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Crossing on hyperbolic lattices
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We divide the circular boundary of a hyperbolic lattice into four equal intervals and study the probability of a
percolation crossing between an opposite pair as a function of the bond occupation probability p. We consider the
{7,3} (heptagonal), enhanced or extended binary tree (EBT), the EBT-dual, and the {5,5} (pentagonal) lattices.
We find that the crossing probability increases gradually from 0 to 1 as p increases from the lower pl to the
upper pu critical values. We find bounds and estimates for the values of pl and pu for these lattices and identify
the self-duality point p∗ corresponding to where the crossing probability equals 1/2. Comparison is made with
recent numerical and theoretical results.

DOI: 10.1103/PhysRevE.85.051141 PACS number(s): 64.60.ah, 64.60.De, 05.50.+q

I. INTRODUCTION

Hyperbolic lattices represent curved surfaces in a space that
is effectively of infinite dimensions. While long of interest to
mathematicians [1], and even artists [2], such lattices have
only relatively recently been studied in statistical physics,
where many problems [3–13], including percolation [14–27],
have been examined. Investigation has also been carried out
on closely related hierarchical lattices [28–31]. The study of
hyperbolic lattices helps in the understanding of how geometry
affects the behavior of systems. There are also physical
systems that show negative curvature on the nanoscale [32].
Networks are not confined to a physical dimensionality and can
show hyperbolic behavior, and the current strong interest in
network physics is another motivation to study these systems.

Connectivity in networks is described by percolation, which
has been studied for a wide variety of systems for well over 50
years [33]. For most systems in percolation, there is typically a
bond or site occupation probability p, such that when p is less
than a threshold value pc, all connected components are finite,
while above pc there is an infinite network which connects
every region of the system.

For hyperbolic lattices, however, percolation shows a
more complicated behavior, with two distinct transitions, as
described below. Various numerical and theoretical methods
have been developed to study these transitions and in particular
to find the threshold values [14–27].

In this paper, we investigate percolation on hyperbolic
lattices by considering the crossing probability, a technique
which has not been applied to this system before. The lattices
we study are some that have been considered by others, so
that a comparison of the values for the transition points can be
made. We also study (for the first time numerically) percolation
on the pentagonal lattice, which has some interesting self-dual
features. In general, the determination of the transition points
allows one to compare the different numerical methods and to
test theoretical predictions and bounds. These threshold points
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will be useful for future studies of the nature of the transition
behavior, such as the determination of critical exponents.

Common examples of hyperbolic lattices are those com-
posed of identical polygons of n sides, m of which meet at
a vertex. These lattices can be characterized by the Schläfli
symbol {n,m}, corresponding to the Grünbaum-Shepard [34]
notation (nm). Thus, {6,3} is a regular planar hexagonal
(honeycomb) lattice, while {7,3} is the heptagonal hyperbolic
lattice shown in Fig. 1. The dual to the heptagonal lattice is
the {3,7} lattice, also shown in Fig. 1. The self-dual hyperbolic
{5,5} is shown in Fig. 9.

Recently, another type of hyperbolic lattice has been intro-
duced, the enhanced or extended binary tree (EBT) [14,18]),
which is made by adding transverse bonds to the Bethe lattice.
The EBT, which is simpler to represent and code on a computer,
has been studied extensively for percolation [18–20,22–24].
The EBT and its dual are shown in Fig. 2.

The general picture that has emerged for percolation on hy-
perbolic lattices [14,15,17,18] is that there are two thresholds
pl and pu, and the behavior is continuous between them. For
0 < p < pl , there are no “infinite” (large) clusters connecting
the central area to the boundary sites, for the intermediate
region pl < p < pu there are many infinite clusters touching
the boundary, and for pu < p < 1, there is exactly one infinite
cluster. These three regions persist in the limit that the system
size goes to infinity. This behavior is in contrast to ordinary
percolation, in which there is no intermediate region (in an
infinite system) and the crossing behavior is discontinuous.

Here we study percolation on hyperbolic lattices by exam-
ining a suitably defined crossing probability R(p) as a function
of the bond occupation probability p. The crossing probability
is often studied in ordinary percolation to locate the threshold
and to investigate the critical scaling behavior [35–37]. There,
the crossing probability (the probability of a continuous path
from one opposite side to another) becomes steeper as the
size of the system is increased, with a slope proportional to
L1/ν , where ν is the correlation-length exponent, equal to 4/3
in two dimensions. This behavior defines the transition point
uniquely in the limit of L → ∞ [33]. Furthermore, when the
system boundary is symmetric such as a perfect square, the
crossing probability between opposite sides is exactly 1/2
(because the dual lattice percolates if the original lattice does
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FIG. 1. (Color online) The Heptangonal lattice {7,3} (black or
dark) and the dual lattice {3,7} (magenta or light).

not) [38,39]. A crossing probability of 1/2 applies to a disk
also, with the circumference divided into four equal intervals.
In this paper, we set up a similar crossing problem for a
hyperbolic system by dividing the boundary of a finite system
into four equal-size intervals (or as equal as possible), and
we study the probability of crossing between an opposite
pair of these intervals. We consider the heptagonal, EBT,
EBT-dual, and pentagonal hyperbolic lattices and investigate
how the resulting crossing probability behaves with p. We also
discuss how the value of p = p∗ that corresponds to a crossing
probability of exactly 1/2 relates to the two transition points
pl and pu.

In the following sections we discuss the methods (Sec. II),
the results (Sec. III), and the conclusions (Sec. IV).

FIG. 2. (Color online) The enhanced binary tree (EBT) lattice
(black or dark) and the EBT-dual lattice (red or light). The EBT is
made by joining four trees together. We joined four bonds at the center
rather than having two join there as in Ref. [24].

II. METHOD

We begin by generating a hyperbolic lattice to a fixed
number of generations or levels, so that the outside is
essentially circular as in Fig. 1. Practically, it is only feasible
to generate a relatively small number of levels (up to 10–15)
because of the exponential growth in the number of lattice sites
with level.

For the heptagonal lattice with an open heptagon centered
at the origin, we can derive an expression for the number of
sites N (l) as a function of level as follows: Let al equal the
number of new sites which connect to the next generation,
and let bl equal the number of new sites which connect to the
previous generation. Inspection of Fig. 1 shows that we have
the relations

al = 3al−1 + bl, bl = al−1. (1)

Thus, the total number of sites up to level l is equal to∑l
l′=1(al + bl). By means of generating function techniques,

we find the explicit relation

N (l) = 7

⎡
⎣(

3 + √
5

2

)l

+
(

3 − √
5

2

)l

− 2

⎤
⎦ , (2)

which yields N (l) = 7, 35, 112, 315, 847, 2240, 5887, 15 435,
40 432, 105 875. . . for l = 1,2, . . . ,10, . . .. In Ref. [17], the
corresponding formula for N (l) with a vertex rather than an
open heptagon at the center of the system is given. For large l,
N (l) grows exponentially as ∼7[(3 + √

5)/2]l . These N (l) are
related to other mathematical quantities, such as the number
of fixed points of period l in iterations of Arnold’s cat map at
its hyperbolic fixed point, multiplied by 7 [40].

For the pentagonal lattice, we find

al = 5al−1 + 3bl, bl = 3al−1 + 2bl, (3)

which yields

N (l) =
⎡
⎣

(
7 + 3

√
5

2

)l

+
(

7 − 3
√

5

2

)l

− 2

⎤
⎦ (4)

and equals 5, 45, 320, 2205, 15 125, 103 680, 710 645,
4 870 845 . . . for l = 1,2, . . . ,8, . . . . Here the N (l) are related
to the Fibonacci numbers F (l) by N (l) = 5F (2l)2.

For the EBT, we consider a geometry with four trees
meeting at the origin as shown in Fig. 2, so that it is easy
to divide the boundary into four equal intervals. The number
of sites grows as N (l) = 2l+2 − 3. For the EBT-dual lattice,
we have N (l) = 2l+2 − 4.

We applied the algorithm of Refs. [41,42] to find the
crossing probability on these four lattices. This algorithm
allows one to find an estimate of R(p) for all values of p

in a single sweep of the lattice; averaging over many sweeps
yields an accurate estimate of R(p). The connections between
points in a cluster are represented by a tree structure, bonds
are added one at a time, and clusters are joined together by
means of a union-find operation. The algorithm yields the
crossing probability Rn as a function of the number of occupied
bonds n added to the system, corresponding to a fixed-n or
canonical ensemble. To get the grand canonical result R(p)
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corresponding to a fixed probability p, one must convolve Rn

with the binomial distribution:

R(p) =
N∑

n=0

(
N

n

)
pn(1 − p)N−nRn, (5)

where N is the total number of bonds in the system. For large
N , the binomial distribution becomes very sharp, and for many
problems it is not necessary to carry out this convolution, but
instead use just the value at the maximum of the distribution
n = Np, so that R(p) ≈ RNp. However, for smaller systems
it is necessary to use this convolution to get accurate results.

III. RESULTS

We carried out simulations for each of the four lattices,
recording R(p) at 500 values of p. Below we describe the
results for each lattice.

A. Heptagonal {7,3} lattice

We considered the heptagonal {7,3} lattice up to level
l = 10 with N (l) = 105 875 total sites. Figure 3 shows the
resulting R(p) as a function of p for levels 5, . . . ,10. We find
a gradual transition of R(p) from 0 to 1 as p increases, as is
typical for finite systems for ordinary percolation. However,
here the width of the transition region is more spread out and,
more significantly, the width is limited to a nonzero value as
l → ∞. Equivalently the slope at the inflection point limits to a
finite value as l → ∞. In Fig. 4 we plot the maximum slope as
a function of N (l)−0.7, where N (l) is given by Eq. (2), and find
an extrapolation to a maximum value of ≈6.12. The exponent
−0.7 was chosen empirically to get a fairly straight line;
different choices of the exponent do not change the intercept
significantly and especially do not change the conclusion that
the slope is limited to a finite value as N → ∞.

The close-up in Fig. 3 shows that the curves do not quite
cross at a single point, but the crossing point changes with N .
For a perfectly self-dual system in which the dual lattice is

FIG. 3. (Color online) Curves of crossing probability for the
heptagonal lattice, convoluted with Eq. (5), for various levels l; the
slope increases as l increases. The dashed line passes through the
inflection point, and its intercepts with the lines at R = 0 and R = 1
give our estimates of pB

l and pB
u . Inset: Close-up near crossing point.

FIG. 4. (Color online) Maximum of the slope of R(p) versus
N−0.7 for the heptagonal lattice, where N is given by Eq. (2).

identical to the original lattice, such as bond percolation on a
square lattice and a square boundary in ordinary percolation,
the curves cross at a single point corresponding to R = 1/2
and p = 1/2, but because this system is not self-dual, one
would not expect the crossing to be at (1/2,1/2) here.

We define the duality point p∗(l) as the value of p where
R(p) = 1/2. We call this the duality point because on a truly
dual lattice the occupation probability should also be 1/2
(although below we see that there are differences in the center
that limit the extent that one can make a completely self-dual
system). We find p∗(∞) ≈ 0.6759 by extrapolating to l = ∞
as shown in Fig. 5. Here we observed a scaling of order 1/N (l).

The transition points for the heptagonal lattice were found
by Baek et al. [17] to be pl ≈ 0.53 and pu ≈ 0.72, and on the
dual lattice {3,7} they found pl ≈ 0.20 and pu ≈ 0.37. These
four values are evidently not completely consistent because

FIG. 5. (Color online) Dual point p∗(l) versus 1/N (l), where
N (l) is the number of sites on the lattices of levels l = 5, . . . ,10
for the heptagonal lattice as given by Eq. (2). We show results for
the raw (canonical) (upper points) and convoluted (grand canonical)
(lower points) data; both extrapolate to the same value, p ≈ 0.6759,
as L → ∞.
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FIG. 6. (Color online) Values of p where R(p) = 1 − 10−5

(upper data points) and R(p) = 10−5 (lower data points), plotted
as a function 1/l, for the {7,3} heptagonal lattice. The linear
extrapolation to l → ∞ gives our estimates pe

u = 0.810 and pe
l =

0.551. Extrapolations for the other lattices show similar linear
behavior and the values for pe

l and pe
u are given in Table I.

one should have, for any lattice and its dual,

pl + pdual
u = 1, pu + pdual

l = 1. (6)

One would expect that for p > pu, R(p) = 1, and for p <

pl , R(p) = 0. However, how R(p) approaches those values
from the region pl < p < pu is not clear. It appears from our
data the approach is tangential (with slope 0), and therefore it is
rather hard to identify the transition points accurately. We can,
however, find bounds to that behavior by drawing a tangent line
from the inflection point. Drawing a line through the inflection
point in Fig. 3, with the maximum slope ≈6.12, and finding
the intercepts for R(p) = 0 and R(p) = 1 gives us the rather
crude bounds pl < pB

l = 0.594 and pu > pB
u = 0.758.

A more precise method to get bounds or estimates for the
transition point is to look at the values of p where R(p) = ε and
R(p) = 1 − ε, where we chose ε = 10−5, and then extrapolate
to L = ∞. Figure 6 shows that these estimates appear to scale
as 1/l, and extrapolating the points to l → ∞ gives the values
of pe

l and pe
u listed in Table I. In principle, the smaller value of

ε the better, but noise in the data and precision of the numbers
in our output files limited how small we could make ε. The

TABLE I. Values of the dual point p∗ where R(p) = 1/2; the
slope at that point; our bounds pB

l and pB
u for the various lattices

we studied, such that pl < pB
l , and pu > pB

u ; and our extrapolated
estimates of the transition points pe

l and pe
u. In general, the numbers

are expected to be accurate to about ±1 in the last digit shown, except
the estimates pe

l and pe
u, which are expected to be accurate to about

±10 in the last digits.

Lattice p∗ Max. slope pB
l pB

u pe
l pe

u

{7,3} 0.6759 6.12 0.594 0.758 0.551 0.810
EBT 0.4299 6.79 0.356 0.503 0.306 0.564
EBT-dual 0.5698 6.83 0.497 0.643 0.452 0.699
{5,5} 0.506 3.12 0.346 0.666 0.263 0.749
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FIG. 7. (Color online) The crossing probability R as a function
of p for the EBT lattice, for systems of 5–15 levels. The dashed line
passes through the inflection point.

fixed number of points that we recorded (500) also limited
the final precision of the thresholds. Varying the value of ε

by an order of magnitude in each direction and finding the
extrapolated thresholds, we estimate that the overall error in
our threshold estimates is about ±0.01.

B. EBT and EBT-dual lattices

We simulated the EBT lattice to the level of 15 and the EBT-
dual lattice to the level of 10. Figures 7 and 8 show the resulting
crossing probability distribution for these two lattices. For the
EBT, the maximum slope converges to ≈6.79. Its duality point
is at p∗ ≈ 0.4299, yielding the bounds pB

l ≈ 0.356 and pB
u ≈

0.503. The EBT-dual lattice’s crossing probability distribution
curve also converges to a maximum slope ≈6.83, the duality
point of which is at p∗ ≈ 0.5698, yielding the bounds pB

l =
0.497 and pB

u = 0.643. These bounds satisfy the expected
duality (6) within errors. The estimates are also found to scale
as 1/l and the resulting values pe

l and pe
u are given in Table I.

These estimates do not satisfy the duality relations (6) very
precisely, reflecting rather large error bars in their values.

FIG. 8. (Color online) The crossing probability R as a function
of p for the EBT-dual lattice, for systems of 5–10 levels. The dashed
line passes through the inflection point.
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FIG. 9. (Color online) Pentagonal (black or dark) and dual
pentagonal (red or light) lattices, both {5,5}.

C. Pentagonal lattice

We also considered the pentagonal {5,5} lattice, which
is shown in Fig. 9. This lattice is interesting because it is
self-dual in an infinite system. For the systems of a finite
number of levels, it is not precisely self-dual because the
center is different: on what we call the pentagonal lattice,
there is a pentagon at the center, while for the pentagonal-dual
lattice, there is a vertex at the center (see Fig. 10). We find
that p∗ = 0.506 ± 0.001, so it is not exactly at 0.5 as one
might expect from duality. Evidently, the central region plays
an important role and a significant fraction of the percolating
clusters connecting opposite sides pass through it, making the
pentagonal and pentagonal-dual lattices slightly different with
respect to the crossing problem we consider.

The slope of its crossing probability curve converges to a
maximum value of ≈3.12, with bounds pB

l ≈ 0.346 and pB
u ≈

0.666, which indicates the distribution is nearly symmetric.

FIG. 10. (Color online) The crossing probability R as a function
of p for the {5,5} or pentagonal lattice, for systems of 5, 6, and
7 levels. The curves are nearly indistinguishable on this plot. The
dashed line passes through the inflection point.

Recently, Delfosse and Zémor [43] have shown that, for any
self-dual hyperbolic lattice {m,m}, 1/(m − 1) � pl � 2/m, so
that for m = 5, 1/4 � pl � 2/5. Our bounds pB

l and pB
u fall

well within these values, and our estimates pe
l and pe

u are
close to the bound 1/4 and (by duality) 3/4, respectively. This
bound follows from approximating the hyperbolic lattice as a
tree (Bethe lattice) of coordination number 5.

IV. CONCLUSIONS

In summary, we have the following results and conclu-
sions:

(i) The crossing probability approaches a continuous S-
shaped curve with a finite maximum slope at the inflection
point as l → ∞.

(ii) By drawing a tangent line through the inflection point
and finding its intercept with R(p) = 0 and R(p) = 1, we
find the bounds pB

l and pB
u for the transition points pl and

pu listed in Table I. Also, by extrapolating where R(p) = ε

and R(p) = 1 − ε to L → ∞, we find the estimates pe
l and

pe
u, also listed in Table I. In comparison, previously measured

and predicted values of pl and pu (determined through other
methods) are listed in Table II.
(iii) For the {7,3} lattice, the reported value pu = 0.72 [17]

is inconsistent with our lower bound pB
u = 0.758 and estimate

0.810. However, those authors’ value for pl = 0.20 on the dual
lattice {3,7} is consistent with this bound, by Eq. (6).

(iv) For the EBT lattice, our bound pB
u = 0.503 and es-

pecially our estimate pe
u = 0.564 are inconsistent with the

prediction pu = 1/2 [23]. Our results for pu are however
consistent with the measurement of pu by Ref. [18]. For pl ,
our estimate 0.306 is in substantial agreement with the results
of both Refs. [17] and [18].

(v) For the EBT-dual lattice, our bounds and estimates for
the transition points agree with those of Ref. [18] within
expected errors.

(vi) For the {5,5} lattice, we report measurements of the
thresholds for the first time, and our estimates are close to the
theoretical bounds pl = 1/4 and pu = 3/4, which follow by
assuming a tree structure [43].
(vii) We determine the point p∗ where R(p∗) = 1/2 for all
four lattices we consider and find that the behavior of R(p)
is nearly symmetric about that point. For the {5,5} lattice,
p∗ ≈ 0.506, slightly larger than the value 0.5 one might expect
from self-duality. We believe the deviation from 0.5 is due to
the nonequivalent configurations at the center for the lattice and
its dual, implying that the two finite systems are not exactly
dual to each other.

TABLE II. Previous values of the transition points.

Lattice pl pu Ref.

{7,3} 0.53 0.72 [17]
{3,7} 0.20 0.37 [17]
EBT 0.304(1) 0.564(1) [18]
EBT 0.48 [17]
EBT (

√
13 − 3)/2 ≈ 0.3028 0.5 [23]

EBT-dual 0.436(1) 0.696(1) [18]
{5,5} 0.25 � pl � 0.4 [43]
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(viii) We have found a variety of finite-size scaling relations,
as shown in Figs. 4, 5, and 6. Another scaling relation that
exists in the literature is that of Nogawa and Hasegawa [18],
who find that the mass of the root cluster in the EBT scales as
Nψ(p) in the intermediate region, where ψ is a function of p.
Clearly it would be desirable to have a general scaling theory
that combines all of these finite-size scaling relations. This is
an interesting problem for future study.

(ix) Another area for future study is site percolation on
hyperbolic lattices. For site percolation on fully triangulated
lattices in ordinary two-dimensional space, pc = 1/2. For fully
triangulated hyperbolic lattices, such as the {3,7} lattice, we
guess that the behavior of R(p) will be precisely symmetric
about p = 1/2, because of its self-matching property. Also,
because bond percolation on a given lattice is equivalent to site

percolation on its covering lattice (or line graph), the results
here for bond percolation on the {7,3} lattice can be mapped to
site percolation on its covering lattice, which is an interesting
kind of hyperbolic kagomé lattice. Covering lattices of the
other lattices we considered here contain crossing bonds.

Note added in proof. Just recently, Baek [44] argued that the
conjectured result pu = 0.5 for the EBT in Ref. [23] should be
replaced by a lower bound of about 0.55, which is consistent
with our results here.
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Köln, 2007).
[3] Y. Sakaniwa, H. Shima, Phys. Rev. E 80, 021103 (2009).
[4] Z.-X. Wu and P. Holme, Phys. Rev. E 81, 011133 (2010).
[5] F. Sausset, C. Toninelli, G. Biroli, and G. Tarjus, J. Stat. Phys.

138, 411 (2010).
[6] S. K. Baek, P. Minnhagen, H. Shima, and B. J. Kim, Phys. Rev.

E 80, 011133 (2009).
[7] H. Shima and Y. Sakaniwa, J. Stat. Mech.: Theory Exp. (2006)

P08017.
[8] N. Madras and C. C. Wu, Probab. Comput. 14, 523 (2005).
[9] C. C. Wu, J. Stat. Phys. 100, 893 (2000).

[10] E. Swierczak and A. J. Guttmann, J. Phys. A 29, 7485 (1996).
[11] D. Krioukov, F. Papadopoulos, M. Kitsak, A. Vahdat, and
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