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Surface-directed spinodal decomposition: A molecular dynamics study
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We use molecular dynamics simulations to study surface-directed spinodal decomposition in unstable binary
AB fluid mixtures at wetting surfaces. The thickness of the wetting layer R1 grows with time t as a power law
(R1 ∼ t θ ). We find that hydrodynamic effects result in a crossover of the growth exponent from θ � 1/3 to 1.
We also present results for the layerwise correlation functions and domain length scales.
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I. INTRODUCTION

There has been a great deal of interest in problems of phase-
ordering dynamics in recent years. A prototypical problem in
this area is the phase-separation kinetics of a homogeneous
binary AB mixture that has been rendered thermodynamically
unstable by a rapid quench below the miscibility curve. If
the quenched mixture is spontaneously unstable, the evolution
kinetics is usually referred to as spinodal decomposition (SD).
During SD there is an emergence and growth of A-rich and
B-rich domains, characterized by a single time-dependent
length scale L(t). This has important consequences, e.g., the
correlation function of the order parameter field exhibits the
scaling form C(r,t) = f [r/L(t)], where f (x) is a scaling
function. We now have a good understanding of the kinetics of
phase separation in the bulk and there are several good reviews
of these problems [1–4].

Let us consider the equilibrium behavior of an immiscible
AB mixture in contact with a surface S. Typically, the surface
has a preferential attraction for one of the components of the
mixture, say, A. Let γA and γB be the surface tensions between
the A-rich and B-rich phases and S, respectively, and let σ be
the surface tension between the A-rich and B-rich phases.
We focus on a semi-infinite geometry for simplicity. Then the
contact angle θ between the AB interface and the surface can
be obtained from Young’s equation [5]

σ cosθ = γB − γA. (1)

When γB − γA > σ , the A-rich phase covers the surface in a
completely wet (CW) morphology. However, for γB − γA < σ

both phases are in contact with the surface, resulting in a
partially wet (PW) equilibrium morphology.

We have had a long-standing interest in the kinetics of
binary mixtures at surfaces. Consider a homogeneous AB

mixture at high temperatures. This mixture is kept in contact
with a surface that prefers A. The system is quenched deep
below the miscibility curve at time t = 0. Then the system
becomes unstable to phase separation and decomposes into
A-rich and B-rich domains. The surface is simultaneously
wetted by A. The interplay of these two dynamical processes,
i.e., wetting and phase separation, is referred to as surface-
directed spinodal decomposition (SDSD) or surface-directed
phase separation [6–23]. These processes have important tech-

nological applications, including the fabrication of nanoscale
patterns and multilayered structures.

With some exceptions [24,25], most available studies of
SDSD do not take into account hydrodynamic effects, i.e., the
growth of bulk domains, and the wetting layer is governed by
diffusion. However, many important experiments in this area
involve fluid or polymer mixtures, where fluid velocity fields
play a substantial role in determining physical properties. Hy-
drodynamic effects alter the late-stage dynamics of phase sep-
aration in a drastic manner, both without surfaces [1,2,26–29]
and with surfaces [24,25]. In this paper we have undertaken
extensive molecular dynamics (MD) simulations to investigate
the effects of hydrodynamics on the late-stage dynamics of
SDSD. We observe a clear crossover from a diffusive regime
to a hydrodynamic regime in the growth law for the wetting
layer. A preliminary account of our results was published in a
recent Letter [30].

This paper is structured as follows. In Sec. II we describe
the details of our MD simulations. Section III presents
a brief review of the bulk phase-separation kinetics and
domain growth laws and then discusses phase separation
at surfaces. Detailed MD results are presented in Sec. IV.
We end with a summary and discussion of our results in
Sec. V.

II. DETAILS OF SIMULATIONS

We employ standard MD techniques for our simulations
[31,32]. The model is similar to that used in our earlier studies
of mixtures at surfaces [20,33]. We consider a binary fluid
mixture AB consisting of NA number of A atoms and NB

number of B atoms (with NA = NB), confined in a box of
volume Lw × Lw × D. While periodic boundary conditions
are maintained in the x and y directions, walls or surfaces are
introduced in the z direction at z = 0 and D. The interaction
between two atoms of species i and j separated by a distance
r is given by the Lennard-Jones (LJ) potential

uij (r) = 4εij

[(
σ

r

)12

−
(

σ

r

)6]
, i,j = A,B. (2)

Here the LJ energy parameters are set as εAA = εBB = 2εAB =
ε. The details of the equilibrium phase behavior for this poten-
tial are well studied [34–36]. If we express all lengths in terms
of the LJ diameter σ , masses in units of m (mA = mB = m),

051137-11539-3755/2012/85(5)/051137(9) ©2012 American Physical Society

http://dx.doi.org/10.1103/PhysRevE.85.051137


PRABHAT K. JAISWAL, SANJAY PURI, AND SUBIR K. DAS PHYSICAL REVIEW E 85, 051137 (2012)

and energies in terms of ε, the natural time unit is

t0 =
√

mσ 2

48ε
. (3)

Setting σ = 1, m = 1, and ε = 1 gives t0 = 1/
√

48. The
potential in Eq. (2) is cut off at rc = 2.5 σ to enhance
computational speed. To remove the discontinuities in the
potential and force at r = rc, we invoke the shifted-potential
and shifted-force potential corrections to the potential in
Eq. (2) [31].

For the potential between the walls and the fluid particles,
we consider an integrated LJ potential (α = A,B)

uw(z) = 2πnσ 3

3

[
2εr

15

(
σ

z′

)9

− δαεa

(
σ

z′

)3]
. (4)

Here n is the reference density of the bulk fluid and εr and εa

are the energy scales for the repulsive and attractive parts of
the interaction. We set δA = 1 and δB = 0 for the wall at z = 0.
Thus A particles are attracted at large distances and repelled at
short distances, whereas B particles experience only repulsion.
For the wall at z = D, we choose δA = 0 and δB = 0, so there
is only a repulsion for both A and B particles. Furthermore,
we have z′ = z + σ/2 for the wall at z = 0 and z′ = D +
σ/2 − z for the wall at z = D. We notice that this simplified
potential incorporates the effect of a semi-infinite geometry
(the generalization to any other geometry is straightforward).
However, it does not take into account the surface structure in
the xy plane.

The fluid has N = NA + NB particles and the fluid density
is n = N/L2

wD = 1. In our simulations, we chose Lw = 48
and D = 48 (N = 110 592 particles). In recent studies [37,38]
it has been demonstrated that in the bulk phase separation,
the scaling laws for the growth of the average domain size is
unaffected until the latter reaches almost the size of the system.
In the present problem applications of periodic boundary
conditions in the lateral directions make the problem of
domain growth in these directions equivalent to the case of
bulk phase separation. Considering these facts and noting
that within the time scale of our simulations the average
lateral size of the domains is at most 5 atomic diameters
(see later), Lw = 48 is large enough to avoid any undesirable
effects due to finite size of the systems. For the similar
issue in the z direction, we note that for the present choice
of parameters one has a first-order wetting transition [30].
In such a situation the equilibrium thickness of the wetting
layer is expected to be finite and should not create difficulty
as encountered in critical transitions. Nevertheless, we have
checked our results for various values of D and settled on
D = 48.

The statistical quantities presented here were obtained as
averages over 50 independent runs. We performed simulations
on the fluid for the surface potential Eq. (4) with εa =
0.1 and 0.6, while εr = 0.5. We find that εa = 0.1 corresponds
to a PW morphology, while εa = 0.6 yields a CW morphol-
ogy [39]. The quench temperature is T = 1.0 � 0.7Tc (bulk
Tc � 1.423) [35,36] and is maintained by the Nosé-Hoover
thermostat, which preserves hydrodynamics [28,29,40]. The
homogeneous initial state of the fluid mixture is prepared from
a short run at high T (�Tc), with periodic boundary conditions

imposed in all directions. Finally, Newton’s equations of
motion are integrated numerically using the Verlet velocity
algorithm [40], with a time step 	t = 0.07 in LJ units. The
computation was performed on single processors with a CPU
speed of 2.6 GHz. On average, a run length of unity (in LJ
unit) was completed in 5.86 min.

We undertook extensive MD simulations to study the time-
dependent morphology that arises during surface-directed
phase separation. We characterized the morphology via layer-
wise correlation functions, structure factors, and length scales.
We also computed laterally averaged order parameter profiles
and their various properties, e.g., the surface value of the
order parameter and zero crossings. Before presenting these
quantities, it is useful to summarize theoretical results in this
context.

III. THEORETICAL BACKGROUND

A. Kinetics of phase separation in the bulk

The coarsening domains have a characteristic length
scale L(t), which grows with time. For pure and isotropic
systems, L(t) ∼ t θ , where the growth exponent θ depends
on the conservation laws, the nature of defects that drive
the evolution, and the relevance of hydrodynamic flow
fields.

First, we discuss the domain growth laws that arise in bulk
phase-separating systems [41–46]. For diffusive dynamics, the
order parameter satisfies the Cahn-Hilliard (CH) equation. In
dimensionless variables this has the form [1]

∂

∂t
ψ(�r,t) = ∇2

(
−ψ + ψ3 − 1

2
∇2ψ

)
, (5)

where the order parameter ψ(�r,t) is proportional to the AB

density difference at space point �r and time t . Lifshitz and
Slyozov [41] considered the diffusion-driven growth of a
droplet of the minority phase in a supersaturated background
of the majority phase. The Lifshitz-Slyozov (LS) mechanism
leads to the growth law L(t) ∼ t1/3 in d � 2. Huse [46]
argued that this law is also valid for spinodal decomposition
in mixtures with approximately equal fractions of the two
components. Typically, for a domain of size L, the chemical
potential on its surface is μ ∼ σ/L, where σ is the surface
tension. Then the current is D| �∇μ| ∼ Dσ/L2, where D is
the diffusion constant. Therefore, the domain size grows as
dL/dt ∼ Dσ/L2, or L(t) ∼ (Dσt)1/3.

We now consider the segregation of binary fluids, where the
hydrodynamic flow field provides an additional mechanism
for the transport of material [1–4]. Hydrodynamic effects can
be incorporated into the CH model by including a velocity field
that satisfies the Navier-Stokes equation: The resultant coupled
equations are termed model H [47]. The growth dynamics is
diffusion limited at early times, as in the case of binary alloys.
However, one finds a crossover to a hydrodynamic growth
regime, where convection assists in the rapid transportation
of material along the domain boundaries [42,43].
The growth laws for different regimes are summarized
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as follows [1]:

L(t) ∼

⎧⎪⎪⎨
⎪⎪⎩

(Dσt)1/3, L 	 (Dη)1/2 (diffusive regime)
σ t
η

, (Dη)1/2 	 L 	 η2

ρσ
(viscous hydrodynamic regime)(

σ t2

ρ

)1/3
,

η2

ρσ
	 L (inertial hydrodynamic regime).

(6)

In Eq. (6), η and ρ denote the viscosity and density of the fluid,
respectively.

B. Kinetics of phase separation at wetting surfaces

We briefly discuss phase-separation kinetics at wetting
surfaces [18,23]. For the diffusive case, the order parameter
satisfies the CH equation in the bulk:

∂

∂t
ψ( �ρ,z,t) = ∇2

[
−ψ + ψ3 − 1

2
∇2ψ + V (z)

]
, z > 0. (7)

In Eq. (7) we have designated �r ≡ ( �ρ,z), where �ρ and z denote
coordinates parallel and perpendicular to the surface (located
at z = 0), respectively. The surface potential V (z) is chosen
such that the surface preferentially attracts A.

Equation (7) must be supplemented by two boundary
conditions at z = 0 [11,18], as it is a fourth-order partial
differential equation. Now, since the surface value of the
order parameter is not conserved, we assume a nonconserved
relaxational kinetics for this quantity:

∂

∂t
ψ( �ρ,0,t) = h1 + gψ( �ρ,0,t) + γ

∂

∂z
ψ( �ρ,z,t)

∣∣∣∣
z=0

+ γ̃∇2
‖ψ( �ρ,0,t). (8)

In Eq. (8), h1 = −V (0); g, γ , and γ̃ are phenomenological
parameters; and ∇2

‖ denotes the in-plane Laplacian. Next we
implement a zero-current boundary condition at the surface,
which enforces the conservation of the order parameter:

0 = ∂

∂z

[
−ψ + ψ3 − 1

2
∇2ψ + V (z)

]∣∣∣∣
z=0

. (9)

Equations (7)–(9) describe the kinetics of SDSD with diffusive
dynamics. This is appropriate for phase separation in solid
mixtures or the early stages of segregation in polymer blends.
However, most experiments involve fluid mixtures, where
hydrodynamics plays an important role in the intermediate
and late stages of phase separation. At a phenomenological
level, hydrodynamic effects can be incorporated via the
Navier-Stokes equation for the velocity field [47]. This must
be supplemented by appropriate boundary conditions at the
surfaces [25]. Alternatively, we can consider molecular models
of fluid mixtures at a surface, in which the fluid velocity field
is naturally included. We adopt the latter strategy in this paper
and study SDSD in fluid mixtures via MD simulations.

Let us briefly discuss the growth laws that arise in SDSD. At
early times, the wetting-layer growth is driven by the diffusion
of A particles from bulk domains of size L ∼ (σ t)1/3 (with
μ∼ σ/L) to the flat surface layer of size � ∞ (with μ� 0).
Therefore, neglecting the contribution due to the surface

potential at very early times [17], we obtain

dR1

dt
∼ σ

Lh
∼ σ

LR1
, (10)

where h ∼ R1 is the thickness of the depletion layer. The
LS growth law for the wetting-layer thickness [R1 ∼ (σ t)1/3]
can be readily obtained from Eq. (10). At later times, R1

shows a rapid growth due to the establishment of contact
between the bulk tubes and the wetting layer. Then the wetting
component is pumped hydrodynamically to the surface. The
subsequent growth dynamics is similar to that in segregation
of fluids. We expect R1(t) ∼ t in the viscous hydrodynamic
regime, followed by a crossover to R1(t) ∼ t2/3 in the inertial
hydrodynamic regime.

IV. DETAILED NUMERICAL RESULTS

In this section we present results from our MD simulations.
The details of these have been described in Sec. II. First, we
focus on domain morphologies and laterally averaged profiles
for the CW case. In Fig. 1 we show evolution snapshots
and their yz cross sections for SDSD in a binary AB fluid
mixture at different times. The surface field strengths are

t = 140 t = 700 t = 2800

z

y

t = 140 t = 700 t = 2800

z
y

x

FIG. 1. Evolution snapshots (top frames) for surface-directed
spinodal decomposition in a binary AB Lennard-Jones mixture,
which is confined in a box of size L2

w × D, with Lw = 48 and
D = 48. An impenetrable surface (located at z = 0) attracts the
A particles (marked gray). The surface field strength is given by
εa = 0.6 and εr = 0.5 in Eq. (4), which corresponds to a completely
wet morphology in equilibrium. The temperature is T = 1.0 �
0.7 Tc (bulk Tc = 1.423). The other simulation details are provided
in the text. The B particles are marked black. The bottom frames
show the yz cross sections of the top frames at x = 0.
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t = 700 t = 2800

z ∈(0,1.5)

z ∈(3,4.5)

z ∈(24,25.5)

x

y

FIG. 2. Cross-section slices of size L2
w × 1.5σ for the evolution

shown in Fig. 1 at t = 700 and 2800 MD units. The slices show all
A atoms (marked in gray) and all B atoms (marked in black) lying
in the intervals z ∈ (0,1.5) (top frames), z ∈ (3,4.5) (middle frames),
and z ∈ (24,25.5) (bottom frames).

εr = 0.5 and εa = 0.6 in Eq. (4), which correspond to a CW
morphology in equilibrium. An A-rich layer develops at the
surface (z = 0), resulting in SDSD waves that propagate into
the bulk. Consequently, the surface exhibits a multilayered
morphology, i.e., wetting layer followed by depletion layer,
etc. The snapshots (and their cross sections in the bottom
frames) clearly show that only A particles are at the surface,
as expected for a CW morphology.

In Fig. 2 we show cross sections in the xy plane for the
evolution snapshots in Fig. 1. The surface layer (shown in the
top frames at t = 700 and 2800) has almost no B particles. In
the middle frames we notice that there is a surplus of B atoms
due to the migration of A particles to the surface. (This is
confirmed by the laterally averaged profiles, shown in Fig. 3.)
The bottom frames show the usual segregation morphologies
in the bulk (which correspond to the region z ∈ [24,25.5]),
which is unaffected by the SDSD waves at these simulation
times (see Fig. 3).

Depth-profiling techniques in experiments do not have
much lateral resolution and yield only laterally averaged
order parameter profiles ψav(z,t) vs z [10]. The numerical
counterpart of these profiles is obtained by averaging ψ( �ρ,z,t)
in the x and y directions and then further averaging over 50
independent runs. The order parameter is defined from the
local densities nA and nB as

ψ(�r,t) = nA − nB

nA + nB

. (11)

In Fig. 3 we show the depth profiles for the evolution depicted
in Fig. 1. Figure 3 clarifies the nature of the multilayered
morphology seen in SDSD. In the bulk the SDSD wave vectors
are randomly oriented, which results in ψav(z,t) � 0 due to the

0 5 10 15 20
z

-0.5

0.0

0.5

1.0

ψ
av

(z
,t)

t = 140
t = 700
t = 2800

FIG. 3. Laterally averaged order parameter profiles for the evolu-
tion shown in Fig. 1 at t = 140, 700, and 2800 MD units. The solid
lines through the data points are guides to the eye.

averaging procedure. However, the averaged profiles show a
systematic oscillatory behavior at the surface.

Let us next examine the velocity field at the surface and in
the bulk. In Fig. 4 we show the (vx,vy) field in the xy planes
used in Fig. 2. The snapshots shown in Fig. 4 are obtained
by coarse graining the velocities in overlapping boxes of size
(4.5σ )3. These boxes are centered on cubes of size (1.5σ )3

and we show the (vx,vy) field for these cubes. We make the
following observations concerning Fig. 4. (i) The velocity field

FIG. 4. Analogous to Fig. 2, but for the velocity field (vx,vy) in
the xy plane. The velocities are coarse grained as described in the
text.
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0 5 10 15 20
z

-1200

-600

0

600

1200
v z,

 a
v(z

,t)

t = 140
t = 700
t = 2800

FIG. 5. Laterally averaged vz profiles for the evolution shown in
Fig. 1 at t = 140, 700, and 2800 MD units.

is characterized by vortices and antivortices, but these do not
show much coarsening with time (compare the snapshots at
times t = 700 and 2800 for different values of z). (ii) There are
no significant morphological differences between the velocity
fields at the surface (top frames of Fig. 4) and in the bulk
(bottom frames of Fig. 4). This is confirmed by comparing
the corresponding correlation functions; for brevity, we do not
present these here. While this observation is consistent with the
MD study of bulk phase separation [28,29], this is at variance
with the simulation of model H where annihilation of these
vortices and antivortices was observed. Even though a possible
reason for observing such coarsening could be an artifact of
the latter model itself, it would be premature to make any such
definitive comment since the length scales accessed by the
two approaches differ hugely. Thus a more systematic study is
required to resolve this interesting issue.

It is relevant to ask whether the depth profiles of the
velocity field show any systematic behavior (as in Fig. 3). In
Fig. 5 we plot vz,av(z,t) vs z for t = 140, 700, and 2800. The
procedure for calculating the laterally averaged velocity field is
as follows: In each layer of thickness 1.5σ (in the z direction),
we sum up the z components of the velocities for all particles. A
similar plot for the concentration field would show oscillations
with increasing amplitude and wavelength as time progresses,
thus reflecting the surface-induced coarsening. Clearly, the
absence of such a systematic feature in the velocity field is
reflective of no growth of ordering in this field.

Next we turn our attention to the morphologies and profiles
for the PW case. The evolution snapshots and their yz cross
sections for the PW morphology are shown in Fig. 6. In
this case we set εr = 0.5 and εa = 0.1 in Eq. (4). As in
the CW case, we again observe the usual phase-separation
morphologies in the bulk; however, in this case, both A and B

particles are present at the surface.
Figure 7 shows the cross sections in the xy plane, corre-

sponding to the evolution in Fig. 6. At early times (t = 700, top
frame) approximately equal numbers of A and B particles are
present at the surface; however, there is a surplus of A atoms
at late times (t = 2800, top frame), as expected in the PW
morphology. In the middle frames, we see more B particles, as
A atoms have migrated to the surface. The laterally averaged
profiles in Fig. 8 show that z ∈ [3,4.5] (corresponding to

t = 140 t = 700 t = 2800

t = 140 t = 700 t = 2800

z

y

y

x

z

FIG. 6. Analogous to Fig. 1, but for the case with εa = 0.1 and
εr = 0.5. These parameters correspond to a partially wet morphology
in equilibrium.

the middle frames in Fig. 7) lies in the depletion layer for
both t = 700 and 2800. The bottom frames in Fig. 7 show the
segregation kinetics in the bulk.

We plot ψav(z,t) vs z in Fig. 8, corresponding to the PW
evolution in Fig. 6. A behavior similar to the CW morphology
(cf. Fig. 3) is seen in this case too. However, notice that the
degree of surface enrichment (and depletion adjacent to the
surface) is much less in Fig. 8.

We have also studied the morphology of the velocity field
in the PW case. The features are analogous to those in Figs. 4
and 5 for the CW case and we do not show these results here.

We now examine some quantitative properties of the depth
profiles in Figs. 3 and 8. Figure 9 shows the time dependence
of the surface value of the order parameter for the CW and PW

t = 700 t = 2800

z ∈(0,1.5)

z ∈(3,4.5)

z ∈(24,25.5)

x

y

FIG. 7. Analogous to Fig. 2, but for the evolution shown in Fig. 6.
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0 5 10 15 20
z

-0.2

-0.1

0.0

0.1

0.2

0.3

0.4
ψ

av
(z

,t)
t = 140
t = 700
t = 2800

FIG. 8. Analogous to Fig. 3, but corresponding to the evolution
shown in Fig. 6.

cases. We plot ψav(0,∞) − ψav(0,t) vs t−1, demonstrating that
ψav(0,t) saturates linearly to its asymptotic value ψav(0,∞) for
the CW case (with εa = 0.6):

ψav(0,t) � ψav(0,∞) − A

t
+ · · · , (12)

where A is a constant. Notice that the asymptotic value
ψav(0,∞) is estimated by extrapolation of the data for ψav(0,t)
vs t . The corresponding behavior for the PW case (with
εa = 0.1) is not so clear. However, our results suggest that
the PW case also saturates linearly at long times.

The evolution of the SDSD profiles in Figs. 3 and 8 is
characterized by the zero crossings of ψav(z,t). The quantity
R1(t) denotes the first zero and measures the wetting-layer
thickness. Figure 10 plots R1(t) vs t for the CW and PW
cases shown in Figs. 3 and 8. This plot shows a power-law
behavior for the growth dynamics, R1(t) ∼ t θ , but there is a
distinct crossover in the growth exponent. For t � tc � 2000
we have θ � 1/3, in conformity with the LS mechanism for

0.0015 0.0030 0.0045

t
-1

0.0

0.1

0.2

0.3

0.4

0.5

ψ
av

(0
,∞

) −
 ψ

av
(0

,t)

εa = 0.6

εa = 0.1

FIG. 9. Time dependence of the surface value of the order
parameter for the CW and PW profiles in Figs. 3 and 8, respectively.
We plot ψav(0,∞) − ψav(0,t) vs t−1.

700 1000 2000 3000
t

1.0

2.0

1.5

2.5

R
1(t

)

εa = 0.6

εa = 0.1

1/3

1

FIG. 10. Time dependence of the wetting-layer thickness R1(t)
of the CW and PW profiles on a log-log scale. The straight lines
have slopes 1/3 and 1, corresponding to the diffusive regime and the
viscous hydrodynamic regime, respectively.

diffusive growth. However, for t � tc we observe a much
more rapid growth with θ � 1, corresponding to the viscous
hydrodynamic regime. We make the following observations
regarding Fig. 10.

(i) The crossover time is consistent with the observation of
a 1/3 → 1 crossover (at tc � 2000) in bulk MD simulations
by Ahmad et al. [28,29]. Those authors used a similar model,
but without surface interactions.

(ii) The crossover in the CW case is much sharper than in
the PW case. In the CW case bulk tubes establish contact with

MD Coarse-grained

z ∈(0,1.5)

z ∈(3,4.5)

z ∈(24,25.5)

x

y

FIG. 11. Cross sections of the SDSD snapshots (frames on
left) at t = 2800 shown in Fig. 2. The cross sections show all
A atoms (marked gray) and all B atoms (marked black) lying in
the intervals z ∈ (0,1.5) (top frames), z ∈ (3,4.5) (middle frames),
and z ∈ (24,25.5) (bottom frames). The frames on the right show
coarse-grained versions of the MD snapshots. The coarse-graining
procedure is described in the text.
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0.0

0.2

0.4

0.6

0.8

1.0
C

(ρ
,t)

/C
(0

,t)
t = 700
t = 2800

(a)  z ∈(0,1.5)

0 1 2 3

0.0

0.2

0.4

0.6

0.8

1.0

C
(ρ

,t)
/C

(0
,t)

t = 700
t = 2800

(b)  z ∈(3,4.5)

0 1 2 3

4 5

4 5

4 5
ρ/L(z,t)

0.0

0.2

0.4

0.6

0.8

1.0

C
(ρ

,t)
/C

(0
,t)

50

50

50

t = 700
t = 2800  

(c)  z ∈(24,25.5)

FIG. 12. Scaling plot of the layerwise correlation functions for the
CW evolution depicted in Fig. 1. We plot C(ρ,t)/C(0,t) vs ρ/L(z,t)
for t = 700 and 2800 with (a) z ∈ (0,1.5), (b) z ∈ (3,4.5), and
(c) z ∈ (24,25.5).

a flat wetting layer and rapidly drain into it. In the PW case the
surface morphology consists of semidroplets and the pressure
differences from the bulk tubes are less marked.

(iii) We can go up to t � 3000 for these system sizes (Lw =
48 and D = 48). Beyond this time the system encounters
finite-size effects due to the lateral domain size becoming
an appreciable fraction of the system size Lw. Presently, our
computational constraints do not allow us to access the inertial
hydrodynamic regime (with θ = 2/3) via MD simulations
[28,29]. However, our results for the wetting-layer dynamics
show the viscous hydrodynamic regime, though in a limited
time window.

Before concluding this section we discuss some other
quantitative features of the domain morphologies. We present
results for the CW case only; the PW results are anal-
ogous. First, we focus on the layerwise correlation func-
tion, which characterizes the domain morphology. This is

500 1000 2000 3000
t

3.0

4.0

5.0

3.5

4.5

L(
z,

t)

z ∈(3,4.5)
z ∈(6,7.5)
z ∈(24,25.5)

1/3

1

FIG. 13. Time dependence of the lateral domain size for the
evolution depicted in Fig. 1. We plot L(z,t) vs t on a log-log scale for
various values of z. The solid lines have slopes 1/3 (diffusive regime)
and 1 (viscous hydrodynamic regime).

defined as [12]

C‖( �ρ,z,t) = L−2
w

∫
d �σ [〈ψ(�σ,z,t)ψ(�σ + �ρ,z,t)〉

−〈ψ(�σ ,z,t)〉〈ψ(�σ + �ρ,z,t)〉], (13)

where the angular brackets denote statistical averaging over
independent runs. We denote C‖( �ρ,z,t) as C( �ρ,t) in the
following discussion for convenience. Since the system is
isotropic in the x and y directions, C is independent of the
direction of �ρ. We can define the z-dependent lateral length
scale L‖(z,t) ≡ L(z,t) from the half decay of C(ρ,t) [12]:

C(ρ = L,t) = 1
2C(0,t). (14)

To obtain the correlation function, etc., a coarse-graining
procedure is employed to remove the noise. This is similar
to a numerical renormalization group technique described in
Ref. [48]. We divide our system into small boxes of size
σ 2 × 1.5σ . We count the total number of A and B particles in
each box and its nearest neighbors. If there are more particles
of A than B in the box and its neighbors, we assign a spin
value S = 1 to that box. On the other hand, the box is given
a spin value S = −1 when there are more B particles than A

particles. Furthermore, we assign 1 or −1 to a box randomly,
when equal numbers of A and B particles are present.

The results of this coarse-graining procedure are shown in
Fig. 11. In the frames on the left, we reproduce the xy cross
sections of the SDSD snapshots at t = 2800 in Fig. 2. The
frames on the right show the corresponding coarse-grained
pictures. Figure 11 clearly demonstrates the elimination of
fluctuations in our coarse-grained snapshots while preserving
the important morphological features.

In Fig. 12 we plot the normalized correlation function
C(ρ,t)/C(0,t) (computed from the coarse-grained spin vari-
able) vs ρ/L(z,t) for three different layers, as indicated in the
figure. The surface layer [z ∈ (0,1.5)] has few inhomogeneities
and shows a corresponding lack of structure in the correlation
function. [Notice that a state with Si = 1 ∀i has C(ρ) = 0
from our definition in Eq. (13).] The layer at z ∈ (3,4.5) lies
in the depletion region for t = 700 and 2800, as seen from
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the laterally averaged profiles in Fig. 3. The corresponding
correlation functions (middle frame of Fig. 12) show scaling
behavior. The bottom frame in Fig. 12 corresponds to a
bicontinuous bulk morphology (see bottom frames of Fig. 11).

Finally, we focus on the time dependence of the lateral
domain size L(z,t). In Fig. 13 we plot L(z,t) vs t for three
different layers, excluding the surface layer. (As evident from
the top frames of Fig. 11, there is no characteristic domain scale
associated with the surface layer.) We find that L(z,t) grows
as a power law with time (L ∼ t θ ), but there is a crossover
in the growth exponent. The early-time dynamics (t � tc) is
consistent with the expected diffusive LS growth law with
θ � 1/3 [1–4]. However, there is a much more rapid growth
at late times (t � tc) with θ � 1. Notice that the crossover
time (tc � 2000) is consistent with the crossover time for the
growth dynamics of the wetting layer.

V. CONCLUSION

Let us conclude this paper with a brief summary and
discussion of our results. We have studied surface-directed
spinodal decomposition in an unstable homogeneous binary
AB mixture at a wetting surface S. Depending on the relative
values of the surface tensions between A, B, and S, the equi-
librium morphology can be either completely wet or partially
wet. Most experiments on SDSD have been performed on
polymer blends, fluid mixtures, etc., where hydrodynamic
effects play an important role in the intermediate and late
stages of phase separation. However, there have been very few
numerical investigations of SDSD with hydrodynamics.

We undertook comprehensive molecular dynamics simula-
tions to study the kinetics of SDSD in this paper. The MD
simulations were performed with a Nosé-Hoover thermostat,

which naturally incorporates hydrodynamic effects. In both
CW and PW cases the surface becomes the origin of SDSD
waves, which propagate into the bulk. The typical SDSD
profile consists of a multilayered morphology, i.e., a wetting
layer followed by a depletion layer, etc. We are interested in
understanding the role of hydrodynamics in driving the growth
of the bulk domain size and the wetting layer. At early times
the wetting layer grows diffusively with time (R1 ∼ t1/3).
However, there is a crossover to a convective regime and the
late-stage dynamics is R1 ∼ t . There is also a corresponding
crossover in the growth dynamics of the bulk domain size L(t).
Due to computational limitations, our MD simulations are as
yet unable to access the inertial hydrodynamic regime (with
L,R1 ∼ t2/3) in either the bulk or the wetting-layer kinetics.

Our findings have significant implications for experiments
on SDSD. It is understood that the fluid phase separation is a
much more complex phenomenon than that in solid mixtures.
We hope that this work will provoke fresh experiments on this
problem.

Note that it would be interesting to study the dependence
of this nonequilibrium dynamics on the quench depth. As a
passing remark we mention that due to the vanishing of surface
tension, which provides the driving force, as one approaches
the critical temperature, the bulk phase separation gets slower
[29]. Even though we expect a similar temperature dependence
in the present case, the situation is much more complex here
due to several interfacial tensions dictating the phenomena.
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