〉〉 (black) and
〈〈Q2

RQL〉〉 (red), which, in the long-time limit, are negative and
positively correlated, respectively, and match the long-time
predictions.

B. Entropy flow to the reservoir

From the two-parameter (ξL,ξR) CGF, one can also obtain
the total entropy that flows into the leads. The total entropy
flow to the reservoirs can be defined as [60,61]

σ = −βLQL − βRQR. (86)

In order to calculate this CGF, we just make the substitutions
ξL → −βLμ and ξR → −βRμ in Eq. (83). In the long-time
limit the expression for entropy production is similar to
lnZ(ξL,ξR), with ξL − ξR replaced by A, and becomes an
explicit function of thermodynamic affinity, βR − βL [26]. The
CGF in this case satisfies the following symmetry:

Z(μ) = Z(−μ + i). (87)

In Fig. 6 we give the results for the first four cumulants of the
entropy flow. All cumulants are positive and, in the long-time
limit, give correct predictions.
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FIG. 3. (Color online) Same as Fig. 2 except
for the product initial state ρ(−∞). Tempera-
tures of the left, center, and right leads are 310,
300, and 290 K, respectively.
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FIG. 4. (Color online) Same as Fig. 2 except
for the steady-state initial state ρ(0).

X. LONG-TIME RESULT FOR ln Z d(ξ )

In this section we derive the explicit expression for the
long-time limit of lnZd (ξ ), which is given by [Eq. (69)],

lnZd (ξ ) = − i

h̄

∫
dω

4π
Tr[Ğ[ω]F̆[ω, − ω]], (88)

where G[ω] obeys the Dyson equation given in Eq. (41). It
is possible to write down Ğ[ω] in terms of Ğ0 and 
̆A

L as
Ğ[ω] = (I − Ğ0
̆

A
L )−1Ğ0[ω]. This equation can be solved

analytically. Next we assume that the product of f (t) and f (t ′)
is a time translationally invariant function, i.e., f (t)f T (t ′) =
F (t − t ′), in order to get rid of the t + t ′ dependence term. In
the Fourier domain this means f [ω]f T [ω′] = 2πF [ω]δ(ω +
ω′). So from Eq. (52) the matrix element F12 is given
by F̆[ω, − ω]12 ∝ δ(0)F [ω]. We write δ(0) = tM/2π . Using
these results the CGF can be expressed as

lnZd (ξ ) = itM

∫
dω

4πh̄

1

N (ξ )
Tr

[
Gr

0[ω](a + b)Ga
0[ω]F [ω]

]
,

(89)

where a and b are defined in Eqs. (67) and (68). Using the
expressions for the self-energy, the CGF reduces to

lnZd (ξ ) =
∫

dω

4πh̄

K(ξ )

N (ξ )
Tr

[
Gr

0[ω]�L[ω]Ga
0[ω]F [ω]

]
, (90)

with

K(ξ ) = (e−iξh̄ω−1) + fL(eiξh̄ω+e−iξh̄ω−2), (91)

and

N (ξ ) = det
[
I − (

Gr
0�LGa

0�R

){(eiξh̄ω−1)fL(1 + fR)

× (e−iξh̄ω−1)fR(1 + fL)}]. (92)

It is important to note that K(ξ ) depends only on the left-lead
temperature and satisfies the symmetry K(ξ ) = K(−ξ − iβL).
So we can immediately write Zd (−iβL) = 1, and this relation
is completely independent of the right lead. If we consider
the two leads at the same temperature (βL = βR = β), this
form of symmetry is then closely related to the Jarzynski
equality (JE) [62,63], and Zd (−iβ) = 1 is one special form of
the JE. However, since N (ξ ) does not satisfy this particular
symmetry of ξ at thermal equilibrium (it obeys the GC
summary when the leads are at different temperatures), and
the GF Zd (ξ ) �= Zd (−ξ − iβ), the JE is not satisfied. This,
however, does not violate the JE, as the GF Zd (ξ ) is defined
for the quantity heat, not for the work done by the external
force. Let us now come back to the general scenario with leads
at different temperatures and give the explicit expression of the
first and second cumulants by taking the derivative of lnZd (ξ )
with respect to iξ .

The first cumulant or moment is given by [64]

〈〈Qd〉〉
tM

= −
∫

dω

4π
ω S[ω], (93)

where we define S[ω] as the transmission function for the
driven case and is given by

S[ω] = Tr
[
Gr

0�LGa
0F

]
. (94)
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FIG. 5. (Color online) First three cumulants
of the correlations between left- and right-lead
heat flux for a one dimensional linear chain
connected by Rubin baths, starting with the
product initial state ρ(−∞). Left, 〈〈QLQR〉〉;
right, cumulants 〈〈Q2

LQR〉〉 (black (solid) curve)
and 〈〈Q2

RQL〉〉 (red (dotted) curve). Left-, center-
, and right-lead temperatures are 310, 290, and
300 K, respectively. The center consists of one
particle.
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FIG. 6. Cumulants of entropy production
〈〈σn〉〉 for n = 1, 2, 3, 4 for a one-dimensional
linear chain connected by Rubin baths, for
product initial state ρ(−∞). Left-, center-, and
right-lead temperatures are 510, 400, and 290 K,
respectively. The center consists of one particle.

From the expression of S[ω] it is clear that the average
energy current due to the driven force is independent of h̄,
and since it contains G

r,a
0 and �L, which are independent of

the temperature, we can conclude that the energy current is
independent of the temperature of the heat baths in the ballistic
transport case. However, the second cumulant and, similarly,
the higher ones do depend on the temperature of the baths. The
second cumulant can be written as〈〈

Q2
d

〉〉
tM

=
∫

dω

4πh̄
(h̄ω)2 S[ω][(1 + 2 fL)

− 2 T (ω)(fL − fR)]. (95)

Similarly, all the higher cumulants can be obtained from the
CGF and we can conclude that the distribution P (Qd ) is not
Gaussian.

XI. CLASSICAL LIMIT FOR GENERATING FUNCTIONS

In this section we give the classical limit of the steady-state
expression for the CGFs lnZs(ξ ) and lnZd (ξ ) given in
Eqs. (73) and (90). First, we note that the retarded and advanced
Green’s functions, i.e., Gr

0 and Ga
0, are the same for the

quantum and classical cases. We know that in the classical limit
fα → kBTα/h̄ω and also eix = 1 + ix + (ix)2/2 + · · ·, where
x = ξh̄ω. Using this, we obtain from Eq. (73) the classical limit
of Zs(ξ ):

lnZs
cls(ξ ) = tM

4π

∫
dω ln det

[
I − (

Gr
0�LGa

0�R

)
× kBTL kBTR iξ (iξ + A)

]
. (96)

This result reproduces that in Ref. [43], which was obtained
from Langevin dynamics with white-noise reservoirs. In the
classical case also, the CGF obeys the GC symmetry, i.e., it
remains invariant under the transformation iξ → −iξ − A.

Let us now get the classical limit for lnZd (ξ ) using Eq. (90).
Following the above relations, the function K(ξ ) in the limit
h̄ → 0 reduces to

Kcls(ξ ) = −h̄ω
(
iξ + ξ 2

βL

)
. (97)

The transmission function S[ω] stays the same, as it is
independent of the temperature and h̄. So in the classical limit,
lnZd (ξ ) reduces to

lnZd
cls(ξ ) = tM

∫
dω

4π
ω S[ω]

(
iξ + ξ 2

βL

)
Ncls(ξ )

, (98)

where

N (ξ )cls = det
[
I − (

Gr
0�LGa

0�R

)
kBTL kBTR

iξ (iξ + A)
]
. (99)

Here we can easily see that Zd (−iβL) = 1.
We can also derive the fluctuation dissipation theorem from

Eq. (95) if we assume that the leads are at the same temperature,
i.e., βL = βR = β; then we can write the second cumulant
〈〈Q2

d〉〉 as

〈〈Q2
d〉〉

tM
=

∫
dω

4πh̄
(h̄ω)2 S[ω](1 + 2 fL). (100)

In the high-temperature limit using fL → kBTL

h̄ω
, we obtain

〈〈Q2
d〉〉 = 2

βL

〈Qd〉, (101)

which is always true if the distribution P (Qd ) is Gaussian.
However, the reverse statement is not true, which is the case
here.

In the next section we present Nazarov’s GF and give the
long-time limit expression.

XII. NAZAROV’S DEFINITION OF THE
GENERATING FUNCTION

In this section we derive another definition of the CGF given
by Eq. (10), starting from the CGF, derived using the two-
time measurement concept, i.e., Eq. (9). Equation (10) can be
obtained from Eq. (9) in the small ξ approximation as follows.
In the small ξ approximation the modified Hamiltonian given
in Eq. (24) takes the form

Hx(t) = H(t) + h̄xIL(0) + O(x2), (102)
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because C(x) = O(x2) and S(x) = h̄xV LC + O(x2). IL is
defined by Eq. (5). So the modified unitary operator becomes

Ux(t,0) = T e− i
h̄

∫ t

0 [H(t̄)+h̄xIL(0)]dt̄ . (103)

We can consider h̄xIL(0) as the interaction Hamiltonian and
write the full unitary operator Ux as a product of two unitary
operators as

Ux(t,0) = U(t,0)U I
x (t,0), (104)

where

U(t,0) = T e− i
h̄

∫ t

0 H(t ′)dt ′ ,

U I
x (t,0) = T e− i

h̄

∫ t

0 h̄xIL(t ′)dt ′ , (105)

with IL(t ′) = U†(t ′,0) IL(0)U(t ′,0) the current operator in the
Heisenberg picture. Note that U is the usual unitary operator
which evolves with the full Hamiltonian H(t) in Eq. (8) and
has no ξ dependence.

If we use product state ρ(−∞) as the initial state, the GF
is given by

Z(ξ ) = Tr[ρ(−∞)Uξ/2(0,t)U−ξ/2(t,0)]. (106)

In the small-ξ approximation and using the expression for Ux ,
we can write the GF as

Z1(ξ ) = Tr[ρ(−∞)U I
ξ/2(0,t)U I

−ξ/2(t,0)], (107)

where we use the property of the unitary operator, i.e.,
U†(t,0)U(t,0) = 1. Finally, using the definition of the heat
operator QL given in Eq. (6), the GF can be written as

Z1(ξ ) = 〈T̄ eiξQL(t)/2 T eiξQL(t)/2〉, (108)

which is the same as Eq. (10). In the following we give the
long-time limit expression for this GF.

In order to calculate the GF, we go to the interaction picture
with respect to the Hamiltonian H0 = HL + HC + HR , as
we know how to calculate Green’s functions for operators
which evolve with H0 and treat the rest as the interaction
Vx = Hint + h̄xIL(0). So the GF on the contour C = [0,tM ]
can be written as

Z1(ξ ) = 〈
Tce

− i
h̄

∫
VI

x (τ )dτ
〉
, (109)

where VI
x (τ ) is now given by

VI
x (τ ) = uT

L(τ )V LCuC(τ ) + uT
R(τ )V RCuC(τ )

+ h̄x(τ )pL(τ )V LCuC(τ ), (110)

where pL = u̇L. The time dependence τ comes from the free
evolution with respect to H0. x(τ ) has a similar meaning as
before; i.e., on the upper branch of the contour, x+(t) = −ξ/2,
and on the lower branch x−(t) = ξ/2. Now using the same
idea as before, we expand the series, use Wick’s theorem, and
finally, the CGF can be expressed as

lnZ(ξ ) = − 1
2 Trj,τ ln

[
1 − G0


A
L

]
. (111)

Here G0 is the same as before and is given by Eq. (59).
However, the shifted self-energy 
A

L in this case is different
and is given by (in the contour-time argument)


A
L (τ,τ ′) = h̄ x(τ ) 
pLuL

(τ,τ ′) + h̄ x(τ ′) 
uLpL
(τ,τ ′)

+ h̄2 x(τ ) x(τ ′) 
pLpL
(τ,τ ′). (112)

The notation 
AB(τ,τ ′) means


AB(τ,τ ′) =
(

− i

h̄

)
V CL 〈 TcA(τ )BT (τ ′) 〉V LC. (113)

The average here is with respect to the equilibrium distribution
of the left lead. It is possible to express correlation functions
such as 
pLuL

(τ,τ ′) in terms of the 
uL,uL
(τ,τ ′) = 
L(τ,τ ′)

correlations. 
pLuL
(τ,τ ′) and 
uLpL

(τ,τ ′) are simply related
to 
L(τ,τ ′) by the contour-time derivative, whereas for

pLpL

(τ,τ ′) the expression is


pLpL
(τ,τ ′) = ∂2
uLuL

(τ,τ ′)
∂τ∂τ ′ + δ(τ,τ ′)
I

L, (114)

where 
I
L = V CLV LC . Now in the frequency domain, differ-

ent components of 
A
L take the following form:


t
A[ω] = h̄2ξ 2ω2

4

t

L[ω] + h̄2ξ 2

4

I

L,


t̄
A[ω] = h̄2ξ 2ω2

4

t̄

L[ω] − h̄2ξ 2

4

I

L,

(115)


<
A [ω] =

(
ih̄ξω − h̄2ξ 2ω2

4

)

<

L [ω],


>
A [ω] =

(
−ih̄ξω − h̄2ξ 2ω2

4

)

>

L [ω].

Finally, using the relations between the self-energy (see
Appendix A), in the long-time limit the CGF can be written as

lnZ1(ξ ) = −tM

∫
dω

4π
ln

[
1 − (iξh̄ω)T [ω] (fL − fR)

− (iξh̄ω)2

4

(
T [ω](1 + 2fL)(1 + 2fR) − Ga

0

r
L

+ Gr
0


a
L − Gr

0�LGa
0�L

) + J (ξ 2,ξ 4)

]
, (116)

where J (ξ 2,ξ 4) is given by

J (ξ 2,ξ 4) = −h̄2ξ 2

4

(
Ga

0 + Gr
0

)

I

L − 1

4

(iξh̄ω)2

2

h̄2ξ 2

2

+ (
Gr

0

a
LGa

0

I
L + Gr

0

I
LGa

0

r
L

) + 1

4

(iξh̄ω)4

4

× Gr
0


a
LGa

0

r
L + 1

4

(h̄4ξ 4)

4
Gr

0

I
LGa

0

I
L. (117)

This CGF does not obey the GC fluctuation symmetry.
However, it gives the correct first and second cumulants, as it
should because the definition of the first and second cumulants
turns out to be the same for both the GFs, Z(ξ ) and Z1(ξ ), and
is given by

〈〈Q〉〉 = 〈Q〉 = ∂ lnZ(ξ )

∂(iξ )
= ∂ lnZ1(ξ )

∂(iξ )
=

∫ t

0
dt1〈IL(t1)〉,

〈〈Q2〉〉 = 〈Q2〉 − 〈Q〉2 = ∂2 lnZ(ξ )

∂(iξ )2
= ∂2 lnZ1(ξ )

∂(iξ )2

=
∫ t

0
dt1

∫ t

0
dt2〈IL(t1)IL(t2)〉 −

[∫ t

0
dt1〈IL(t1)〉

]2

.

(118)
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Expressions for higher cumulants are different for the two GFs,
and hence the final expressions for the CGFs are completely
different from each other.

XIII. CONCLUSION

In summary, we present an elegant way of deriving the
CGF for heat QL,R transferred from the leads to the center for
driven linear systems using the two-time measurement concept
with the help of the NEGF technique. The CGF is written in
terms of the Green’s function of the center and the self-energy

A

L of the leads. The counting of the energy is related to
the shifting in time of the self-energy. The expressions are
valid in both transient and steady-state regimes, where the
information about the measurement time tM is contained in

A

L . The form of the expression, −(1/2)Tr ln(1 − G0

A
L ),

is the same whether we use a product initial state or a
projected initial state, except that the meaning of the Green’s
function has to be adjusted accordingly. We consider three
initial conditions and show numerically, for 1D linear chains
connected by Rubin baths, that transient behaviors differ
significantly from each other, but eventually the system reaches
a unique steady-state distribution in the long-time limit. We
give an explicit expression of the CGF in the steady state
invoking the symmetry of translational invariance in time.
The CGF obeys GC fluctuation symmetry. We also give
the steady-state expression for the CGF in the presence of
time-dependent driving forces. We obtain a two-parameter
CGF which is useful for calculating the correlations between
heat fluxes and also the total entropy production in the leads.
We also generalize our result for multiple heat baths, and our
derivation is also valid for finite-size heat baths. We show in
the appendixes that our method can be extended for electronic
systems where we derive the CGF for a tight-binding model. It
will be interesting to derive the CGF by including the magnetic
field contribution in the Hamiltonian and also to study the
cumulants in the presence of nonlinear interactions such as
phonon-phonon or electron phonon interactions.
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APPENDIX A: EXPRESSIONS FOR DIFFERENT TYPES OF
GREEN’S FUNCTIONS

Here we give the explicit expressions for the center Green’s
function G0[ω] in the steady state, for a harmonic system
which is connected to the leads. These formulas are required
to derive the analytical form of the CGF given in Eq. (73). For
basic definitions of the different types of Green’s functions,
we refer to Ref. [10].

The retarded Green’s function Gr
0[ω] is given by

Gr
0[ω] = [

(ω + iη)2 − KC − 
r
L[ω] − 
r

R[ω]
]−1

. (A1)

Here η is an infinitesimal positive number which is required
to satisfy the condition of causality, i.e., Gr

0(t) = 0 for t <

0. The advanced Green’s function is Ga
0[ω] = [Gr

0[ω]]†. The
Keldysh Green’s function GK

0 [ω] can be obtained by solving
the corresponding Dyson equation, Eq. (59), and is given by

GK
0 [ω] = Gr

0[ω]
K [ω]Ga
0[ω], (A2)

where 
K = 
K
L + 
K

R and 
K
α = 
<

α + 
>
α , with α = L,R.

Alternatively, GK
0 = G<

0 + G>
0 . Another important identity is

Gr
0[ω] − Ga

0[ω] = −i Gr
0[ω](�L[ω] + �R[ω])Ga

0[ω], (A3)

where �α[ω] = i(
r
α[ω] − 
a

α[ω]), and α = L,R. The self-
energies for the leads are given by


<
α [ω] = fα[ω]

(

r

α[ω] − 
a
α[ω]

)
,

(A4)

>

α [ω] = (1 + fα[ω])
(

r

α[ω] − 
a
α[ω]

)
,

where fα[ω] = 1/(eβαh̄ωα − 1) is the Bose distribution func-
tion.

Explicit expressions for Gr
0[ω] and 
r

L[ω] can be obtained
for a 1D homogeneous linear chain, with interparticle force
constant K and on-site spring constant K0, which is divided
into three parts: the center, the left, and the right. The classical
equation of motion for the atoms in all three regions is

üj = Kuj−1 + (−2K − K0)uj + Kuj−1, (A5)

where the index j runs over all the atoms in the whole system.
The retarded Green’s function Gr

0[ω] can be obtained [9] by
solving [(ω + iη)2 − K̃]Gr

0 = I , where matrix K̃ is infinite in
both directions and is 2K + K0 on the diagonals and −K on
the first off-diagonals. The solution is translationally invariant
in space index and is given by

Gr
0,jk[ω] = λ|j−k|

K
(
λ − 1

λ

) , (A6)

with λ = − �
2K

± 1
2K

√
�2 − 4K2 and � = (ω + iη)2 − 2K −

K0, choosing between plus and minus sign such that |λ| � 1.
The surface Green’s function gr

L[ω] can be similarly
obtained in the frequency domain, and this gives the self-
energy 
r

L[ω] = −Kλ. Since in equilibrium only one Green’s
function is independent, knowing 
r

L[ω] is sufficient to obtain
all other Green’s functions.

Here we also give the expressions for Green’s functions
gC in the time and frequency domain for an isolated single
harmonic oscillator with frequency ω0 (we have omitted the
subscript C in gC) [65,66]:

gr (t) = −θ (t)
sin ω0t

ω0
, gr [ω] = 1

(ω + iη)2 − ω2
0

,

g<(t) = −i

2ω0
[(1 + f )eiω0t + f e−iω0t ], (A7)

g>[ω] = −iπ

ω0
[δ(ω+ω0)(1 + f ) + δ(ω−ω0)f ] ,

where f = f (ω0) = 1
eβh̄ω0 −1

. Other components can be ob-
tained by exploiting the symmetry between the Green’s
functions such as ga(−t) = gr (t) for t > 0, hence gr [ω] =
ga[−ω]. The greater component is related to the lesser
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component via g>(t) = g<(−t), which, in the frequency
domain, satisfies g>[ω] = g<[−ω].

APPENDIX B: CURRENT AT A SHORT TIME FOR THE
PRODUCT INITIAL STATE

Using the definition of current operator given in Eq. (5), the
energy current flowing from the left lead to the center is [here
we assume that there is no driving force f (t)]

〈IL(t)〉 = −
〈
dHL(t)

dt

〉
= i

h̄
〈[HL(t),H]〉, (B1)

where the average is with respect to ρ(−∞). If t is small,
we can expand HL(t) in a Taylor series, and it is given by
HL(t) = HL(0) + tḢL(0) + · · ·.

Now since [ρ(−∞),HL(0)] = 0, then it immediately fol-
lows that 〈[HL(0),H]〉 = 0 by using the cyclic property of
trace. So in linear order of t the current is given by

〈IL(t)〉 = t
i

h̄
〈[ḢL(0),H]〉 = −t

i

h̄

〈[
pT

LV LCuC,H
]〉
. (B2)

The only term of the full H that will contribute to this is
HLC = uT

LV LCuC .
Now using the relation that [pL,uL] = −ih̄, for a 1D linear

chain we can write

〈IL(t)〉 = −t K2
〈(
uC

1

)2〉 = −t K2 h̄

ω0

(
fC(ω0) + 1

2

)
, (B3)

where uC
1 is the first particle in the center, which is connected

to the first particle of the left lead with force constant K . Now
since the average is with respect to ρ(−∞), 〈(uC

1 )2〉 can be
easily computed. Here fC(ω0) is the Bose distribution function
of the particle with characteristic frequency ω0. So we can see
that for a short time the current is negative, i.e., it goes into
the lead. It is now easy to see that a similar expression should
also hold for 〈IR(t)〉. The negative sign in currents means
that the energy flows into the leads initially irrespective of the
temperatures of the leads. This is consistent with the numerical
results obtained by Cuansing et al. [14,15].

APPENDIX C: CONVOLUTION, TRACE, AND
DETERMINANT ON THE KELDYSH COUNTOUR

Here we discuss the meaning of convolution, trace, and
determinant on the Keldysh contour, which we used to derive
the CGFs for heat flux. We define the convolution on the
contour in the following way:

AB · · ·D →
∑

j2,j3,···,jn

∫
dτ2 · · ·

∫
dτnAj1,j2 (τ1,τ2)

×Bj2,j3 (τ2,τ3) · · · Djn,jn+1 (τn,τn+1). (C1)

From the convolution we define the trace by substituting
τn+1 = τ1, jn+1 = j1, integrating also over τ1, and summing
over j1, i.e.,

Trj,τ (AB · · · D) =
∫

dτ1

∫
dτ2 · · ·

∫
dτn

× Trj [A(τ1,τ2)B(τ2,τ3) · · · D(τn,τ1)].

(C2)

Changing from contour to real-time integration from −∞ to
+∞, i.e., using

∫
dτ = ∑

σ

∫
σdt , we have

Trj,τ (AB · · ·D)

=
∑

σ1,σ2,···,σn

∫
dt1

∫
dt2 · · ·

∫
dtn

× Trj [σ1A
σ1σ2 (t1,t2)σ2B

σ2σ3 (t2,t3) · · ·
× σnD

σnσ1 (tn,t1)]. (C3)

Let us absorb the extra σ into the definition of branch
components, i.e., define

Āσσ ′ = σAσσ ′
or Ā = σzA, (C4)

where A is viewed as a 2 × 2 block matrix with the usual +,
− component,

A =
(

A++ A+−
A−+ A−−

)
=

(
At A<

A> At̄

)
, (C5)

and σz is defined as

σz =
(

1 0
0 −1

)
; (C6)

then it can easily be seen that

Trj,τ (AB · · · D) =
∫

dt1

∫
dt2 · · ·

∫
dtnTrj [Ā(t1,t2)

× B̄(t2,t3) · · · D̄(tn,t1)]

= Trt,j,σ (ĀB̄ · · · D̄). (C7)

Then we can do a rotation, where the rotation matrix is given
by

O = 1√
2

(
1 1

−1 1

)
, OOT = I, (C8)

and we define, for any matrix A, the rotated matrix as

Ă = OT σzAO = OT ĀO. (C9)

This is known as the Keldysh rotation. The effect of the
Keldysh rotation is given in Eq. (47). Since this is an orthogonal
transformation, the trace remains invariant, and hence we can
write

Trt,j,σ (ĀB̄ · · · D̄) = Trt,j,σ (ĂB̆ · · · D̆). (C10)

If we now go to the frequency domain, using the definition
of two-time Fourier transform given in Eq. (49), then we can
compute the trace in the frequency domain as

Tr(j,τ )(AB · · · D)

=
∫

dω1

2π

∫
dω2

2π
· · ·

∫
dωn

2π

× Tr{Ă[ω1, − ω2]B̆[ω2, − ω3] · · · D̆[ωn, − ω1]}
= Trj,σ,ω(ĂB̆ · · · D̆). (C11)

The last line above defines what we mean by the trace over
the frequency domain given in Eq. (51). Unlike the trace in
the time domain, the second argument of each of the variables
needs a minus sign.

Let us now define what we mean by 1 on the contour. In the
sense of convolution we define 1 as

A1 D = AD, (C12)
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which means∫
dτ1

∫
dτ2 A(τ,τ1)Iδ(τ1,τ2)D(τ2,τ

′)

=
∫

dτ1A(τ,τ1)D(τ1,τ
′). (C13)

Note that δ(τ,τ ′) in real time has the following form:

δσ,σ ′
(t,t ′) = σδσ,σ ′δ(t − t ′). (C14)

The inverse on the contour is defined as∫
dτ1A(τ,τ1)B(τ1,τ

′) = Iδ(τ,τ ′), (C15)

where the identity matrix I takes care about the space index.
Similarly to above, we go to the real time and multiply the
above equation by the branch index σ , and we can write∫

dt1Ā(t,t1)B̄(t1,t
′) = I δ̄(t − t ′), (C16)

where

δ̄(t − t ′) = σδσ,σ ′
(t,t ′) = σ 2δσ,σ ′δ(t − t ′)

= δσ,σ ′δ(t − t ′). (C17)

If we now discretize the time and write δ(ti ,ti ′) = δi,i ′/�t with
�t = |ti − ti ′ |, then we have

ÃB̃ = Ĩ , (C18)

with Ã = A�t , and similarly for other matrices.
With similar notation, we can now write different types of

Dyson’s equations given in Eqs. (41) and (59) as follows. In
contour time we have

G0(τ,τ ′) = gC(τ,τ ′)

+
∫ ∫

dτ1dτ2 gC(τ,τ1)
(τ1,τ2)G0(τ2,τ
′).

(C19)

In real time, following the above arguments, we write

Ḡ0(t,t ′) = ḡC(t,t ′)

+
∫ ∫

dt1dt2 ḡC(t,t1)
̄(t1,t2)Ḡ0(t2,t
′). (C20)

After Keldysh rotation we can write

Ğ0(t,t ′) = ğC(t,t ′)

+
∫ ∫

dt1dt2 ğC(t,t1)
̆(t1,t2)Ğ0(t2,t
′). (C21)

Finally, in discretized time t we write

G̃0 = g̃C + g̃C
̃G̃0, (C22)

which is a matrix equation. Similar equations can also be
written for Eq. (41).

Now we define the determinant via the relation det(A) =
exp(Tr ln A); i.e., the determinant is defined in terms of the
trace. In order for ln A to be defined, we have to assume
a Taylor expansion. For example, we can define ln(1 +
M) = M − M2/2 + M3/3 + · · ·, where 1 means δjj ′δ(τ,τ ′)
in contour space.

APPENDIX D: CALCULATION OF � A
L (ω,ω′) FOR THE

PROJECTED INITIAL STATE

Here we discuss the calculation for 
A
L (ω,ω′) for ρ ′(0),

which is the starting point for doing the numerical calculation.
To calculate 
A

L (ω,ω′) for the projected initial state ρ ′(0) we
define two types of θ functions, θ1(t,t ′) and θ2(t,t ′). θ1(t,t ′) is
nonzero and has the value 1 when

0 � t � tM, and t ′ � 0 or t ′ � tM, (D1)

or

0 � t ′ � tM, and t � 0 or t � tM, (D2)

and θ2(t,t ′) is nonzero only in the regime where 0 � t , t ′ � tM .
For regions where θ1(t,t ′) is nonzero, the expression for 
A

L

after taking the limit λ → ∞ is (assuming that all correlation
functions decay to 0 as t → ±∞)



t,t̄,〈,〉
A (t,t ′) = −


t,t̄,〈,〉
L (t − t ′). (D3)

So using θ functions we may write 
A
L (t,t ′) in the full t,t ′

domain as



t,t̄
A (t,t ′) = −θ1(t,t ′)
t,t̄

L (t − t ′),

<

A (t,t ′) = −θ1(t,t ′)
<
L (t − t ′) + θ2(t,t ′)

×[
<
L (t − t ′ − h̄ξ ) − 
<

L (t − t ′)],

>

A (t,t ′) = −θ1(t,t ′)
>
L (t − t ′) + θ2(t,t ′)

×[
>
L (t − t ′ + h̄ξ ) − 
>

L (t − t ′)]. (D4)

By doing a Fourier transform, it can easily be shown that



t,t̄
A [ω,ω′] = −

∫ ∞

−∞

dωc

2π
θ1[ω−ωc,ω

′+ωc]
t,t̄
L (ωc) (D5)

and



>,<
A [ω,ω′]

= −
∫ ∞

−∞

dωc

2π
θ1[ω−ωc,ω

′+ωc]
>,<
L (ωc)

+
∫ ∞

−∞

dωc

2π
θ2[ω−ωc,ω

′+ωc]
>,<
L (ωc)(eiωcηξ −1), (D6)

where η = ±1. The positive sign is for 
<
A and the negative

sign for 
>
A .

The θ functions are now given by

θ1(ωa,ωb) = f (ωa)g(ωb) + f (ωb)g(ωa),

θ2(ωa,ωb) = f (ωa)f (ωb), (D7)

where

f (ω) = eiωtM − 1

iω
, g(ω) = 1

iω + ε
− eiωtM−ηtM

iω − ε
, (D8)

with ε → 0+. The θ functions are of immense importance, as
they carry all information on the measurement time tM .

In the limit tM → ∞, the region 0 � t , t ′ � tM dominates
and the corresponding θ function, i.e., θ2(ω,ω′), reduces to

θ2(ω − ωc,ω
′ + ωc) ≈ δ(ω − ωc)δ(ω′ + ωc) (D9)

and is responsible for obtaining the steady state result.
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To calculate all the cumulants we only need to take the
derivative of 
A(ω,ω′) with respect to iξ since G0 does not
have any ξ dependence. Also, 
A has ξ dependence only for
0 � t , t ′ � tM , and hence the derivatives are given by

∂n

>,<
A

∂(iξ )n
[ω,ω′] =

∫ ∞

−∞

dωc

2π
(ηh̄ωc)nθ2[ω − ωc,ω

′ + ωc]

×

>,<
L (ωc)eiωcηξ . (D10)

Here n refers to the order of the derivative.

APPENDIX E: SOLVING THE DYSON EQUATION
NUMERICALLY FOR THE PRODUCT INITIAL STATE

Here we discuss solving the Dyson equation for G0 given in
Eq. (59) for product initial state ρ(−∞). In order to compute
the matrix Ğ0(t,t ′), we have to calculate two components, Gr

0
and GK

0 , which are written in the integral form by applying
Langreth’s rule [45,54]:

Gr
0(t,t ′) = gr

C(t−t ′)

+
∫ tM

0
dt1

∫ tM

0
dt2g

r
C(t−t1)
r (t1−t2)Gr

0(t2,t
′),

(E1)

and

GK
0 (t,t ′) = gK

C (t−t ′)

+
∫ tM

0
dt1

∫ tM

0
dt2 gr

C(t−t1) 
r (t1−t2)GK
0 (t2,t

′)

+
∫ tM

0
dt1

∫ tM

0
dt2 gr

C(t−t1)
K (t1−t2)Ga
0(t2,t

′)

+
∫ tM

0
dt1

∫ tM

0
dt2 gK

C (t−t1)
a(t1−t2)Ga
0(t2,t

′).

(E2)

Note that the argument for the center Green’s function gC

and lead self-energy 
 are written as the time difference
t − t ′ because they are Green’s functions for the isolated
center part and leads, respectively, and hence are calculated
at equilibrium. The analytical expressions for 
 and gC are
known in the frequency domain and are given in Appendix A.
To determine their time dependence we numerically calculate
their inverse Fourier transforms using the trapezoidal rule
[56]. Then in order to solve the above equations for any
tM , we discretize the time variable into N total intervals of
incremental length �t = tM/N , thus converting the integral
into a sum. After discretization, the above equations can be
written in matrix form, indexed by space j and discrete time
t , as

G̃r
0 = g̃r

C + g̃r
C
̃rG̃r

0,
(E3)

G̃K
0 = G̃r

0
̃
KG̃a

0 + (
I + G̃r

0
̃
r
)
g̃K

C

(
I + 
̃aG̃a

0

)
.

So G̃r
0 can be obtained by doing an inverse of the matrix

(I − g̃r
C
̃r ) and then multiplying by g̃r

C . G̃r
0 in this case also

obeys time-translational invariance, so it can also be obtained
by direct inverse Fourier transform. G̃a

0 can be obtained by
taking the transpose of G̃r

0. Once G̃r
0 and G̃a

0 are obtained,

we use the second equation to calculate G̃K
0 , which is simply

multiplying matrices.

APPENDIX F: A QUICK DERIVATION OF THE
LEVITOV-LESOVIK FORMULA FOR ELECTRONS USING

THE NEGF

The GF for noninteracting electrons was first derived by
Levitov and Lesovik [18,19] using the Landauer type of
wave scattering approach. Klich [24] and Schönhammer [23]
rederived the formula using a trace and determinant relation
to reduce the problem from a many-body to a single-particle
Hilbert-space problem. Esposito et al. reported an approach
using the superoperator nonequilibrium Green’s function [41].
A more rigorous treatment is given in Ref. [67].

Our method for calculating the CGF can be easily extended
to the electron case. Here we derive the CGF for the joint
probability distribution for the particle number and energy
without a time-dependent driving force. The Hamiltonian for
the whole system can be written as (using the tight-binding
model)

He =
∑

α=L,C,R

c†αhαcα +
∑

α=L,R

(
c†αV αC

e cC + H.c.
)
, (F1)

where cα is a column vector consisting of all the annihilation
operators in region α. c†α is a row vector of the corresponding
creation operators. hα is the single-particle Hamiltonian
matrix. V αC

e has a meaning similar to that of V αC in the phonon
Hamiltonian, and V αC

e = (V Cα
e )†.

We are interested in calculating the GF corresponding to the
particle operator NL and energy operator HL of the left lead,
where HL = c

†
LhLcL and NL = c

†
LcL [68]. One can easily

generalize the formula for the right lead also, as we did in
the phonon case. For electrons, NL and HL can be measured
simultaneously because they commute; i.e., [HL,NL] = 0. In
order to calculate the CGF we introduce two counting fields, ξp

and ξe, for particle and energy, respectively. Here we consider
the product initial state (with fixed temperatures and chemical
potentials for the leads) and derive the long-time result.

Similarly to the phonon case we can write the GF as

Z(ξe,ξp) = 〈
ei(ξeHL+ξpNL) e−i(ξeHH

L +ξpNH
L )〉, (F2)

where superscript H means that the operators are in the
Heisenberg picture at time t . In terms of the modified
Hamiltonian the GF can be expressed as

Z(ξe,ξp) = 〈
U( ξe

2 ,
ξp

2 )(0,t)U(− ξe
2 ,− ξp

2 )(t,0)
〉
, (F3)

where

Ux,y(t,0) = eixHL+iyNL U(t,0) e−ixHL−iyNL

= e− i
h̄
Hx,y t , (F4)

with x = ξe/2 and y = ξp/2, and U(t,0) = e−iHt/h̄. Hx,y is
the modified Hamiltonian, which evolves with both HL and
NL and is given by

Hx,y = eixHL+iyNL H e−ixHL−iyNL

= HL + HC + HR + (
eiyc

†
L(h̄x)V LC

e cC + H.c.
)

+ (
c
†
RV RC

e cC + H.c.
)
, (F5)
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where we have used the fact that

eixHLcLe−ixHL = cL(h̄x),
(F6)

eiyNLcLe−iyNL = e−iycL.

So the evolution with HL and NL is to shift the time argument
and produce a phase for cL and c

†
L, respectively. Next we go to

the interaction picture of the modified Hamiltonian Hx,y with
respect to H0 = ∑

α=L,C,R Hα , and the GF can then be written
on the contour running from 0 to tM and back as

Z(ξe,ξp) = Tr
[
ρ(−∞)Tce

− i
h̄

∫
dτVI

x,y (τ )
]
, (F7)

where VI
x,y(τ ) is written in contour time:

VI
x,y(τ ) = (

eiyc
†
L(τ + h̄x)V LC

e cC(τ ) + H.c.
)

+ (
cR(τ )†V RC

e cC(τ ) + H.c.
)
. (F8)

Now we can expand the exponential in the GF and use
Feynman diagrams to sum the series, and finally, the CGF
can be shown to be

lnZ(ξe,ξp) = Trj,τ ln
[
1 − Ge

0

A
L,e

]
, (F9)

where we define the shifted self-energy for the electron as


A
L,e(τ,τ ′)=ei(y(τ ′)−y(τ ))
L,e(τ+h̄x,τ ′ + h̄x ′) − 
L,e(τ,τ ′).

(F10)

The counting of the electron number is associated with the
factor of a phase, while the counting of the energy is related
to the translation in time. Note that the CGF does not have

the characteristic 1/2 prefactor, compared to the phonon case,
because c and c† are independent variables. In the long-time
limit, following the same steps as we did for phonons, the CGF
can be written as (after doing Keldysh rotation)

lnZ(ξe,ξp)= tM

∫
dE

2πh̄
Tr ln

(
I − Ğe

0(E)
̆A
L,e(E)

)
. (F11)

In the energy E domain, different components of the shifted
self-energy are


t
A(E) = 
t̄

A(E) = 0,


<
A (E) = (ei(ξp+ξeE) − 1)
<

L (E), (F12)


>
A (E) = (e−i(ξp+ξeE) − 1)
>

L (E).

Finally, the CGF can be simplified as

lnZ = tM

∫
dE

2πh̄
ln det

{
I + Gr

0�LGa
0�R[(eiα−1)

× fL(1 − fR) + (e−iα−1)fR(1 − fL)]
}
, (F13)

where α = ξp + ξeE, and fL and fR are the Fermi distribution
functions for the left and right lead, respectively. Note the
difference in the signs of the CGF compared to the phonons.
If we replace α with (E − μL)ξ , the resulting formula is for
the counting of the heatQL = HL − μLNL transferred, where
μL is the chemical potential of the left lead. The CGF obeys
the following fluctuation symmetry [39]:

Z(ξe,ξp)=Z(−ξe + i(βR − βL), − ξp − i(βRμR − βLμL)).

(F14)
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