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In this work we study a two-dimensional XXZ-Ising spin-1/2 model with quartic interactions. The model is
composed of a two-dimensional lattice of edge-sharing unitary cells, where each cell consists of two triangular
prisms, converging in a basal plane with four Ising spin-1/2 (open circles); the apical positions are also occupied
by four Heisenberg spin-1/2 (solid circles). Interaction of the base plane containing the multispin Ising interaction
has the parameter J4, and the other pairwise interactions have parameter J . For the proposed model we construct
the phase diagram at zero temperature and give all possible spin configurations. In addition, we investigate two
regions where the model can be solved exactly, the free fermion condition (FFC) and the symmetrical eight-vertex
condition (SEVC). For this purpose we perform a straightforward mapping for a zero-field eight-vertex model. The
necessary conditions for the equivalence are analyzed for all ranges of the interaction parameters. Unfortunately,
the present model does not satisfy the FFC unless the trivial case; however, it was possible to give a region where
the model can be solved approximately. We study the SEVC and verify that this condition is always satisfied. We
also explore and discuss the critical conditions giving the region where these critical points are relevant.
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I. INTRODUCTION

It is well known that exact solutions for 2d lattices can
help us to understand more about phase transitions and critical
behavior of classical spin systems. Quantum spin models
have a richer internal structure and are implemented as toy
models for study of low-dimensional lattices; in this sense
they remain as the most interesting models where several
mathematical techniques can be used in order to explore the
possibility of obtaining exact solutions. The first works in
this direction were developed by Fisher [1] and Syozi [2]
where the star-triangle and decoration transformation was
performed. Actually in Fisher’s work, the central decorated
Ising site is generalized to an arbitrary mechanical system by
mapping it into another equivalent Ising model. This procedure
is accomplished by introducing a new interaction parameter set
in the partition function. In such a way the resulting system
can be used to explore the physical properties of the decorated
model. In recent years several results for 2d Ising-Heisenberg
models connected with their exact solutions were realized
and investigation of physical properties of such systems
was obtained [3–6]. In these works a multispin interaction
describing the whole lattice is considered in the Hamiltonian
and by mapping it into the square Ising model, all these new
interaction parameters are calculated. It is worthwhile to point
out that not all 2d models are exactly solved, however, in
some of these cases it is possible to find out a region where an
approximate solution takes place [7–9].

On the other hand, multispin interactions are important
for several reasons; for example, higher-order interactions
may exhibit rich phase diagrams and at the same time
may describe phase transitions and physical behavior not
observed in usual spin systems. Spin models with multispin
interactions are also interesting because they display the
nonuniversal critical phenomena [10]. Other Ising spin models
with multispin interaction have been studied with different
theoretical methods, as mean-field theory [11,12], effective
field theory [13], and renormalization group methods [14].

It has been shown that for some compounds multispin
interactions play a forthright role even more important than
two-spin interactions. For instance, models with pair and
quartic interactions were used to explain the existence of first-
order phase transition in the squaric acid crystal (H2C2O4) [15]
and have been applied to describe thermodynamical properties
of hydrogen-bonded ferroelectrics PbHPO4 and PbDPO4

[16]. Moreover, quartic interactions play a central role in
explaining the thermodynamic properties of two-dimensional
antiferromagnet La2CuO4 [17,18], a relevant compound when
the superconductivity at high temperature is studied. In this
way, self-spin interactions can be included by means of quartic
interaction terms, affecting the magnetic properties of several
copper compounds. All efforts for obtaining exact results
of these models can be useful in the investigation of some
important questions related to these magnetic properties [19].
For this reason the study of suchlike models have great interest
from the theoretical and experimental points of view.

With this motivation we propose a two-dimensional Ising-
Heisenberg model with quartic Ising interaction assigned to the
outer spin-1/2 sites and explore the conditions under which it is
possible to obtain an exact solution. The model is composed of
two-dimensional lattice of edge-sharing unitary cells, where
each cell consists of two triangular prisms converging in a
basal plane with four Ising spin-1/2 (open circles); the apical
positions are also occupied by four Heisenberg spin-1/2 (solid
circles). Interaction of the base plane containing the quartic
Ising interaction has the J4 parameter, and the other two-site
interactions have the J parameter. We construct the phase
diagram for the model at zero temperature. In order to solve
the model we perform the summation over the inner sites in
each unitary cell of the whole lattice. The best way to achieve it
is by fixing the set of spin values of the outer sites. In such a way
we obtain a complete set of 16 eigenvalues for the unitary cell,
where some of them are degenerated. It should be observed
that using the rotation and spin inversion symmetry only three
spin configurations are relevant. In addition, the model under
consideration will be straightforwardly mapped to the exactly
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solved eight-vertex model and the conditions, under which an
exact solution is possible, will be investigated. This procedure
was already discussed in several works where the decoration-
iteration transformation, as well as their generalization was
performed. Indeed, the main idea of similar transformation
is to establish an equivalent form to write down the original
partition function by means of a new interaction parameter set.

The work is organized as follows. In Sec. II we explicitly
present the two-dimensional Hamiltonian of the XXZ-Ising
model with quartic interaction. Section III is devoted to the
phase diagrams study where different ground states are found
as a function of the anisotropy � parameter. In Sec. IV we
perform a straightforward mapping of our model to the zero-
field eight-vertex model, followed by a detailed analysis of the
exact solution. Finally, in Sec. V some concluding remarks are
given.

II. THE XXZ-ISING SPIN-1/2 MODEL WITH QUARTIC
INTERACTION

We study a two-dimensional lattice composed of edge-
sharing unitary square cells with spin-1/2; inside this square
cell we consider four sites with XXZ-Ising interactions. Let
us begin writing the Hamiltonian for the XXZ-Ising spin-1/2
model introducing the unitary cell Hu. This unitary cell is
displayed in Fig. 1(a) where the dashed lines represent the
interactions of the Ising type and for the solid lines we indicate
the Heisenberg interactions. In this unitary cell the four apical
Heisenberg spin-1/2 sites {σi} interact together by the pairwise
XXZ interaction, while at the same time they are engaged two
by two in quartic interaction with the corresponding two Ising
spin {si}. The complete Hamiltonian of the whole lattice can
be written as the sum of all unitary cell H = ∑

u Hu, with Hu

given by

Hu =
∑
〈i,j〉

(
�J

(
σx

i σ x
j + σ

y

i σ
y

j

) + Jσ z
i σ z

j

)
+ J4

∑
(i,j )

sisjσiσj . (1)

(b)(a)
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FIG. 1. (a) Illustration of the unitary cell of the XXZ-Ising
spin-1/2 model with quartic interaction. The dashed lines indicate
interactions of the Ising type while the solid lines are connected
with the XXZ interaction. The open circles denote Ising positions
and are connected with other unitary cells of the whole lattice.
The solid circles denote the Heisenberg sites inside each unitary
cell. (b) Display of the mapping of the unitary cell to the effective
two-dimensional eight-vertex model.

The first sum 〈i,j 〉 runs over the nearest neighbor site and the
second one (i,j ) runs over the next-nearest neighbor site. In
the above Hamiltonian (1) we assume that Jx = Jy = �J and
Jz = J , with � measuring a relative strength of the exchange
anisotropy in the XXZ interaction.

III. PHASE DIAGRAMS

In this section we construct the phase diagram for the
two-dimensional XXZ-Ising model with quartic interaction
at zero temperature. Thereby we perform the summation of
the Heisenberg σi sites on each unitary cell of the whole
lattice. The best way to achieve it, is by fixing the set of
Ising spin values {s1,s2,s3,s4}; in this sense it is not difficult
to obtain a complete set of 16 eigenvalues for the unitary
cell depicted in Fig. 1(b). First of all it should be observed
that using the rotation and spin inversion symmetry only
three spin configurations are relevant, thus it is enough to
analyze the following spin configurations (i) {+, + , + ,+},
(ii) {+, + , − ,−} and (iii) {+, + , + ,−}.

A. Configuration {+, + , + ,+}
We begin discussing the energy levels of the first spin

configuration {+, + , + ,+}. For this purpose we perform
the summation on the Heisenberg sites {σi}; afterwards we
diagonalize the total Hamiltonian (1). In this way it is
not difficult to obtain all 16 energy eigenvalues for this
configuration. These eigenvalues are displayed in the first
column of Table I, while the second column indicates the
degeneracy order of the corresponding eigenvalues. From
those eigenvalues we have some possible energies that become
ground states, for example, for the region with J > 0 and
any value of the parameters J4 and �, the energy εFI1 =
−2J −

√
8�2J 2 + (J − J4)2, is the lowest eigenvalue with

the corresponding eigenvector given by

|FI1〉 = (1 + R)

∣∣∣∣ + − ++

+ + −+

〉
+ a(−)

3∑
r=0

Rr

∣∣∣∣ + − ++

+ − ++

〉
, (2)

and a(−) given by

a(∓) = 1

4�J
(J − J4 −

√
8�2J 2 + (J ∓ J4)2). (3)

In this notation with the largest (+) and (−) signal (inner
signs) we represent sites with spin σ . The magnetization of
the unitary cell is neither null nor saturated and corresponds to
the ferrimagnetic state with magnetization 1/4; we represent
this state as FI1. By R we represent the rotation operator

TABLE I. The energy levels for XXZ-Ising model with quartic
interaction for the configuration {+, + , + ,+}.

Energy {+, + , + ,+} Degeneracy

−2J ±
√

8�2J 2 + (J − J4)2 1
±4�J 2
4J + 2J4 2
−4J + 2J4 1
−2J4 3
0 4
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FIG. 2. In this figure we illustrate some ground states for different
values of the anisotropy � parameter. It can be shown that for
large values of � � 1 only the ferrimagnetic state of type I with
magnetization 1/4 remains.

acting only on Heisenberg interaction sites with spin σ ; each
rotation is performed in π

2 , around the axis perpendicular
to the plane of lattice. On the other hand, in the region
with J < 0, we have the ground state as a function of the
parameter �. In this case for large values of � � 1 only
the FI1 state is present, while for small values of � < 1
we have additionally two other states, ferromagnetic (FM1)
and antiferromagnetic (AF1) states which we called type I.
These states are degenerated and have the same eigenvalue,
εFM1 = εAF1 = 4J + 2J4. The corresponding eigenvectors are
given by

|FM1〉 =
∣∣∣∣ + + ++

+ + ++

〉
, (4)

|AF1〉 =
∣∣∣∣ + − −+

+ − −+

〉
. (5)

These two states have magnetization equal to 1/2 for the FM1

and 0 for the AF1 state. In Fig. 2 we depict the different ground
states as a function of the � parameter.

B. Configuration {+, + , − ,−}
The next configuration that becomes eventually a ground-

state energy is {+, + , − ,−}. Proceeding as in the previous
case, we diagonalized the corresponding Hamiltonian, after-
wards we found all 16 eigenvalues listed in Table II. Two

TABLE II. The energy levels for XXZ-Ising model with quartic
interaction, for the configuration {+, + , − ,−}.

Energy {+, + , − ,−} Degeneracy

−2J ±
√

8�2J 2 + (J + J4)2 1
±4�J 2
4J − 2J4 2
−4J − 2J4 1
2J4 3
0 4
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FIG. 3. In this figure the ground states are depicted as a function
of the parameter �. We note in this phase diagram that for large values
of the parameter � � 1 only the ground state AF2 is maintained. On
the hand, for small values of the parameter � the two-degenerated
state FI2 with magnetization equal to 1/4 appears.

regions are also analyzed in relation to the sign of the J

parameter. First, we have that for possitive values of J > 0 and
any value of the parameters J4 and �, the antiferromagnetic
state, which we called type II (AF2), becomes the ground
state. It has the energy, εAF2 = −2J −

√
8�2J 2 + (J + J4)2,

and the eigenvector,

|AF2〉 = (1 + R)

∣∣∣∣ − − +−

+ + −+

〉
+ a(+)

3∑
r=0

Rr

∣∣∣∣ − − −−

+ + ++

〉
, (6)

where a(+) is given by the relation (3). In the other region
with negative values of J < 0 we have different situations for
different values of the parameter �, for example, for large
values of the parameter � � 1 only the AF2 given by Eq. (6)
is present, while for small values of the parameter �, we
have additionally a new ferrimagnetic state of type II (FI2).
This state has the energy value, εFI2 = 4J − 2J4, and the
corresponding eigenvector given by

|FI2〉 =
∣∣∣∣ − + +−

+ + ++

〉
. (7)

This is a two-degenerated state with magnetization equal to
1/4. The other eigenvector state with the same energy is
equivalent to (7) and it is obtained by applying the spin
inversion operator to the whole unitary cell; magnetization
of this state is equal to −1/4. In Fig. 3 all ground states are
represented as a function of the parameter �.

C. Configuration {+, + , + ,−}
Finally, we study the last configuration that could have

ground-state energies. After some manipulations we found all
16 eigenvalues of the configuration {+, + , + ,−}. All these
values, as well as the degeneracy, are listed in Table III. In this
case we have different situations depending on values of the
anisotropy parameter �. For example, for � = 1, we see that
the ground-state energies are given by an antiferromagnetic
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TABLE III. The energy levels for XXZ-Ising model with quartic
interaction, for the configuration {+, + , + ,−}.

Energy {+, + , + ,−} Degeneracy

±2
√

J 2
4 + 4�2J 2 2

−2J (1 ± √
1 + 8�2) 1

±2J4 2
−4J 1
4J 2
0 3

state (AF (+)), with energy εAF (+) = −2J (1 + √
1 + 8�2), and

two other degenerated states [i.e., a ferrimagnetic state of type
III (FI3) and an antiferromagnetic state of type III (AF3)];

these states have energy, εFI3 = εAF3 = −2
√

J 2
4 + 4�2J 2.

This situation is illustrated in Fig. 4(b). The corresponding
eigenvectors in this case are given by

|AF (±)〉 = (1 + R)

∣∣∣∣ − − ++

+ + −+

〉
+ c(±)

3∑
r=0

Rr

∣∣∣∣ − − −+

+ + ++

〉
, (8)

|FI3〉 = (1 + cR)(1 + R2)

∣∣∣∣ − − ++

+ + ++

〉
, (9)

|AF3〉 = (1 + cR)(1 + R2)

∣∣∣∣ − + −+

+ − −+

〉
, (10)

where c(±) and c are equal to

c(±) = − 1

4�
(1 ±

√
1 + 8�2), (11)

c = − 1

2�J

(
J4 +

√
J 2

4 + 4�2J 2
)
. (12)

For small values of the anisotropy parameter, as, for example,
� = 0.5, a new ferrimagnetic state (FI±) appears as depicted
in Fig. 4(a). The energy of this state is two degenerated and
equal to εFI (±) = 4J , and the corresponding eigenvector,

|FI (±)〉 =
∣∣∣∣ − ± ±+

+ ± ±+

〉
. (13)
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FIG. 4. We illustrate the ground-state energies for different values
of the anisotropy parameter �. In (b) for � = 1 we have three ground
states: AF (+), FI3, and AF3. For values of the parameter � < 1 or
� > 1, three new ground states appear, FI (±) and AF (−), respectively.
This is illustrated in (a) and (c) for two fixed values of �.

For values of � > 1, as, for example, � = 2, another
antiferromagnetic state AF (−) appears; this ground state
has the eigenvalue, εAF (−) = −2J (1 + √

1 − 8�2), with the
eigenvector given by the relation (8). These ground states are
depicted in Fig. 4(c).

IV. EQUIVALENCE TO THE ZERO-FIELD
EIGHT-VERTEX MODEL

In this section we turn our attention to the analysis of the
finite-temperature behavior of the XXZ-Ising model. In this
sense we proceed to study which conditions are necessary to
obtain an exact solution for the proposed model given by the
Hamiltonian (1). The best way to achieve it is by performing a
straightforward mapping to the exactly solved zero-field eight-
vertex model. This procedure was already discussed in several
works [1,4,5] where a decorated transformation was applied
to Ising-Heisenberg models. Actually, the main idea of similar
transformation is to establish an equivalent form to write down
the original partition function by means of a new interaction
parameter set. Considering that any two unitary cells of the
whole lattice commute with each other (i.e., [Hu,Hu′] = 0), it
is possible to establish a simplified relationship for the partition
function. We begin writing the partition function as the
following:

Z =
∑
{s}

N∏
u=1

w ({s}) , (14)

where N is the number of unitary square cells in the whole
lattice and w({s}) are defined as the Boltzmann weights
assigned to the uth unitary cell. They are given by

w({s}) ≡ Tr{σ }(e−βHu ). (15)

Here Hu is the Hamiltonian of the unitary cell and is given
by the relation (1). By β = 1/kT we denote the inverse
of temperature, k is the Boltzmann constant, and the Tr{σ }
indicates the trace on the spin-1/2 sites inside the unitary
square cell. As is shown in the works [1,4] it can be established
a complete equivalence between the partition function of the
original Ising-Heisenberg model and the partition function of
the zero-field eight-vertex Ising model on a square lattice.
This transformation is illustrated in Fig. 1(b). For this
purpose we introduce the effective Boltzmann weight w̃,
defined as

w̃ ({s}) = f e−βH̃u , (16)

here f is a new constant and H̃u is the new effective
Hamiltonian of the effective square unitary cell. The eight
different spin arrangements of these eight Boltzmann weights
are schematically depicted in the Fig. 5. The next step is to
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FIG. 5. We Illustrate the eight different possible spin arrange-
ments corresponding to different Boltzmann weights. Inversion of all
spins corresponds to the same vertex. The sign (±) denotes the spin
state σz = ±1/2.

write down the total effective Hamiltonian as

H̃u = K
∑
(k,k′)

sksk′ + L
∑
〈k,k′〉

sksk′ + Ms1s2s3s4,

(17)
H̃ =

∑
all square

H̃u.

Here K, L, and M represent a new interaction parameter
set related to the effective Ising square model and H̃ is the
total effective Hamiltonian. The first sum in Eq. (17), with
k,k′ = 1..4, runs over the nearest-neighbor spin-1/2 Ising site
of the effective unitary cell, while the second one runs over
the next-nearest-neighbor spin-1/2 Ising site. Is a matter that
the Boltzmann weights contained in the expression (15) and the
effective Boltzmann weight given by Eq. (16) are equivalent.
In such a way it is not tricky to conclude that an equivalence
between both partition functions also happens. In this sense
we can write the effective partition function as

Z̃ = f NZ0. (18)

In the above relationZ0 is the partition function for spin-1/2 of
the eight-vertex model. After some algebraic manipulations,
we find the following values for the interaction parameters of
the effective two dimensional square Ising model:

f = (
w1w3w

2
5

)1/4
, (19)

βL = ln

(
w3

w1

)1/4

, (20)

βM = ln

(
w2

5

w1w3

)1/4

, (21)

K = 0, (22)

where the Boltzman weights defined by (15) take the form,

w1 = 2e2βJ ch(2β
√

8�2J 2 + (J − J4)2)

+ e−2βJ4 (e4βJ + 2e−4βJ )

+ 3e2βJ4 + 4ch(4β�J ) + 4, (23)

w3 = 2e2βJ ch(2β
√

8�2J 2 + (J + J4)2)

+ e2βJ4 (e4βJ + 2e−4βJ )

+ 3e−2βJ4 + 4ch(4β�J ) + 4, (24)

w5 = 4ch(2β

√
J 2

4 + 4�2J 2) + 2e2βJ ch(2βJ
√

1 + 8�2)

+ 4ch(2βJ4) + e4βJ + 2e−4βJ + 3. (25)

The other Boltzmann weights can be obtained from the above
relations taking into account the following identities:

w1 = w2, w3 = w4, w5 = w6 = w7 = w8. (26)

At this stage we would like to make some remarks about the
Boltzmann weights (23)–(25). First of all, it directly results
from these relations that the greatest Boltzmann weight is given
by w1 or w3, so the w5 cannot be the maximum value of these
Bolztmann weights. This fact turns relevant when the critical
conditions of the model under consideration are studied.
Secondly, from these relations it is possible to observe the
symmetry of the Boltzmann weights w1 and w3 in relation to
the parameter J4, namely w1(±J4) = w3(∓J4); furthermore,
because w5 is an even function in J4 we can assume in the
next lines a positive value of J4 > 0 without loss of generality.
Finally, we remark that in the case where w1 = w3, called the
disorder solution, immediately it is followed by the zero value
of the L parameter given by the relation (20), leaving us only
the quartic interaction in the effective model.

A. The exactly solved model

An extensive study of the exactly solvable model can be
found in Ref. [3]. On the other hand, recently two-dimensional
Ising-Heisenberg models with quartic interaction were solved
by mapping into the zero-field eight-vertex model [19]. In
general this mapping is possible only for some values of the
interaction parameters. In our case, the model defined by the
Hamiltonian (1) is mapped into the eight-vertex model in order
to explore the range of the interaction parameter values where
this mapping is successful. In the following lines we discuss
the conditions for obtaining an exactly solvable model in detail.

1. Free fermion condition (FFC)

The study of the partition function with arbitrary Boltzmann
weights was considered in detail by Fun and Wu [7] where the
partition function was written in a different way as the vacuum
expectation value of a linear combination of products of
fermion operators satisfying the fermi algebra. It is appropriate
to mention that such a model can be regarded as a free-fermion
system on a lattice. Using the anticommuting properties and
after some manipulations, they found that the model has an
exact solution only in the case � = 0, with � given by

� = w1w2 + w3w4 − w5w6 − w7w8. (27)

This condition, called the free fermion condition, will apply
now to our model. Unfortunately, when imposing the FFC we
cannot find an exact solution. However, as was pointed out
by Fun and Tang, it is possible to obtain a region where the
model can be solved approximately. This happens when the
condition �/w2

max 	 1 takes place; this procedure is detailed
in the works [7,8]. On the other hand, we can verify that in this
situation � has a positive amount of �/w2

max. In Fig. 6(a) we
give the region where the FFC is satisfied approximately for
the fixed value βJ4 = 0.1. This condition is represented by the
white area where the approximation is taken for �/w2

max 	
0.001. Actually, the maximum value of the Boltzmann weight
is also a function of the anisotropy parameter �; to remark
this fact we consider positive values of J4 > 0 and fixed the
parameter βJ4 = 0.1. This is illustrated by the dashed line in
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FIG. 6. (a) Illustration of the region where the FFC is satisfied
approximately for a fixed value βJ4 = 0.1. The white region satisfies
the condition �/w2

max 	 0.001 whereas the shadow region is for
the case �/w2

max � 0.001. The dashed line separates two sectors;
upward of this line we have the maximum Boltzmann weight w3,
and downward of this line the maximum Boltzmann weight w1.
(b) The maximum Boltzmann weight as a function of � and J/J4.
We consider positive values of J4 > 0, and for the sake of comparison
we fixed two values βJ4 = 0.1 and βJ4 = 1. For negative values of
J4 < 0, we have the axis J/J4 going to −J/J4 and the Boltzmann
weights changing as w1 → w3.

the Fig. 6(a). Upward of this line the maximum Boltzmann
weight is given by w3, whereas downward of this line the
maximum value results to be w1. To compare the behavior of
the maximum Boltzmann value as a function of � we fixed two
values of βJ4; this is represented in Fig. 6(b). It is worthwhile to
remark that the symmetry observed for the Boltzmann weights
[(23) and (24)] in relation to the shift of J4 is also observed in
Fig. 6. In this sense, if we take negative values of J4 < 0 and
invert the axis J/J4 the Boltzmann weights are also inverted
as w1 → w3.

2. The symmetric eight-vertex model condition (SEVC)

We discuss the second branch where the model has an exact
solution; this condition is called the symmetric eight-vertex
condition (SEVC) given by

w1 = w2, w3 = w4, w5 = w6 w7 = w8. (28)

It is not tricky to see from the relations (26) that this condition
is fully satisfied for any values of the interaction parameters
J,J4 and all values of the anisotropy parameter �.

B. The critical line

It is also possible to discuss the critical behavior even when
the exactly solvable condition is not satisfied. For the FFC the
critical points are given by the following relation:

w1 + w2 + w3 + w4 = 2 max(w1,w2,w3,w4). (29)

Unfortunately, this condition is not satisfied for any value of the
interaction parameter even approximately. The second branch
for obtaining the critical points is the region where the SEVC
condition is satisfied. In this case the Boltzmann weights are
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FIG. 7. In this figure we consider only positive values of J4 > 0.
In (a) we give the dependence of the critical temperature Tc/J as
a function of the anisotropy parameter � at three different values
of relative strengths of the quartic Ising interaction, J4/J . This case
considers only positive values of J . In the (b) the solid lines represent
the values where the critical condition is satisfied for J < 0. The
left wing takes into account that the maximum Boltzmann weight is
given by w3 while the right wing considers the maximum Boltzmann
weight as w1. The dashed line represents the values for the disorder
temperature TD/|J | as a function of �, where the disorder condition
w1 = w3 is satisfied.

related by

w1 + w3 + w5 + w7 = 2 max(w1,w3,w5,w7). (30)

The above relation gives us different regions where the
interaction parameters J,J4 are connected to each other in
order to satisfy this condition. In Fig. 7 we display the critical
lines giving Tc/J as a function of �, with Tc being the critical
temperature. In this case we consider only positive values
of the parameter J4 > 0. In Fig. 7(a), we consider positive
values of the parameter J > 0 and depict the critical lines for
three different values of J4/J . In this region the maximum
Boltzmann value results to be w3. In Fig. 7(b) the negative
values of the parameter J < 0 are considered. To illustrate
this situation we fixed the value J4/|J | = 0.5 and displayed
the critical points represented by the solid lines in Fig. 7(b).
The left wing of critical lines takes into account that the
maximum Boltzmann value is given by w3 while the right
wing of the critical lines has the Boltzmann weight w1 as the
maximum value. For the fixed value J4/|J | = 0.5 adopted in
this figure we have that at zero critical temperature Tc/|J | = 0
the anisotropy parameter is � = 1.11939, however, for large
negative values of J 	 0 or J4/|J | → 0 the anisotropy
parameter � → 1. It is worth mentioning that for negative
values of J4 < 0 it would be necessary to consider negative
values of the relative strength of quartic interaction J4/J . This
results in replacing the Bolztmann weight w1 by w3, obtaining
the same critical lines for this case.

1. Disorder solution

It is also interesting to analyze the case where w1 =
w3. This condition, called the disorder solution, implies an
effective reduction of the number of parameters and ensures
the disordered nature of the XXZ-Ising model. In this case we

051135-6



TWO-DIMENSIONAL XXZ-ISING MODEL WITH . . . PHYSICAL REVIEW E 85, 051135 (2012)

observe that only for negative values of J < 0 the disorder
condition is satisfied. Moreover, for very small values of
temperature T → 0 and large negative values of J 	 0 the
anisotropy parameter approximates to 1 (i.e., � → 1). In
Fig. 7(b) we display the disorder temperature TD/|J | as a
function of the parameter � and represented by the dashed
line. It is quite noticeable that the disorder (dashed) line
shown in this figure has almost a constant tangent that becomes
more evident for T → 0. In other words it can be possible to
obtain by an approximation a linear dependence of the disorder
temperature TD in relation to the anisotropy parameter �. In
this regard we point out that this condition gives us a zero
value for the parameter L defined by (20).

V. CONCLUSIONS

In the present work we proposed a two-dimensional XXZ-
Ising model with quartic interaction. We have discussed
the ground-state energy of the model and plotted the phase
diagram at zero temperature as a function of the anisotropy
parameter �. To study the different ground states we separate
all possible configurations fixing the set of Ising spins
(s1,s2,s3,s4). Analysis of these configurations leads us to
conclude that only three of them are relevant in relation to the
minimal energy. The first configuration (+, + , + ,+) gives
us three different states: a ferrimagnetic state of type I (FI1), a
ferromagnetic state of type I (FM1), and an antiferromagnetic
state of type I (AF1). The second configuration (+, + , − ,−)
results in two other states: an antiferromgnetic state of type II
(AF2) and a ferrimagnetic state of type II (FI2). The last

configuration (+, + , + ,−) results in six new states: two
antiferromgnetic states that we called AF±, two ferrimagnetic
states called FI±, one ferrimagnmetic state of type III (FI3),
and one antiferromgnetic state of type III (AF3). From the
phase diagram we figured out that the ground states are deeply
connected with the anisotropy parameter �.

Then, we explored the conditions under which the model
can be exactly solved. With this aim the Boltzmann weights
were calculated and the two different constraints for the free
fermion condition and the symmetric eight-vertex conditions
were discussed. The first attempt to obtain an exact solution
was performed in the region defined by the FFC condition.
Unfortunately, the model is not exactly solved for this case.
However, it was possible to plot up the region where the model
can be solved approximately; we have done this figure with
an approximation of �/w2

max 	 0.001. For the other region
where an exact solution is possible, namely SEVC, we verify
that these conditions are satisfied in an unrestricted manner
(i.e., for any value of the interaction parameters J , J4 and the
anisotropy parameter �). Furthermore, the critical conditions
were explored; for the case of SEVC condition we depicted
the critical lines where the critical temperature Tc/J appears
as a function of the anisotropy parameter �.
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