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Scaling theory for the quasideterministic limit of continuous bifurcations
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Deterministic rate equations are widely used in the study of stochastic, interacting particles systems. This
approach assumes that the inherent noise, associated with the discreteness of the elementary constituents, may be
neglected when the number of particles N is large. Accordingly, it fails close to the extinction transition, when
the amplitude of stochastic fluctuations is comparable with the size of the population. Here we present a general
scaling theory of the transition regime for spatially extended systems. We demonstrate this through a detailed study
of two fundamental models for out-of-equilibrium phase transitions: the Susceptible-Infected-Susceptible (SIS)
that belongs to the directed percolation equivalence class and the Susceptible-Infected-Recovered (SIR) model
belonging to the dynamic percolation class. Implementing the Ginzburg criteria we show that the width of the
fluctuation-dominated region scales like N−κ , where N is the number of individuals per site and κ = 2/(du − d),
du is the upper critical dimension. Other exponents that control the approach to the deterministic limit are
shown to be calculable once κ is known. The theory is extended to include the corrections to the front velocity
above the transition. It is supported by the results of extensive numerical simulations for systems of various
dimensionalities.
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I. INTRODUCTION

The connection between a stochastic model of particle reac-
tions (or equivalently, birth-death processes) and its associated
deterministic rate equations is a topic of continuing interest.
The common intuition is that the rate equations are not only
qualitatively correct, but indeed provide, when the number
of interacting particles is large, a quantitatively accurate
approximation. This intuition is given concrete support by
the � expansion of van Kampen [1]. However, there are a
number of situations in which this picture is too naive and
needs to be refined. One by now classic example of this is
the exponentially small rate of extinction for a system with an
absorbing state [2], which dominates the long-time dynamics,
and is completely missed by the rate equations. Another
example is the anomalously large corrections [3,4] to the front
velocity in stochastic systems which exhibit propagation into
an unstable state, e.g., systems whose rate equation is the
Fisher-Kolmogorov equation.

A system which captures features of both these examples
is the spatially extended version [5] of the classic SIS
(Susceptible-Infected-Susceptible) infection model of Weiss
and Dishon [6]. In this model, contact (either on-site or
nearest-neighbor) between an infected individual and a sus-
ceptible can, with some probability, convert the susceptible
into an infected. Infected individuals spontaneously leave the
infected state, reverting to susceptible. The well-mixed SIS
system for sufficiently high infection probability possesses an
endemic state, with a essentially constant level of infecteds,
which, however, is subject to an exponentially small rate
of extinction due to the existence of the absorbing state of
zero infecteds. In addition, the deterministic rate equation is
of Fisher-Kolmogorov type, and so a localized infection in
the non-well-mixed case exhibits at the deterministic level
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an infection wave which propagates at constant velocity.
However, the stochastic system exhibits not a bifurcation (a
transition to a different uniform state), but rather a phase
transition with its associated large spatiotemporal fluctuations,
characterized by the anomalous (for dimension D < 4) scaling
exponents of the directed-percolation (DP) problem [7].

The connection between this complicated statistical behav-
ior and the deterministic rate equations, which should be valid
in the large-N limit (N being the total number of individuals,
both susceptible and infected, on each site), is thus a natural
topic for investigation, a study we initiated in a recent paper [5]
(paper I). There we found that in one spatial dimension, the
large-N behavior was governed by a scaling law with an
exponent which we called κ ≈ 0.66. For example, the phase
transition point was shifted from the deterministic bifurcation
point by an amount proportional to N−κ . Investigating the
(transverse) correlation length ξ⊥, we found that there was a
scaling collapse so that ξ⊥Nτ , with τ = 0.41, was a function
of Nκ times the distance to the deterministic bifurcation point.

In this paper, we show that this behavior is in fact a
nonequilibrium version of what one may call the Ginzburg
crossover. A fundamental concept in equilibrium field theory
is that of the Ginzburg criterion, which states under which
circumstances the noise is relevant. This is, of course, what
predicts the existence of an upper critical dimension (UCD),
above which the noise does not affect the long distance
behavior, and so the scaling is mean-field-like. The logic
underlying the Ginzburg criterion implies that if one could
“dial” down the noise, the system would look more and more
classical, and a crossover (which we will call the Ginzburg
crossover) between the classical and noise-dominated regimes
should become apparent, with the noise dominating the
very long-distance behavior (below the UCD, of course).
This program has been implemented in the context of the
equilibrium finite-range Ising model, where spins interact
with all their neighbors out to a distance R. As R increases,
each spin is interacting with what is more and more closely
approximating the mean field, and mean-field behavior at short
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scales sets in. The problem can be carried out analytically for
the finite-range spherical model [8] and has been investigated
via simulation in the finite-range Ising model [9].

Another fundamental epidemics model considered in
paper I is the Susceptible-Infected-Recovered (SIR) infection
model of Kermack and McKendrick [10], where recovered
individuals are immune to further infection. The critical
behavior of this model is governed by the dynamic percolation
exponents, with an upper critical dimension of 6. In paper I
we have carried a numerical investigation of the SIR model as
well, showing that the theory converges, in the large N limit, to
its mean-field limit with scaling exponents κ and τ that differ
from those of the SIS (DP) model. Here we consider again
the SIR model and derive analytically the relevant exponents
using the same theory of the Ginzburg crossover, applied to
the different universality class of the SIR model.

The main quantity used in the theory of epidemics to
characterize the transmission potential of a disease is the basic
reproduction rate R0, which is the expected number of sec-
ondary cases produced by a primary case in a population that
is completely susceptible [11]. In the absence of demographic
noise (e.g., in an infinite-dimensional model) the transition
takes place at R0 = 1. Noise shifts the transition to higher
values of R0, but, as we will show below, the value R0 = 1
still admits a special feature: The rescaled distance (i.e., the
distance multiplied by Nκ ) between R0 = 1 and the actual
transition point has a finite limit as N → ∞ as long as κ � 1.
This interesting feature allows one to examine the scaling
properties numerically in a very efficient manner, as it saves
the effort needed to identify the location of the transition point
for each N separately. This feature is utilized here when we
compare the expected results with numerical simulations.

II. THE WELL-MIXED SIS DYNAMICS AND THE
TRANSITION ZONE

We first review the well-mixed version of the SIS model
and the relation of the stochastic model to the deterministic
equations that determine the evolution of the system. Although
this stochastic model has already been analytically solved, the
discussion allows us to present the concepts that we intend to
use below and to set the mathematical framework used in the
study of the spatial models.

Let us consider a population of exactly N individuals, some
of which are infected (I) and the rest are susceptible (S =
N − I ). The allowed processes are infection (with rate α/N ,
this is the type II model of Ref. [11]) and recovery (with rate
β):

S + I
α/N−→ 2I I

β−→ S. (1)

The corresponding master equation for the microscopic pro-
cess can be formulated in terms of Pn, the chance to have n

infected individuals:

Ṗn = β[−nPn + (n + 1)Pn+1] + α

N
{−n(N − n)Pn

+ (n − 1)[N − (n − 1)]Pn−1}. (2)

Defining 〈I 〉 = ∑
n nPn as the expected number of infecteds,

one finds after index rearrangement

〈İ 〉 = −β〈I 〉 + α

N

∑
n

n(N − n)Pn = (α − β)〈I 〉 − α

N
〈I 2〉.

(3)

The essence of the van Kampen � expansion is that this
equation closes if 〈I 〉 � 1, so that the variance of I makes
a negligible contribution, giving the standard logistic equation

〈İ 〉 = (α − β)〈I 〉 − α

N
〈I 〉2. (4)

Since 0 � 〈I 〉 � N , it is necessary for N to be large, in order
for the rate equation [Eq. (4)] to be valid. This, however, is
not sufficient. If α > β, Eq. (4) has an attractive fixed point
at 〈I 〉 = I0 = N (1 − 1/R0), where R0 ≡ α/β is the primary
reproductive number and I0 is indeed large if N is large, as
required. Although the system admits an absorbing state at
I = 0, the chance of a giant fluctuation that takes the system
from I0 to zero is exponentially small in I0; thus when N → ∞
stochastic extinction (fadeout) is impossible once the system
reaches its steady state. However, if the number of infected
individuals in the initial state is small, stochastic effects are
transiently present even in the N → ∞ limit. For example,
introducing one infected individual results in either short-time
extinction (with probability 1/R0) or an endemic state [with
probability (R0 − 1)/R0)]. If R0 = 1 exactly, at the N → ∞
limit the system performs an unbiased random walk in n, the
number of infecteds, and the theory of first passage times tells
us that the chance of extinction is still unity, but the probability
P (q) to have q infection events scales like q−3/2.

At finite N the situation is more complex. Now the steady
state of Eq. (4) corresponds to a finite number of infected
individuals in the endemic state, which mean that a finite, but
large, fluctuation may cause a fadeout. The chance for such a
fadeout is large when R0 is close to one, i.e., when the attractive
fixed point corresponds to only a few individuals. Instead of
having a sharp transition from extinction to proliferation at
R0 = 1, now the transition is “soft”: defining �̃ = R0 − 1 as
the distance from the transition, I0 ∼ N�̃; a metastable state
exists only if this quantity (the distance of the stable solution
from the absorbing state) is larger than the typical fluctuation
size

√
N ; thus a transition zone of width �̃ ∼ N−1/2 occurs

between the extinction and the proliferation regimes. As shown
in Ref. [12], P (q) decays exponentially in the extinction phase
�̃ < 0, has a peak at exp (const · N ) at the endemic phase
�̃ � 1/

√
N , and decays like q−3/2 with a cutoff at N in the

transition zone. Note that the width of the transition zone goes
to zero as N approaches infinity, recovering the sharp transition
at �̃ = 0 that characterizes the deterministic theory.

III. THE ABSENCE OF SELF-INTERACTION

The derivation of Eq. (4) from Eq. (3) involves the neglect
of O(1/N ) terms. In particular one can easily see that the rate
of infection when only one infected individual appears in a
population of size N is α(1 − 1/N ), so the transition occurs
at R0 = 1 + 1/N . This result reflects the most trivial effect of
discretization, namely, the absence of self-interactions [13]:
An infected individual cannot infect itself, so the effective size
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of the population “seen” by the first infected is N − 1 instead
of N . There are presumably other nonsingular 1/N corrections
to the transition point, but for convenience we will refer to all
these 1/N corrections as the “self-interaction” effect.

Putting this fact together with the discussion of the last
section, we realize that there are two N dependent functions
that control the transition: one is the O(1/N ) shift of the
transition point, the other is the width of the “quantum” regime
(the region above the transition point in which the system
is controlled by demographic fluctuations) that scales, in the
well-mixed limit, like N−1/2. As N → ∞ the shift is negligible
with respect to the width of the transition zone, so there is only
one scale in the problem, �̃ ∼ N−1/2. However, this behavior
is not generic. As we will show below, in some cases the width
of the transition zone is much narrower than 1/N , and in these
cases one should take into account both scales.

IV. SPATIAL SIS MODEL AND THE TRANSITION ZONE

What happens if the system is extended? For the sake
of concreteness let us focus on the example of an infinite
one-dimensional array of patches with N individuals on each
patch. The probability per unit time of a susceptible on the
nth site being infected by a given sick agent residing at this
site is α(1 − χ )/N and of being infected by a given infected
resident of one of the neighboring sites is αχ/(2N ) [in a
d-dimensional system, this chance will be αχ/(2dN)]. This
corresponds to the “travelers model” considered in Ref. [14].
The deterministic rate, or mean-field (MF), equations, are, in
one dimension,

İn = −βIn + α(1 − χ )

N
In(N − In)

+ αχ

2N
(N − In)(In+1 + In−1) (5a)

= αχ

2d
∇2I + (α − β)In − α

N
I 2
n − αχ

2dN
I∇2I, (5b)

where Eq. (5b) also applies to the general d-dimensional case,
and ∇2 stands for the discrete version of the Laplacian operator.
The last, nonlinear diffusion, term does not materially affect
the dynamics (naive dimensional analysis shows that it is
an irrelevant operator). Without this term one recognizes, on
the MF level, the celebrated Fisher (or FKPP [15]) equation
for invasion of a stable into an unstable phase, with a sharp
transition at α = β (or R0 ≡ α/β = 1), and front propagation

with a velocity of 2
√

αχβ�̃/(2d), since the effective diffusion
constant is αχ/(2d) and the net growth rate is α − β = β�̃.

What happens when stochasticity is taken into account? If
N = 1, i.e., there is only one agent on any site and so all infec-
tions are nearest-neighbor (thus it is conventional in this case
to take χ = 1), the stochastic process is known as the contact
process, which undergoes a continuous phase transition from
extinction to proliferation. The “effective” infection rate is
smaller than α, since a sick agent cannot infect its neighbor if
it is already sick. The transition happens at some Rc > 1, e.g.,
here for N = 1, Rc ≈ 3.297. While the exact value of Rc is, of
course, nonuniversal, the extinction transition, which belongs
to the directed percolation equivalence class [7], admits three
universal critical exponents:

(1) The spatial correlation length diverges as |�|−ν⊥ , where
we introduce � ≡ R0 − Rc as the distance from the stochastic
transition, as opposed to �̃, which measures the distance to
the mean-field transition; in one dimension, ν⊥ ≈ 1.09.

(2) The temporal correlation length diverges like |�|−ν‖ ; in
one dimension, ν‖ ≈ 1.73.

(3) As the transition is approached from above, the steady
state density of infecteds, I0, vanishes with � as �βρ [16]; in
one dimension, βρ ≈ 0.28.

The values of these critical exponents depend only on the
dimensionality of the system and not on the microscopic details
of the process; in particular, for any given dimensionality d,
the critical exponents are the same for all finite N . Above the
critical dimension d = 4 the exponents take their MF values,
ν⊥ = 1/2, ν‖ = 1, βρ = 1.

As N (the number of agents on a site) increases, de-
mographic fluctuations become smaller. In the infinite N

limit one recovers the MF transition described in Eq. (5b).
First, the transition point moves back to Rc = 1; second,
the values of the critical exponent in this deterministic limit
are equal to their MF values. For example it is clear from
Eq. (5b) that above the transition the density scales linearly
with �, i.e., that βρ = 1. Below the transition I is small
and the nonlinear term in Eq. (5b) is negligible; hence if
I (x,0) = δ(x), I (x,t) ∼ exp(−x2/2Dt − �t). The maximal
density at x occurs when t ∼ |x|/√�D; thus the spatial
profile of total infections is proportional to exp(−|x|/ξ⊥) with
ξ⊥ ∼ 1/

√
�, so that νMF

⊥ = 1/2.
At any finite N , though, close enough to Rc the system

is controlled by stochastic effects, as implied by universality,
with the same critical scaling as for N = 1. As N becomes
large, the effects of stochasticity are restricted to a narrow
region close to the transition point, which defines the width of
the transition (“quantum”) zone.

In paper I, we have shown numerically that as we approach
the transition point from below the spatial correlation length
is given by

ξ⊥ = AN−τ (Rc − R0)−ν⊥ , (6)

where the transition takes place at Rc = 1 + BN−κ . The
values κ ≈ 0.66 and τ ≈ 0.41 were obtained numerically
for different microscopic models that belong to the DP
equivalence class and seem to be identical for the different
models up to the accuracy of the numerics. As long as κ � 1,
the region in the parameter space in which the system is
controlled by stochasticity coincides with the interval between
the stochastic and the deterministic critical points; i.e., it
also scales like N−κ . Rescaling appropriately the correlation
length and the distance from the transition, our numerics (see
paper I) showed a whole scaling regime described by the
function

Nκ−τ/ν⊥ξ
−1/ν⊥
⊥ = F(�̃Nκ ). (7)

The scaling function F vanishes linearly at a positive value
of its argument, which marks the transition point. Notice that
what enters here is �̃ ≡ R0 − 1, so that the behavior at the
classical transition point is controlled by the fluctuations, even
though it is outside the range of the linear behavior of F . We
will see later that the story is more complicated for κ > 1.
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As discussed in the introduction, this scaling behavior is
the result of a crossover between the deterministic theory and
the critical theory as the critical point is neared. We will now
use this to derive a scaling relation between τ and κ . Then we
will obtain the value of κ by calculating the Ginzburg criterion
for the model.

To connect τ to κ , one observes that the scaling function
F(x) takes us from the stochastic regime at finite x (close to
the transition) to the the deterministic regime at large negative
x, corresponding to the region deeply below the transition.
Even for |x| large, the system may still be arbitrary close to
the transition (�̃ may be arbitrarily small) as long as N is
large enough. This implies that in the x → −∞ limit, the
correlation length must diverge like �̃−1/2, independent of N .
As a result the leading behavior of F(x) at large negative x

must obey F(x) ∼ (−x)1/2ν⊥ . To cancel the N dependence in
the expression

Nκ−τ/ν⊥ξ
−1/ν⊥
⊥ = �̃1/2ν⊥Nκ/2ν⊥ , (8)

one must have the scaling relation

τ = κ
(
ν⊥ − 1

2

)
. (9)

Given that we found κ ≈ 0.66, this implies a value of τ ≈ 0.40,
consistent with our numerical findings. This scaling relation
also implies that we can rewrite Eq. (7) as

ξ⊥ = Nκ/2[F(�̃Nκ )]−ν⊥ . (10)

A similar argument is applicable to any of the quantities
that diverge at the transition. One example that will be used
below is the overall to “mass”, MN , of a cluster; namely the
average total number of infection events before extinction.
Utilizing the same scaling analysis, and the known mean-field
dependence MN = 1/�̃, one expects that for κ < 1,

MN ∼ Nκ [G(�̃Nκ )]−γ , (11)

where G vanishes linearly at the transition point, and γ is the
critical scaling exponent for the mass [7],

γ ≈ 1.24. (12)

Eq. (11) is a useful relation that allows us to recover κ directly
from numerical simulations at fixed R0. To investigate the
critical exponents one has to locate exactly the transition point
for any value of N ; this is indeed a very tedious task. Instead,
we can choose to simulate exactly at R0 = 1; i.e., �̃ = 0.
At this point the argument of the scaling function is exactly
zero, independent of N , so the mass scales like Nκ . A plot of
MN/Nκ versus N at R0 = 1 must converge to a constant in
the large N limit. Below we will test this condition to verify
numerically the predictions of our theory for κ , as explained
in the next section.

However, this strategy works only for κ � 1. As explained
above, for higher values of κ the trivial self-interaction shift of
the transition point is not negligible in the N → ∞ limit. Thus,
as will be exemplified below, for dimensions where κ > 1 one
has to find first the transition point at Rc = 1 + O(1/N ), and
only near that point does the transition region manifest itself.

V. THE EXPONENT κ AND THE GINZBURG CROSSOVER

Determining κ , thus, is enough to know everything about
the quasideterministic regime. To find the value of κ we
adopt here a Ginzburg criterion approach, looking for the
leading perturbative correction in inverse powers of N , and
associate the stochastic regime with the region where this
leading correction is O(1).

As a platform for the perturbative analysis we have chosen
the Peliti-Doi field theoretic technique [17] (see Ref. [18] for
details). Starting with the master equation for the SIS process,
at a single site (zero-dimensional system) with N individuals
presented above. Equation (2) may be written as

ψ̇ = −Hψ, (13)

where

ψ ≡
∑

n

Pn|n〉. (14)

Using the creation-annihilation operators a|n〉 = n|n − 1〉 and
a†|n〉 = |n + 1〉, the “Hamiltonian” takes the form

H/β = (a†a − a) + R0(a†a − a†a†a)

+ R0

N
(a† − 1)(a†aa†a). (15)

Using the commutation relation [a†,a] = 1 and shifting from
a† (that has a vacuum expectation value of unity [18]) to ā =
a† − 1 one obtains

H/β =
[

1 − R0

(
1 − 1

N

)]
āa − R0

(
1 − 1

N

)
āāa

− R0

N
(āāāaa + 2āāaa + āaa). (16)

The first, “mass” term of the Hamiltonian determines the
transition point: The system is in the active phase when
the (renormalized) mass becomes negative. If N → ∞, an
outbreak may occur at α > β; i.e., the transition happens when
�̃ = R0 − 1 = 0. The 1/N correction to this result reflects,
again, the absence of self-interactions.

Formally, the time evolution of ψ is given by

ψ(t) = e−Htψ(t = 0). (17)

With the aid of time slicing and the coherent state repre-
sentation one may arrive at a path integral representation of
the evolution in time where the former creation-annihilation
operators are replaced by complex-valued fields defined over
a continuous space-time [18]:

ψ(t) =
∫

DaDā e−S0(ā,a)−S1(ā,a)ψ(0), (18)

where

S0 =
∫

ddx dt ā(�x,t)[∂t − D∇2 − m]a(�x,t) (19)

with m = �̃ − R0
N

and

S1 = R0

∫
ddx dt

[ (
1 − 1

N

)
āāa

− 1

N
(āāāaa + 2āāaa + āaa)

]
. (20)
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The renormalized values for all the constants in the problem
may be obtained perturbatively by averaging over the cumulant
expansion of exp(−S1) with weight exp(−S0). The free
propagator, in terms of spatial Fourier components, is

〈ā(k′,t ′)a(−k,t)〉 = δ(k′ + k)θ (t − t ′)e(−k2+m)(t−t ′). (21)

Here we are not really interested in the exact values of
the perturbative corrections. All we are looking for is the
width of the transition zone in the limit �̃ → 0 and N → ∞.
If a perturbative correction is proportional to N−y�̃−x , this
correction becomes important (i.e., of order unity) when
�̃ = N−y/x . There are many possible perturbative corrections
with different x and y, but κ is determined by the one that
corresponds to the minimal value of y/x. In the Appendix we
will analyze the various elements of the perturbative expansion
and conclude that

κ = 2

4 − d
; (22)

in particular κ is 2/3 in one dimension, with almost perfect
agreement with the numerical results reported in paper I. The
divergence of κ as d approaches 4 from below reflects the
fact that 4 is the upper critical dimension for the SIS model.
Moreover our result for a well-mixed system (zero dimensions)
is indeed κ = 1/2, again with perfect agreement with the
known results in that case.

For one-dimensional SIS, our expression yields κ = 2/3,
while for two-dimensional SIS, our expression predicts κ = 1.
In the latter case the size of the stochastic regime is of the same
order as the self-interaction 1/N corrections. As shown above,
κ determines also the relation between the average size of the
epidemic and N when the infection rate takes its N → ∞
critical value, R0 = 1. Thus, in this case, we expect MN ∼ Nκ .
The data for this are presented in Fig. 1. The results are indeed
consistent with the prediction; however, the convergence to
a constant is quite slow, consistent with a N−1/3 behavior,

0 0.05 0.1 0.15 0.2 0.25 0.3

N
−1/3

0

0.2

0.4

0.6

0.8

1

M
N
 / 

N
2/

(4
−d

)

d = 2
d = 1

FIG. 1. (Color online) The scaled “mass” of the aggregate,
MN/Nκ = MN/N 2/(4−d), for the SIS model in one and two dimen-
sions. The Ginzburg analysis suggests that, for large N , this ratio
approaches a constant. Indeed, the plot shows that as N increases the
ratio converges to a finite value. However, this convergence is very
slow, as implied by the N−1/3 scaling of the abscissa.

slower than the MN/
√

N ≈ √
π/2 − 1/(3

√
N ) seen in zero

dimensions [19].
The situation is similar for the other order parameters of the

system and their associated critical exponents. For example,
the longitudinal correlation length, ξ‖ is given for d � 2 by

ξ‖ = Nκ [F‖(�̃Nκ )]−ν‖ , (23)

where the scaling functionF‖ vanishes linearly at the transition
point and obeys F‖(x) ∼ (−x)−1/ν‖ for large negative x.
This assures the consistency with the mean-field behavior
ξ‖ ∼ (−�̃)−1 independent of N . We have verified Eq. (23)
numerically for the case d = 1 (data not shown). The situation
for the density of infecteds, I0, above the transition is slightly
more complicated, as the mean-field result is itself more
involved, namely,

IMF
0 = N

�̃

1 + �̃
. (24)

In other words, the quantity which tracks � in mean-field
theory is Ĩ0 ≡ I0/(1 − I0/N), with ĨMF

0 = N�. Then, for
finite N , we have the scaling behavior

Ĩ0 = N−κ [FI (�̃Nκ )]βρ . (25)

The scaling function FI vanishes linearly at the transition and
obeys FI (x) ∼ x1/βρ for large positive x. Equation (25) has
also been verified numerically from simulation for the case of
SIS in d = 1 (data not shown).

In three dimensions, κ > 1, and so the transition region is
smaller than the O(1/N ) (self-interaction) shift in the transi-
tion point. This leads to an interesting situation where there
are two separate scaling regimes for large N . We will return
to this point after first discussing the case of the SIR model.

VI. THE SUSCEPTIBLE-INFECTED-RECOVERED (SIR)
MODEL ON SPATIAL DOMAINS.

The other classic model of epidemics is the SIR model,
which assumes that a recovered (R) individual cannot be
infected again, so it is removed irreversibly from the “pool” of
susceptible. The basic processes are

S + I
α/N−→ 2I, I

β−→ R. (26)

The corresponding master equation for the microscopic pro-
cess in a well-mixed population can be formulated in terms of
m, the number of susceptibles, and n, the number of infected
individuals:

Ṗm,n = β[−nPm,n + (n + 1)Pm,n+1] + α

N
[−nmPm,n

+ (n − 1)(m + 1)Pm+1,n−1]. (27)

In the deterministic limit, with the definition S = ∑
m mPm,n

and I = ∑
n nPn,m and neglecting correlations (nm = n̄m̄)

one gets the equations

Ṡ = − α

N
SI, İ = −βI + α

N
SI, Ṙ = βI, (28)

where the last equation is just a consequence of the I dynamics.
Since S = N − R − I , the two coupled equations (again
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introducing �̃ = α/β − 1)

İ = β�̃I − α

N
I 2 − α

N
IR, Ṙ = βI (29)

are enough to describe the system. The SIR dynamics does
not support a nontrivial equilibrium steady state; instead, at
any site the epidemic disappears when t → ∞, leaving a
finite density of recovered behind. This is manifested by the
irreversible dynamics of R.

Clearly, given I (x,t) one can solve for the number of
recovered individuals at x:

R(x,t) = β

∫ t

0
I (x,τ ) dτ. (30)

Plugging that into Eq. (29) and adding terms that represent
off-site infection, or equivalently, migration and discrete noise
one gets

İ = D∇2I + β�̃I − α

N
I 2 − αβ

N
I

∫ t

0
I (τ ) dτ + η(x,t)

√
I ,

(31)

where η is a delta-correlated noise, and D = αχ/(2d) is
the effective diffusion constant. Naive scaling analysis of
Eq. (31) shows that the I 2 term is irrelevant and that the
noise term becomes relevant when d � 6, as expected from
the mapping to the dynamic percolation problem. Following
Ref. [20] we integrate both sides of Eq. (31) from t = 0 to ∞,
using

∫
İ dt = 0 and

∫ ∞
0 I (t)

∫ t

0 I (τ ) dt dτ = 1
2 [

∫ ∞
0 I (t) dt]2,

we arrive at

D∇2� + β�̃� − αβ

2N
�2 + ζ (x)

√
� = 0, (32)

where �(x) ≡ ∫ ∞
0 I (x,t) dt . Note that the variance of the noise

term in Eq. (32) must satisfy

Noise2 =
∫ ∞

0
dt1

∫ ∞

0
dt2η(t1)η(t2)

√
I (t1)

√
I (t2)

=
∫ ∞

0
dt1I (t1) = �, (33)

justifying the form of the noise amplitude term in the �

equation. Rescaling Eq. (32) by N we have (now m ≡ β�̃)

D∇2� + m� = αβ

2
�2 + 1√

N
ζ (x)

√
�. (34)

Equation (34) may be analyzed perturbatively, as shown by
Ref. [20], by the same diagrammatic expansion used for
the directed-percolation case (see Appendix) where the only
difference is that the free propagator, instead of Eq. (21), is

〈�(k)�(k′)〉 = δ(k′ + k)
1

k2 + m
. (35)

The first correction to the diffusion constant comes from
the same self-energy diagram shown in Fig. 7, but here the
correction is [N�̃

6−d
2 ]−1, thus κ = 2/(6 − d). Accordingly, in

both the SIR and SIS cases, we have that

κ = 2

du − d
, (36)

where du is the upper critical dimension.

0 0.05 0.1

N
−1/2

0

0.5

1

1.5

2

M
N
 / 

N
κ d

2d
3d (×2)
4d (×16)

FIG. 2. (Color online) The scaled “mass” of the aggregate,
MN/Nκ = MN/N 2/(6−d), for the SIR model in d = 2, 3, and 4,
showing the convergence to a finite value in the limit N → ∞.

This result is consistent with the exact scaling of the
transition region in SIR in zero dimensions, namely, κ = 1/3
[21]. It is also consistent with our numerical findings in
paper I for the case of one dimension, where we found
κ ≈ 0.41, to be compared with our prediction of 2/5. We can
test our prediction for higher dimensions by again measuring
the total mass at the classical transition point divided by Nκ .
This is presented in Fig. 2. The results are seen to converge
to its finite N = ∞ value, in all cases consistent with a N−1/2

scaling of the correction. Again, as with the SIS data of Fig. 1,
the amplitude of the correction increases with increasing d.
Note also that, as with SIS in 0 dimensions, the SIR results in
d = 2 approach their asymptotic value from below.

VII. THE CASE OF κ > 1

As we have seen above, two scales are involved in the
large N limit. One is the shift of the transition point due to the
absence of self-interactions, and this leads to 1/N corrections
for the critical reproductive number Rc, and the other is the
width of the “quantum” regime where fluctuations dominate
the system behavior, the width of this region scales like N−κ .
For d < du − 2 we obtained κ � 1 and the quantum regime
is wider than the self-interaction shift; thus the effect of
self-interactions is negligible. If d = du − 2, both corrections
scale like N−1. We still have to consider the case where
κ > 1, i.e., where the quantum regime is narrower than the
self-interaction shift.

For the SIS and SIR dynamics considered here, and for an
integer number of dimensions, we have to consider the case
κ = 2 for d = du − 1 (three dimensions for SIS, five dimen-
sions for SIR) and κ = ∞ at the upper critical dimension.

At d = du the situation is trivial: κ = ∞ means that the
width of the transition zone is zero, since the system behaves
(up to logarithmic corrections) like its mean-field (infinite-
dimensional) limit. Note the difference between a well-mixed
(zero dimensions) and the mean field (∞ dimensions) cases:
In the first there is a pronounced quantum regime at finite N .
In the second each point has infinite number of neighbors so
the “effective N” is infinite even if the number of individuals
at each point is finite.
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FIG. 3. (Color online) The two possible scenarios for large
N scaling. If κ � 1 (upper sketch) the 1/N self-interaction shift
is negligible with respect to the width of the quantum regime;
thus the convergence to the deterministic limit is controlled by a
single parameter N−κ . The case κ > 1 (lower) is dominated by two
scales: one that controls the distance of the transition point from its
deterministic value, and the other that determines the width of the
fluctuation-dominated zone.

What remains is d = du − 1, namely, three dimensions for
SIS and five dimensions for SIR. In these cases, κ = 2, so
the “quantum” regime has a very small width (of order N−2)
around the quantum transition point, which in turn is at a much
larger distance (of order 1/N) away from the deterministic
transition point R0 = 1. The situation is summarized in the
bottom diagram of Fig. 3.

Although the transition point converges to R0 = 1 in the
infinite N limit, this convergence is slower than the rate in
which the quantum zone shrinks around this point. This gives
rise to two different scaling regimes, one of width 1/N and
the second of width 1/N2. We can see this behavior, again,
by studying MN , the total mass of the infection, now as a
function of R0, the “bare” reproductive number, or equivalently
�̃ ≡ R0 − 1.

In the “outer” region, (so called in analogy with asymptotic
expansions, since it is valid outside the region extremely
close to the critical point, with its anomalous properties), of
width O(1/N ), the scaling is classical, since the “quantum”
fluctuations are still small, and so the perturbative 1/N

corrections are dominant, and we expect the mass to obey
the scaling law

MN = Nτ out
M Gout(�̃N ). (37)

Now, far from the transition point (e.g., for fixed R0 slightly
below 1), at large enough N the dependence of MN on
this distance must approach its MF limit, MN ∼ 1/(1 − R0),
independent of N . This implies that for large negative
argument,G(x) ∼ −1/x, and that τ out

M = 1. Since the transition
point is at Rc ≈ 1 + (A/N) + (B/N2), where A and B are
some constants, MN must get large as �̃N approaches A.
Since in this outer region, fluctuations are small, the incipient
divergence of M is mean-field like, so Gout diverges as
Gout ∼ c/(A − x), so that for R0 near, but not too near Rc,
MN behaves as

MN ≈ C

1 + A/N − R0
. (38)
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N = 60000
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FIG. 4. (Color online) Upper panel: The inverse of the scaled
“mass” of the aggregate, N/MN , for the SIS model in d = 3 as
a function of N (R0 − 1), for various N . The behavior for large
N (R0 − 1) is consistent with MN = 1/(1 − R0). The data labeled
N = ∞ were obtained by fitting a quadratic curve in N−1/3 to
MN for fixed N (R0 − 1) (N = 100, 200, 500, 1000, 2000, and
4000) and extrapolating. This N = ∞ curve fits well to MN =
N/[7.2 − N (R0 − 1)], corresponding to a shift in the critical R0 by
an amount 7.2/N . Lower panel: The inverse of scaled “mass” of
the aggregate, N/MN , for the SIR model in D = 5 as a function
of N (R0 − 1), for various N . The behavior for large N (R0 − 1) is
consistent with MN = 1/(1 − R0). The data labeled N = ∞ was
obtained by fitting a quadratic curve in N−1/2 to MN for fixed
N (R0 − 1) (for N = 500, 1000, 2000, 4000, 8000, and 30 000)
and extrapolating. This N = ∞ curve fits well to MN = N/[44.7 −
N (R0 − 1)], corresponding to a shift in the critical R0 by an
amount 44.7/N .

Thus, the perturbative corrections just shift the transition point
but do not change the scaling exponents.

This behavior is demonstrated in Fig. 4, where N/MN is
plotted versus �̃N , for SIS in three dimensions in the upper
panel and for SIR in five dimensions in the lower. We see that
there is a very slow convergence to an asymptotic curve. This
slow convergence to the asymptotic scaling limit is reminiscent
to what we encountered in the case of smaller d. The large N

line is straight, but does not converge to zero at R0 = 1, since
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the actual transition happens at R0 ≈ 1 + A/N . Although at
large N , the distance of R0 = 1 from the transition shrinks to
zero one observes no “quantum” effects in the outer region
since the width of the quantum regime shrinks even faster.

As we approach very close, of order a small fraction of
1/N2, to the phase transition point, the fluctuations become
significant and MN diverges as

MN = AN−τm (Rc − R0)−γ , (39)

where γ is the scaling exponent for the mass, which for DP
in three dimensions is γ ≈ 1.24 [22] and is approximately 1.2
for percolation in five dimensions. The general scaling law in
the inner region, of width O(1/N2), is then

MN = Nτ in
M [Gin(�N2)]−γ , (40)

where Gin(x) vanishes linearly at x = 0. For large negative
argument, this has to match onto the outer behavior for �̃N �
1. This is possible if Gin(x) ∼ −Cx as x → ∞ and τ in

M = 2.
Accordingly, the plot of (N−2MN )−1/γ versus �N2 shows

the inner scaling function Gin in the large N limit and goes
linearly to zero at the transition point. This behavior is demon-
strated in Fig. 5 for both the three-dimensional SIS (upper
panel) and the five-dimensional SIR (lower panel) models.

VIII. FRONT VELOCITY

In the wake of Brunet and Derrida’s [3] path-breaking work
on the large N behavior of the front velocity in Fisher-type
systems, there has been an enormous amount of attention
devoted to this issue, including a rigorous proof of the original
heuristic arguments. It is thus natural to ask how this work
relates to our current findings. The first thing to note is that the
limits addressed here and the result of Ref. [3] are different.
The Brunet-Derrida limit corresponds in our language to fixed
�, N → ∞, whereas we are interesting in the limit � � 1,
N � 1, �Nκ ∼ O(1).

We first investigate the behavior in the immediate vicinity
of the transition point, restricting our attention to the one-
dimensional SIS model. In the immediate vicinity of the
transition point, both the spatial correlation length ξ⊥ and
the time correlation scale ξ‖ diverge. It is expected then that
the velocity will scale, in this regime, as the ratio of ξ⊥ to ξ‖:

v ≈ B⊥N−κ(ν⊥− 1
2 )�−ν⊥

B‖N−κ(ν‖−1)�−ν‖
= BvN

κ(ν‖−ν⊥− 1
2 )�ν‖−ν⊥

= BvN
−κ/2(�Nκ )ν‖−ν⊥ . (41)

Since ν‖ > ν⊥, the velocity vanishes as the transition point is
neared, just as in the classical theory. Furthermore, ν‖ − ν⊥ −
1/2 > 0, so the velocity increases with N for fixed �. This
is consistent with the Brunet-Derrida asymptotic result, which
also has the velocity rising with N at fixed �.

In the classical limit the front velocity is given by v ∼
√

�̃,
independent of N . One is tempted, then, to write, in analogy
with our other scaling laws, v ≈ N−κ/2I(�̃Nκ ). The problem
with this is that, while in the continuum classical limit, the
velocity is proportional to

√
�̃, on the lattice this is true only

for small �̃. To work with discrete agents and to define their
local density one should implement some UV cutoff, so even
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FIG. 5. (Color online) Top: The scaled “mass” of the aggregate,
(MN/N 2)−1/γ , as a function of the scaled “inner” variable N2(Rc −
R0), for the SIS model in D = 3. We used the value γ = 1.236.
Bottom: The scaled “mass” of the aggregate, (MN/N 2)−1/γ , as a
function of the scaled “inner” variable N2(Rc − R0), for the SIR
model in D = 5. We used the value γ = 1.23.

for off-lattice models the relevant result is the one obtained for
a lattice. The classical lattice velocity vL satisfies the equation
(see Ref. [23])

vL

αχ
ln

[
vL

αχ
+

√
1 +

(
vL

αχ

)2]
+ 1 −

√
1 +

(
vL

αχ

)2

= β�̃

αχ
,

(42)

so that, for large �̃, the velocity grows as �̃/ ln(�̃), as opposed

to
√

�̃. Thus, instead of trying to find a scaling relation for v,
it is preferable to find a scaling relation for

g(v) ≡
√

αχ

β

{
v

αχ
ln

[
v

αχ
+

√
1 +

(
v

αχ

)2]

+ 1 −
√

1 +
(

v

αχ

)2}1/2

, (43)

051138-8



SCALING THEORY FOR THE QUASIDETERMINISTIC . . . PHYSICAL REVIEW E 85, 051138 (2012)

0 10 20 30 40 50 60

(R0−1) Nκ

0

2

4

6

8

g(
v)

 N
κ/

2

R0 = 1.15
R0 = 1.175
R0 = 1.275
R0 = 1.35
Classical
Corrected classical

FIG. 6. (Color online) The scaling collapse of the scaled trans-
formed velocity, g(v)Nκ/2, where g(v) is given in Eq. (43), versus
�̃Nκ for the 1D SIS model, with β = 1, χ = 0.2. The “classical”
result is

√
(R0 − 1)Nκ , whereas the “corrected classical” result is

given by Eq. (44).

which, for v = vL, is precisely equal to
√

�̃. In Fig. 6 we show
the scaling collapse of g(v)Nκ/2 versus �̃Nκ . The Brunet-
Derrida effect, namely, the anomalously slow approach to the
classical velocity, is apparent from this graph, where even for
�N−κ ∼ 60, the scaling curve is very far below the classical
result.

In more detail, for large positive argument, the Brunet-
Derrida result implies that

I(x) ≈ √
x

(
1 − 9π2

4 ln2 x

)
. (44)

This corrected classical result is also shown in Fig. 6, where
we see quite good agreement, especially considering the
relatively small values of N involved, compared to those
necessary to achieve even semiquantitative agreement with
the Brunet-Derrida correction at �̃ ∼ O(1).

IX. SUMMARY AND DISCUSSION

We have presented in this paper a general scheme for
analyzing the large-N behavior of stochastic systems in the
vicinity of a continuous bifurcation and have applied it to
two paradigmatic cases, the directed-percolation transition and
the dynamic percolation transition. The methods should be
applicable to any continuous transition. We have seen, both
analytically and numerically, that in spatially extended models
there are two parameters that control the convergence: the
number of particles per site N and the distance from the
transition point. Together, these parameters yield a region
of size �N−κ above the phase transition point; within this
region the system is dominated by demographic noise, and the
deterministic equations fail to describe it accurately.

The value of κ has been found before using an exten-
sive analysis of zero-dimensional [12,21,24,25] and one-
dimensional [5] models. It turns out that this particular result
may be derived directly, for any dimensionality, using the
Ginzburg analysis. For the fundamental models considered

here it depends only on the difference between du, the upper
critical dimension, and d, via κ = 2/(du − d).

Clearly, this general expression stems from the fact that
the leading perturbative correction (i.e., the diagrams that lead
to an infrared divergence in the highest dimension, which is
thus the upper critical dimension) is proportional to 1/N , and
since it involves an average over two noise terms, each is
proportional to 1/

√
N . This seems to be a generic property

of stochastic processes, and it would be interesting to find a
model for which this general argument is not applicable.

Below du − 2, κ � 1, and the self-interaction shift is
negligible at large N . In this case the point R0 = 1 is peculiar:
Its scaled distance from the critical point (the distance divided
by the width of the quantum regime) has a finite limit as
N → ∞. Accordingly, the divergence of various observables
at this point is determined solely by Nκ . This feature facilitates
the numerics, since one can extract the value of the exponent
without finding Rc. If κ > 1 this is no longer the case, and to
locate the quantum regime one has to first identify the transition
point.

Although the SIS and SIR processes serves us here as an
archetypic stochastic processes that belong to the most pro-
nounced equivalence classes of out-of-equilibrium transitions,
they are also interesting models for epidemiologists. Several
attempts have been made, recently, in order to understand
better the role of fluctuations in individual-based, spatially
structured epidemic models. The results presented here in
effect solve this problem for the case of subpopulations on
a lattice considered in Ref. [26].

In the common case of zoonotic infections the pathogens
first emerged from animal reservoirs, inducing a “stuttering
transmission” stage in which R < Rc, and reaching the phase
of sustained transmission (human outbreak) only due to
pathogen evolution (in human environment) to R0 > Rc [27].
If R0 is growing slowly to larger values (as opposed to a
major evolutionary step caused by a single mutation) the
pathogen must cross the quantum region, where the size of
the outbreak (the number of infections, and hence the chance
for the next evolutionary step to occur) is simply MN (R). With
an appropriate knowledge about the adaptation process of the
pathogen, it will be quite easy to implement our results to
obtain the chance of an outbreak.

FIG. 7. Element of the diagrammatic perturbative expansion. The
terms that appear in Eq. (20) (upper line), the self-energy diagram �,
and the one-loop correction to the three-point vertex (lower part).
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APPENDIX

Here we show some elements of the perturbative expansion
of the action (19) and (20) and the terms that determine the
leading correction for large N , as explained in the text.

The elementary diagrams that appear in the perturbative
expansion are shown in the upper part of Fig. 7. Of those,
the first two appear in the Reggeon field theory and yield the
one-loop renormalization of the mass and R0. The diagrams
involved are presented in the lower part of Fig. 7.

With the bare propagator, Eq. (21), one can see that the
leading correction to the mass behaves like

1

N

∫
qd−1dq

q2 + m
.

This implies that q scales like
√

m, and hence close to the
transition the result is proportional to �−(2−d)/2, thus from this
diagram one would get κ = 2/(2 − d) (x = (2 − d)/2, y = 1;
see text). The triangular diagram that provides the correction
to the coupling constant scales like

1

N2

∫
qd−1dq

(q2 + m)2
,

so it corresponds to κ = 4/(4 − d). However, the corrections
to the diffusion constant are given by the second derivative
of the self-energy diagram with respect to the incoming
momentum, and this contribution is proportional to

1

N

∫
qd−1dq

(q2 + m)2
,

and this term yields the minimum value κ = 2/(4 − d) given
in Eq. (22).
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