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Predictability of the coherent-noise model and its applications
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We study the threshold distribution function of the coherent-noise model for the case of infinite number of
agents. This function is piecewise constant with a finite number of steps n. The latter exhibits a 1/f behavior as
a function of the order of occurrence of an avalanche and hence versus natural time. An analytic expression of
the expectation value E (S) for the size S of the next avalanche is obtained and used for the prediction of the next
avalanche. Apart from E (S), the number of steps n can also serve for this purpose. This enables the construction
of a similar prediction scheme which can be applied to real earthquake aftershock data.
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I. INTRODUCTION

The appearance of scale-free behavior in dynamical sys-
tems operating far from equilibrium has been reported in
a large variety of cases ranging from biology [1–5] to
seismology [6–10], and from solar flares [11–14] to rice
piles [15–17] and electric signals that precede rupture [18].
An explanation of the ubiquity of scale invariance in nature
has been attempted [19–21] in terms of the self-organized crit-
icality (SOC) concept originally suggested by Bak, Tang, and
Wiesenfeld [22]. Self-organized critical dynamical systems
usually contain many agents which interact under the influence
of a slow driving force. The rearrangements induced lead, after
a transient during which the system acquires criticality [23,24],
to a stationary state which is characterized by power laws
without the need for fine tuning an external parameter. Thus,
in SOC systems, the competition between a driving force
that very slowly injects energy and the interactions between
the agents can drive the system into a critical state where a
minor perturbation can trigger an avalanche of any size and
duration [22,25,26]. As suggested by Newman and Sneppen
[5,27,28], however, power-law behavior can also be triggered
when imposing coherently (that means at the same time) to all
agents an external, probably environmental, stress of stochastic
origin, such as noise, and assume the agents as noninteracting.
Since the agents are noninteracting such a coherent noise
model cannot be considered as critical although it gives rise
to power laws. The coherent noise model as suggested in
Refs. [27,28] has already found useful applications for both
earthquakes [5,28–30] and scale-free dynamical systems in
general [31,32].

Scale-free dynamical systems usually give rise to strong
avalanches, e.g., strong earthquakes in seismology, whose
prediction poses a very important problem [23,24,26,33–45].
For the case of critical systems, including SOC, we expect that
such strong avalanches emerge when the system approaches
a critical state, e.g., see Ref. [46]. The approach of a system to
a critical state can be identified (e.g., see Ref. [47]) by using
the concept of natural time analysis [46,48,49]. However,
in the case of the coherent noise model [27,28] since the
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system is noncritical, a challenge emerges as to whether its
avalanches can be predicted.

In a time series comprising N avalanches the natural time
χk = k/N serves as an index [48,50] for the occurrence of
the kth avalanche. The avalanches in the coherent noise model
result from the following procedure [27,28]: Consider a system
of Na agents, e.g., points of contact in a fault. For each agent
i we associate a threshold xi, i = 1,2, . . . ,Na, that represents
the amount of stress that the agent withstands before it moves.
Without loss of generality [27,28], xi may come from the
uniform distribution in the interval 0 � x < 1. The dynamics
of the model consists of two steps, a “stress” step, which
is more important and sufficient to produce large avalanches,
and an “aging” step. During the stress step, we select a random
number (or stress level) η from some probability distribution
function pstress(η) and replace all xi that are smaller than η

with new values resulting from the uniform distribution in the
interval 0 � x < 1. The number of agents whose thresholds
are renewed is the size S of the avalanche. During the aging
step, a fixed fraction f of agents is selected at random and
their thresholds are also replaced with new thresholds resulting
again from the uniform distribution in the interval 0 � x < 1.
If we assume that Na → ∞, the thresholds xi are represented
by a threshold distribution function pthres(x), which initially
(k = 0) is considered uniform in the interval 0 � x < 1,
i.e., p

(0)
thres(x) = 1. The size S1 of the first avalanche (k = 1)

is just the probability Prob[x < η1] = ∫ η1

0 p
(0)
thres(x)dx = η1,

which represents the “mass” of the agents that had thresholds
smaller than η1. After the subsequent aging step the threshold
distribution becomes p

(1)
thres(x). When repeating the two steps

for the second time—using η2— we can obtain S2 and p
(2)
thres(x)

and so on. As we shall show below in Sec. II, the threshold
distribution function after the kth avalanche p

(k)
thres(x) is a

piecewise constant function with a finite number of steps nk .
This number nk has been studied in a different context in
natural time [51] and shown to exhibit a 1/f behavior.

In this paper, we will focus on the predictability of the
coherent noise model in view of the knowledge accumulated
from natural time analysis [46]. The paper is organized as
follows: In Sec. II, we discuss some properties of p

(k)
thres(x)

and based on its knowledge we derive an analytic expression
of the expectation value E (Sk+1) for the size Sk+1 of the
next avalanche in the case [27,30–32] of an exponentially
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distributed coherent noise, i.e., pstress(η) = exp(−η/σ )/σ . In
Sec. III, we present our results on the predictability of
the coherent noise model based on E (Sk+1). The possible
application of these results to real earthquake data is discussed
in Sec. IV and the conclusions are presented in Sec. V.

II. THE COHERENT-NOISE MODEL FOR
AN INFINITE NUMBER OF AGENTS

As already mentioned, when the number of agents is infinite
(Na → ∞) the stresses xi of the agents are replaced by a
threshold distribution function pthres(x) defined in the interval
0 � x < 1. As stated by Newman and Sneppen [27], this
function can be determined in a formally exact way during
the evolution of the model. The way used in the present study
is the following: Before the first avalanche, i.e., at k = 0,

p
(0)
thres(x) = 1. (1)

When the first coherent stress is applied, the random number
η1 eliminates all probability mass below η1, giving rise to an
avalanche of size

S1 =
∫ η1

0
p

(0)
thres(x)dx = η1. (2)

This mass S1 is then redistributed uniformly in the interval
0 � x < 1 and the threshold distribution becomes[

p
(0)
thres(x)

]′ = S1 + �(x − η1)p(0)
thres(x), (3)

where �(x) is the Heaviside (unit) step function, i.e., �(x) = 0
if x < 0 and �(x) = 1 if x � 0. Later, the aging step is applied
reducing [p(0)

thres(x)]′ by a fraction (1 − f ), since [p(0)
thres(x)]′ is

normalized to unity, and redistributing uniformly a mass of
probability f . Thus, after the first avalanche we have

p
(1)
thres(x) = (1 − f )

[
p

(0)
thres(x)

]′ + f, (4)

leading to

p
(1)
thres(x) = [(1 − f )η1 + f ] + (1 − f )�(x − η1), (5)

which is schematically shown in Fig. 1(a).
When the second random stress η2 is applied, an equivalent

of Eq. (3) holds:[
p

(1)
thres(x)

]′ = S2 + �(x − η2)p(1)
thres(x), (6)

where

S2 =
∫ η2

0
p

(1)
thres(x)dx

= [(1 − f )η1 + f ]η2 + (1 − f )(η2 − η1)�(η2 − η1). (7)

Then, the aging step transforms the threshold density of Eq. (6),
according to

p
(2)
thres(x) = (1 − f )

[
p

(1)
thres(x)

]′ + f. (8)

The application of Eqs. (6) and (8) for the threshold density
of Eq. (5), may lead to two functional forms for p

(2)
thres(x)

depending on whether η2 is smaller or larger than η1. When
η2 < η1, see Fig. 1(b), Eq. (8) becomes

p
(2)
thres(x) = [f + f (1 − f )η2 + (1 − f )2η2η1]

+ [f (1 − f ) + (1 − f )2η1]�(x − η2)

+ (1 − f )2�(x − η1), (9)
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FIG. 1. (Color online) The threshold distribution function
p

(k)
thres(x) of the coherent-noise model when the number of agents

is infinite after the k-th avalanche for (a) k = 1, (b) k = 1 and k = 2
when η2 < η1, and (c) k = 1 and k = 2 when η2 > η1. The case
k = 0, i.e., before the first avalanche, is also shown in panel (a).

whereas for η2 > η1 [see Fig. 1(c)], it leads to

p
(2)
thres(x) = [f + f (1 − f )η2 + (1 − f )2(η2η1 + η2 − η1)]

+ [(1 − f ) + (1 − f )2η1]�(x − η2). (10)

The expressions of Eqs. (5), (9), and (10) for the threshold
distribution function though lengthy, can be written in the
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(a)

(b)

FIG. 2. Schematic diagram of the transformation of p
(k)
thres(x) upon

the occurrence of the k + 1-th avalanche

following general form:

p
(k)
thres(x) =

n=nk∑
n=0

d (k)
n �

(
x − b(k)

n

)
, (11)

where nk is the number of steps present in the threshold
distribution function after the kth avalanche and b

(k)
0 = 0,

leading to �(x) ≡ 1 for the interval 0 � x < 1, where p
(k)
thres(x)

is defined. When k = 1, for example, n1 = 1 with d
(1)
0 =

(1 − f )η1 + f , b
(1)
0 = 0, d

(1)
1 = 1 − f , and

b
(1)
1 = η1 (12)

[see Eq. (5) and Fig. 1(a)].
Equation (11) allows the determination of p

(k+1)
thres (x) once

ηk+1 has been selected (see Fig. 2). The size Sk+1 =∫ ηk+1

0 p
(k)
thres(x)dx is given by

Sk+1 =
n=nk∑
n=0

d (k)
n

(
ηk+1 − b(k)

n

)
�

(
ηk+1 − b(k)

n

)
, (13)

the stress step leads to[
p

(k)
thres(x)

]′ = Sk+1 + �(x − ηk+1)p(k)
thres(x), (14)

and the aging step to

p
(k+1)
thres (x) = (1 − f )

[
p

(k)
thres(x)

]′ + f. (15)

Let nmax be the maximum integer such that

b(k)
nmax

< ηk+1 < b
(k)
nmax+1, (16)

if ηk+1 > b(k)
nk

, then nmax = nk . Then, Eqs. (11), (13), (14), and
(15) lead to

b
(k+1)
0 = 0, d

(k+1)
0 = (1 − f )Sk+1 + f,

b
(k+1)
1 = ηk+1, d

(k+1)
1 = (1 − f )

(
nmax∑
n=0

d (k)
n

)
,

b
(k+1)
2 = b

(k)
nmax+1, d

(k+1)
2 = (1 − f )d (k)

nmax+1,
(17)

b
(k+1)
3 = b

(k)
nmax+2, d

(k+1)
3 = (1 − f )d (k)

nmax+2,

. . . , . . .

b(k+1)
nk+1

= b(k)
nk

, d (k+1)
nk+1

= (1 − f )d (k)
nk

,

where nk+1 = nk − nmax + 1. All the above equations are valid
as far as ηk+1 is smaller than unity. If ηk+1 > 1, then obviously

Sk+1 = 1 (18)

and

p
(k+1)
thres (x) = p

(0)
thres(x), (19)

with

d
(k+1)
0 = 1, b

(k+1)
0 = 0, (20)

and the system has been completely regenerated.
Thus, Eq. (11) together with either Eq. (17) or Eq. (19)

describe the evolution of the threshold distribution function
of the coherent-noise model in the case of infinite agents. The
evolution of the system as k increases is reflected in the change
of the 2nk quantities b(k)

n ,d (k)
n for n = 1,2, . . . ,nk , because

b
(k)
0 = 0 and

d
(k)
0 = 1 −

nk∑
n=1

d (k)
n

(
1 − b(k)

n

)
, (21)

due to the normalization condition of the threshold distribution
function p

(k)
thres(x). The quantity nk is itself a random variable

(see Fig. 3) resulting from ηl, l = 1,2, . . . ,k. Its properties
will be later discussed in detail in Sec. IV.
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FIG. 3. (Color online) Example of the evolution of the quantity
nk (red circles, left scale) after the k-th avalanche for σ = 0.05 and
f = 10−7. The avalanche sizes Sk (blue impulses, right scale) are also
shown.
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The knowledge of the 2nk quantities b(k)
n ,d (k)

n for n =
1,2, . . . ,nk , enables the exact calculation of the probability dis-
tribution p(Sk+1) of the next avalanche Sk+1. This is so because

p(Sk+1) =
∫ ∞

0
p(Sk+1|η)pstress(η)dη, (22)

where p(Sk+1|η) is [27] the conditional probability to have an
avalanche of size Sk+1 given that ηk+1 = η. Due to Eqs. (13)
and (18), this conditional probability is given by

p(Sk+1|η)

= δ

{
Sk+1 − min

[
n=nk∑
n=0

d (k)
n

(
η − b(k)

n

)
�

(
η − b(k)

n

)
,1

]}
,

(23)

where δ(x) is the Dirac’s delta distribution and min(x,y)
stands for the minimum of x and y. Substituting Eq. (23) into
Eq. (22), we obtain

p(Sk+1) =
nk∑
l=0

∫ b
(k)
l+1

b
(k)
l

δ

[
Sk+1−

n=l∑
n=0

d (k)
n

(
η − b(k)

n

)]
pstress(η)dη

+ δ(Sk+1 − 1)
∫ ∞

1
pstress(η)dη (24)

where b
(k)
nk+1 = 1. Using now the definitions

αl ≡
l∑

n=0

d (k)
n , βl ≡

l∑
n=0

d (k)
n b(k)

n , (25)

and the properties of Dirac’s δ distribution, we finally obtain

p(Sk+1) =
nk∑
l=0

�
(
Sk+1 − αlb

(k)
l + βl

)
�

(
αlb

(k)
l+1 − βl − Sk+1

)
αl

×pstress

(
Sk+1 + βl

αl

)

+ δ(Sk+1 − 1)
∫ ∞

1
pstress(η)dη. (26)

Equation (26) allows the determination of the exact size
distribution of the next k + 1th avalanche given the 2nk

quantities b(k)
n ,d (k)

n for n = 1,2, . . . ,nk and the stress distri-
bution pstress(η). In the commonly used [27,30–32] case that
pstress(η) = exp(−η/σ )/σ , the expectation value

E (Sk+1) ≡
∫ ∞

0
Sk+1p(Sk+1)dSk+1 (27)

of the size Sk+1 results in (see Appendix A)

E (Sk+1) = σ

nk∑
l=0

d
(k)
l

[
exp

(
−b

(k)
l

σ

)
− exp

(
− 1

σ

)]
. (28)

III. THE PREDICTABILITY OF THE
COHERENT-NOISE MODEL

Since Eq. (28) provides an analytic expression for the
expected size E (Sk+1) of the next k + 1th avalanche, we
investigate whether E (Sk+1) can be used as a decision variable
for binary “predictions” in the sense described in Ref. [23]

(see also Ref. [52]). We note that in the latter reference
the decision variable and the prediction based on it requires
training a conditional probability from half the data set.
The approach we follow here is less elaborated since we
make use of the analytic study of the previous section and
directly apply Eq. (28) for the expected size E (Sk+1). Thus,
we run the coherent-noise model described by Eqs. (11),
(13), (17), and/or (20) for the first k = 106 avalanches and
after each avalanche k we estimated E (Sk+1). For reasons
of convenience, we convert both E (Sk+1) and Sk+1 to their
respective “magnitudes” M ′

k+1 ≡ log10[E (Sk+1)] and Mk+1 ≡
log10(Sk+1). The time increased probability (TIP) [53,54] is
turned on when M ′

k+1 � Mc, where Mc is a given threshold in
the prediction. If the magnitude Mk+1 of the next avalanche is
greater than or equal to a target avalanche magnitude threshold
Mtarget, we have a successful prediction. For binary predictions,
the prediction of events becomes a classification task with two
types of errors: missing an event and giving a false alarm. We
therefore choose [23] the receiver operating characteristics
(ROC) graph [55] to depict the prediction quality. This is a
plot of the hit rate versus the false alarm rate, as a function
of the total rate of alarms, which is tuned by the threshold
Mc [55]. The hit rate (or true positive rate) is the ratio of the
cases for which TIP was on and Mk+1 � Mtarget over the total
number of cases that Mk+1 � Mtarget. The false alarm rate (or
false positive rate, FPR) is the ratio of the cases for which TIP
was on and Mk+1 < Mtarget over the total number of cases for
which Mk+1 < Mtarget. Only if in between the hit rate exceeds
the false alarm rate, is the predictor useful. Random predictions
generate equal hit and alarm rates, and hence they lead to the
diagonal in a ROC plot. Thus, only when the points lie above
this diagonal is the predictor useful. As an example, the ROC
graph for σ = 0.05 and f = 10−7 is shown in Fig. 4. For
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FIG. 4. (Color online) Receiver Operating Characteristics when
using E (Sk+1) as a predictor (lines with symbols) for the coherent-
noise model with σ = 0.05 and f = 10−7 for the first 106 avalanches.
They correspond to Mtarget = −6, −5, −4, −3, and −2 from the
bottom to the top at FPR = 20%. The results of the same calculation
when E (Sk+1) have been randomly shuffled are also shown (grey
broken lines without symbols).
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every given threshold value Mc and a target threshold Mtarget,
we get a point in this plot, thus by varying Mc we get a curve.
The various curves in Fig. 4 correspond to various values
of Mtarget = −6,−5, . . . ,−2 increasing from the bottom to
the top at FPR = 20%. Since the points in each curve lie
above the diagonal, we see that E (Sk+1) exhibits predictive
power that increases for larger values of Mtarget. In order to
investigate the statistical validity of this result, we include in
the same graph the results when the values of E (Sk+1) have
been shuffled; we obtain curves which are close to the diagonal,
thus the predictive power of E (Sk+1) cannot be considered as
chancy.

IV. DISCUSSION AND APPLICATIONS

The exact knowledge of the threshold distribution p
(k)
thres(x)

for a real system like a fault is impossible (for example, see
pp. 358–362 of Ref. [46], where the possibility of predicting
large avalanches in the Olami-Feder-Christensen earthquake
model [56] has been discussed; see also Ref. [57]). Thus,
even if active faults followed the coherent-noise model (but
see also the last paragraph of this section), the application
of the prediction scheme of Sec. III would be practically
impossible. The coherent-noise model, however, captures real
aftershock properties (e.g., see Refs. [27,29,30]), and hence
it is worthwhile to investigate the results of Sec. II for the
presence of an experimentally measurable quantity to predict
its avalanches in the sense suggested in Sec. III.

An inspection of Eqs. (11), (26), and (28) points to
the relative importance of the number of steps nk of the
threshold distribution function p

(k)
thres(x). As mentioned in the

Introduction nk has already been studied [51] in a different
context in natural time. In Appendix B, the family of sets Ek of
successive extrema, defined in Ref. [51], obtained from a given
probability distribution function f (η) [e.g., f (η) = pstress(η)]
are discussed. The cardinality εk ≡ |Ek| of such sets equals nk

as far as for

l = 1,2, . . . ,k, ηl < 1. (29)

This holds because in this case, due to Eqs. (12) and (17),

Ek = {
b(k)

n : 0 < n � nk

}
, (30)

and thus εk = nk . It has been shown [51] that εk as a function
of the natural number k exhibits 1/f a noise with a very close
to unity. Moreover, the average value 〈εk〉 and the variance
〈(εk − 〈εk〉)2〉 are given by the following relations [51]:

〈εk〉 =
k∑

n=1

1

n
, (31)

〈(εk − 〈εk〉)2〉 =
k∑

n=1

(
1

n
− 1

n2

)
. (32)

Equations (31) and (32) reveal that when the condition (29)
holds, both the average value and the variance of nk diverge
logarithmically as k tends to infinity. This logarithmic creep
signifies that the system ages as k increases. The quantity nk is
shown in Fig. 3 for the first 10 000 avalanches in the case σ =
0.05 and f = 10−7. An inspection of this figure reveals that
although the system exhibits aging in the long term—since the
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FIG. 5. (Color online) Receiver Operating Characteristics when
using nk as a predictor (lines with symbols) for the coherent-noise
model with σ = 0.05 and f = 10−7 for the first 106 avalanches. They
correspond to Mtarget = −6, −5, −4, −3, and −2 from the bottom to
the top at FPR ≈ 47%. The results of the same calculation when
nk have been randomly shuffled are also shown (grey broken lines
without symbols).

average value of nk increases—there also exist avalanches that
strongly diminish nk . This occurs when a large ηk+1 value is
selected and—due to Eq. (13)—is accompanied by a relatively
large value of Sk+1. Thus, a small nk+1 value reflects a constant
p

(k+1)
thres (x) —up to a relatively high value of ηk+1(= b

(k+1)
1 )—

with a large amplitude d
(k+1)
0 = (1 − f )Sk+1 + f [cf. Eq. (17),

since Sk+1 is large]. These conditions are favorable for
aftershocks [27,29,30]. Thus, when nk is small we expect
“aftershocks” to appear: for example, see close to k = 5200
in Fig. 3. Having this in mind, in Fig. 5 we used nk as a
decision variable for the prediction of the first 106 avalanches
of the coherent-noise model with σ = 0.05 and f = 10−7,
i.e., the case treated in Fig. 4. Now, the TIP is on when nk is
smaller than or equal to a threshold nc which is varied in order
to obtain the ROC. We observe that this prediction scheme
also has statistically significant predictive power since the red
lines with plus symbols in Fig. 5 fall well above the diagonal
and above the ROCs obtained when randomly shuffling nk .
Moreover, when comparing Fig. 5 with Fig. 4, we observe that
E (Sk+1) seems to perform better than nk . The main advantage,
however, is that for real systems, such as earthquakes,
we can obtain a rough estimation for nk from earthquake
catalogs.

We now make the assumption that just after the occurrence
of a mainshock, Eq. (1) actually describes the points of
contact in the subterranean fault as suggested by Newmann
and Sneppen [27]. Of course, p

(k)
thres(x) cannot be determined,

but due to Eqs. (13) and (17) one expects that when a strong
aftershock of magnitude mk occurs it eliminates a large amount
of b(k)

n ’s. Hence, although it is Sk that is actually related with
mk , we could get a crude estimation of nk by replacing ηk

with some simple function of mk and study the related sets
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FIG. 6. (Color online) Receiver Operating Characteristics when
using εk as a predictor for the aftershock sequence of Landers
earthquake for target earthquake magnitudes mtarget = 3.5 (blue
squares), 4.5 (green crosses) and 5.5 (red pluses). For each mtarget,
the corresponding broken lines without symbols delimit the 90%
central interval in the ROCs obtained from randomly shuffling the
original aftershock sequence {mk} and repeating the calculation of εk

for 103 times.

Ek of successive extrema. The applicability of our assumption
will become clear once we construct the related ROCs (but
see also the next paragraph). In Figs. 6 and 7, we depict
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FIG. 7. (Color online) Receiver Operating Characteristics when
using εk as a predictor for the aftershock sequence of Hector
Mine earthquake for target earthquake magnitudes mtarget = 3.5 (blue
squares), 4.5 (green crosses) and 5.0 (red pluses). For each mtarget, the
corresponding broken lines without symbols delimit the 90% central
interval in the ROCs obtained from randomly shuffling the original
aftershock sequence {mk} and repeating the calculation of εk for 103

times.

the receiver operating characteristics when using εk as it
results from the analysis of the aftershocks, i.e., ηk = mk/10,
where the denominator 10 has been selected so that ηk < 1
[cf. Eq. (29)], where mk(�2.0) is the magnitude reported
in the Southern California Earthquake Catalog for the kth
aftershock of the June 28, 1992, Landers and of the October 16,
1999, Hector Mine earthquakes during the Omori regimes
estimated in Ref. [58]. Following Ref. [7], we considered the
aftershocks that occurred within a square region of 1.10 × 1.10

and 1.00 × 1.00 centered at the epicenter of the Landers and
the Hector Mine earthquakes, respectively. For the sake of
comparison, we also plot in each ROC graph the results
obtained by the same prediction algorithm when applied to
randomly shuffled copies of the original aftershock sequence
{mk}. We observe that εk has statistically significant predictive
power associated with the (true time) order k of aftershocks
and hence with natural time.

Let us finally, comment on the fact that real earthquakes—
which by definition are highly localized events in space and
time—are a result of complex interactions between the ele-
ments making up the crust of the Earth together with criticality
(e.g., see Refs. [44,46,47]), and thus are much more complex
phenomena than those described by the coherent-noise model.
The latter, as mentioned, consists of noninteracting agents
which are driven by a coherent noise. According to our opinion,
it is the fact that the coherent-noise model exhibits similar
temporal structures (i.e., aftershock sequences) with real
earthquakes that is responsible for the statistically significant
predictive power of εk in the case of aftershocks which has
been discussed in the previous paragraph.

V. CONCLUSIONS

The threshold distribution function p
(k)
thres(x) of the coherent-

noise model for the case of infinite number of agents
after the occurrence of the kth avalanche was studied. This
is a piecewise function with a finite number of steps nk

[cf. Eq. (11)]. An analytic expression has been obtained
for the size distribution function of the next avalanche
[cf. Eq. (26)]. This enables the estimation of the expected
size of the next avalanche E (Sk+1) [e.g., for the case of
exponentially distributed stresses ηk , see Eq. (28)]. The
possibility of using E (Sk+1) or nk as a decision variable for
the prediction of the size Sk+1 of the next avalanche was
investigated. The results obtained point to a tentative prediction
scheme for real earthquake aftershock data.

APPENDIX A: DERIVATION OF E (S) IN THE CASE
OF THE EXPONENTIAL DISTRIBUTION

When pstress(η) = exp(−η/σ )/σ , Eq. (27)—in view of
Eq. (26)—reads

E (Sk+1) =
nk∑
l=0

∫ αlb
(k)
l+1−βl

αlb
(k)
l −βl

Sk+1 exp
(− Sk+1+βl

σαl

)
σαl

× dSk+1 + exp(−1/σ ). (A1)
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Direct evaluation of the integrals leads to

∫ αlb
(k)
l+1−βl

αlb
(k)
l −βl

Sk+1 exp
(− Sk+1+βl

σαl

)
σαl

dSk+1

= (
αlb

(k)
l − βl + σαl

)
exp

(
−b

(k)
l

σ

)

− (
αlb

(k)
l+1 − βl + σαl

)
exp

(
−b

(k)
l+1

σ

)
. (A2)

By substituting Eq. (A2) into Eq. (A1), rearranging the terms,
and using the identity

βl − βl−1 = b
(k)
l (αl − αl−1) (A3)

that holds due to Eqs. (25), we finally obtain Eq. (28) of the
main text.

APPENDIX B: THE SETS OF SUCCESSIVE EXTREMA

The sets Ek of successive extrema are defined [51] as
follows: E0 equals the empty set. Each Ek is obtained by
the procedure described below for k times. Select a random
number ηk from a given probability density function f (η) and
compare it with all the members of Ek−1. In order to construct
the set Ek , we discard from the set Ek−1 all its members that
are smaller than ηk and furthermore include ηk . Thus, Ek 	= ∅
for all k > 0 and Ek is a finite set of real numbers whose
members are always larger or equal to ηk . Moreover,

max[Ek] � max[Ek−1]. (B1)

The increase of the cardinality εk ≡ |Ek| of these sets is at the
most 1, but its decrease may be as large as εk − 1. This reflects
an asymmetry if εk is considered as time series with respect to
the natural number k. Such an asymmetry is reflected in Fig. 3
where instead of εk , we depict nk of the coherent-noise model
which equals—due to Eqs. (12) and (17)—to εk as long as all
ηl, l = 1,2, . . . ,k are smaller than unity.
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