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Detection of diffusion anisotropy due to particle asymmetry from single-particle tracking
of Brownian motion by the large-deviation principle
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We show that the diffusion anisotropy due to the asymmetry of the particle can be extracted from the trajectory
data without the information of the particle orientation. The subject of analysis is typical in single-particle tracking
(SPT) experiments, and the analysis is based on the large-deviation principle in mathematics. We consider the
model system of Langevin equations in two dimensions where a particle diffusion shows anisotropy depending
on a single parameter defined by the two diffusion coefficients in the perpendicular directions of the frame fixed
to the particle. We show how the large-deviation quantities depend on this parameter so that it can be used for
the detection of the diffusion anisotropy. We also illustrate how the discreteness of the sampling interval in the
SPT and the finiteness of the number of samples influence the results of the analysis.
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I. INTRODUCTION

The diffusion characteristics of anisotropic Brownian parti-
cles have been attracting much attention [1–12]. The applica-
tions include the self-organization and assembly mechanism of
liquid crystals or solids observed in the solution of nanorods
[13–16] partly because the fabrication of crystal structures
from nanorods is directly related to the development of
novel electronic devices and metamaterials [17,18]. Although
some aspects of the design principle are suggested [18],
there are various factors that affect the structure in specific
situations [19–22]. In the first place, the assembly of nanorods
accompanies the complexity due to its anisotropy, in contrast
to the spherical nanoparticles. A straightforward solution to
determine the assembly mechanism is the direct observation
and detailed analysis of the elementary process. In fact, there
have been drastic improvements in the visualization technique
of diffusing small agents, which is often called single-particle
tracking (SPT) [23–45]. This innovation offers the oppor-
tunity to extract particle trajectories at finer spatiotemporal
resolutions for longer periods of time than before. However,
the particle orientation is not always directly observable,
especially when tracking the motion of single molecules by the
light emitted from the attached marker molecules. There are a
few techniques to observe the molecular orientation [37,46],
but they are not widespread.

On the other hand, the understanding of raw data obtained
from the experimental systems is still not sufficient. The
basic quantity to characterize diffusion is the mean square
displacement (MSD) derived from the particle trajectory. The
diffusion coefficient can be obtained from the MSD when
it is a linear function of time, but the available information
is limited as long as the analysis relies on the MSD alone.
Diffusion of asymmetric particles such as ellipsoids and rods
is characterized by their anisotropic diffusion coefficients in
the longitudinal and its perpendicular direction as well as
the rotational diffusion coefficient. The motion of rods and
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ellipsoids appears the same as isotropic particles if we only
observe the long-time limit of the diffusive behavior by the
MSD. The MSD does not depend on the anisotropy and it is
just linear if the marker of the particle is located at the center
of diffusion. Therefore, it is not enough to observe only MSD
if a deeper understanding is necessary. There is still room
for innovation by theoretical analysis of the obtained data
even when the experimental system setup is fixed. Although
there has been a report to propose a function to deduce the
anisotropy of the diffusing particle from the SPT data [47],
the development of a theoretical approach for the SPT is
still lacking compared to the hardware developments. It is
desirable for the multiple approaches in the analysis to be
implemented because different factors inherent to the system
can lead to the same observable feature when the difference
between the theoretical model and the experimental system
is not clear enough. This can often be the case when the
subject is biological, and this is similar to the situation in
which a diagnosis is made from symptoms. It might also
become possible to distinguish between the external noise and
the inherent fluctuating signal of the diffusion depending on
the source of noise.

In this article, we show that the information of diffusion
anisotropy can be elucidated from the particle trajectory
data where the particle is defined just as a single point
indicating only the position at every time step of observation.
We use the large-deviation principle of statistics. Although
it has been pointed out that the large-deviation principle
is effective for extracting the non-Gaussian characteristics
of diffusive dynamics [48,49], these studies focused on the
illustration of analytically solvable models such as random
walk on a one-dimensional lattice [48], or the peculiarity of
the order-parameter dependence on the deterministic diffusion
generated from a chaotic map [49]. We focus on the anisotropy
of Brownian motion, which is ubiquitous and important
in a vast range of applications from material science and
device physics to biology and medicine. We show how the
diffusion anisotropy is reflected in the quantities related to
the large-deviation principle. We consider the simple model
system to obtain the trajectory data corresponding to what is
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available through SPT experiments, and we also discuss how
the numerical treatment affects the large-deviation analysis of
the experimental systems.

II. MODEL AND METHODS

A. Two-dimensional anisotropic Brownian diffusion

We consider a model system of two-dimensional diffusion
by a single anisotropic particle. This two-dimensionality is
the typical situation of SPT experiments. We define the
anisotropic Brownian motion by three parameters: the rota-
tional diffusion coefficient Dr and the translational diffusion
coefficients Da,Db in two directions, where Da � Db. Da and
Db correspond to the diffusion coefficients in the longitudinal

and its perpendicular directions when the particle of interest
is a rod, ellipsoid, or a kind of prolate particle. However,
the anisotropy in the diffusion of smaller objects such as
biomolecules might not be interpreted as being caused only
by the geometric anisotropy in a macroscopic notion but
by the hydrophilic-hydrophobic balance or generally the
charge distribution in it. The origin of diffusion anisotropy
in this model system is solely due to Da/Db > 1, which
does not limit the origin of diffusion anisotropy to specific
factors.

We assume that the Brownian motion in each translational
direction and rotational motion is generated from the Wiener
process. Then, the Brownian dynamics of the anisotropic
diffusion can be described as follows [2,5,11,47]:

d

dt

[
x(t)

y(t)

]
=

[√
2Da cos2 θ (t) + √

2Db sin2 θ (t) (
√

2Da − √
2Db) cos θ (t) sin θ (t)

(
√

2Da − √
2Db) cos θ (t) sin θ (t)

√
2Da sin2 θ (t) + √

2Db cos2 θ (t)

][
ξx(t)

ξy(t)

]
, (1)

dθ (t)

dt
= √

2Drξθ (t), (2)

where (x(t), y(t)) is the position of the center of diffusion and
θ (t) is the orientation of the particle; ξx , ξy , and ξθ are the
Gaussian random variables that satisfy the mean 0, variance
1, and 〈ξi(t)ξi(t ′)〉 = δ(t − t ′), where i = x, y, and θ ; and 〈 〉
stands for the ensemble average. The use of x(t) and y(t)
defined in this way in the analysis means that we consider the
situations in which the distance of the marker position in the
particle of interest from its center of diffusion is negligible.
Defining the characteristic length L, time τ , and anisotropy
parameter η by

L =
(

Da + Db

2Dr

) 1
2

, (3)

τ = D−1
r , (4)

η = Da − Db

Da + Db
, (5)

the Langevin Eqs. (1) and (2) can be nondimensionalized as

d X
dt

= [√
2(1 + η)

1
2 ûû +

√
2(1 − η)

1
2 (I − ûû)

] · �(t), (6)

dθ

dt
=

√
2ξθ (t), (7)

where X = (x,y)T , � = (ξx,ξy)T , û = ( cos θ (t), sin θ (t))T ,
and I is the two-dimensional unit matrix [47]. We solve the
above equations numerically by the following rules:

θ (t + �t) = θ (t) +
√

2�tξθ (t), (8)

X(t + �t) = X(t) +
√

�t

2
[F(t + �t) + F(t)] · �(t), (9)

F(t) =
√

2(1 + η)
1
2 û(t)û(t) +

√
2(1 − η)

1
2 [I − û(t)û(t)],

(10)

where �t is the time step in the numerical integration [47]. The
parameter �t corresponds to the frame rate of the video cap-
ture in the SPT experiments. Nondimensionalized quantities
are used, and the characteristic time scale (and correspondingly
the rotational diffusion coefficient) is fixed to be τ = 1
throughout this article. Thus, the only tunable parameter in the
physical property of the dynamics is η. On the other hand, the
standard condition for the total duration of the simulation is
defined to be ntot = 106 time steps with �t = 10−2, but the
influence of these parameters is examined later.

B. Calculation of large-deviation quantities

The non-Gaussian nature of a fluctuating quantity U (t) in a
steady state can be analyzed on the basis of the large-deviation
principle [48,49]. In contrast to the fact that the central limit
theorem provides the Gaussian nature of an independent
and identically distributed stochastic variable by focusing on
the sample mean in the long-time limit, the large-deviation
analysis first considers the finite-time mean,

ū(T ) = 1

T

∫ t+T

t

U (s)ds, (11)

where T is the time span to take the mean value. The finite-time
mean ū(T ) is then used for the calculation of a characteristic
function φ(q) by

φ(q) = lim
T →∞

1

T
ln〈exp[qT ū(T )]〉, (12)

where q is a real-number parameter. φ(q) is also called
the scaled cumulant-generating function [50]. In the large-
deviation theory, φ(q) can be related to the rate function
defined by

S(u) = − lim
T →∞

1

T
ln P (ū ∈ [u,u + du]) (13)
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through the Gärtner-Ellis theorem as

S(u(q)) = sup
q

[qu(q) − φ(q)], (14)

where P (ū ∈ [u,u + du]) is the probability that ū takes
the value between u and u + du. The rate function indi-
cates the speed of convergence to the most probable value.
Equation (14) reduces to

S(u(q)) = qu(q) − φ(q) (15)

when φ(q) is strictly convex and differentiable. u(q) is obtained
by the derivative of Eq. (15) with respect to q:

u(q) = dφ(q)

dq
. (16)

In Ref. [49], the quantity

χ (q) = du(q)

dq
= d2φ(q)

dq2
(17)

was also introduced as the susceptibility.
In this study, we calculate the large-deviation quantities

numerically from the time-series data of particle trajectory.
Therefore, we cannot take T → ∞ but use the finite number
of time steps nspan which corresponds to T by T = nspan�t .
Similarly, we cannot take the infinite number of samples for
the ensemble average 〈 〉 in Eq. (12), but we use a finite number
of samples nens which is determined by the available amount
of data, and the maximum is nens = ntotal/nspan. Therefore,
the maximum nspan and nens are not independent of each
other.

III. RESULTS AND DISCUSSION

Figure 1 shows the trajectories of the diffusion defined
by Eqs. (6) and (7) with different anisotropy parameters
(η = 0, 0.5, and 1), and time steps (�t = 10−3 and 10−2).
The cases of η = 0 [Figs. 1(a) and 1(b)] correspond to the
isotropic diffusion (Da = Db), and η = 1 [Figs. 1(e) and 1(f)]
corresponds to the case when Db is negligible compared to Da.
The difference in the anisotropy parameter η = 0 and 1 can
be easily recognized for both cases of the time steps, and the
anisotropy is more pronounced for smaller time steps [Fig. 1(e)
compared to Fig. 1(f)] under the condition of the same number
of total time steps. More intuitively, the displacement in the
x direction tends to be larger when the rod is directed in
the x direction while it is smaller when it is directed in the
perpendicular (i.e., y) direction if the diffusing particle is a rod.
However, such a distinction by visual inspection is qualitative,
and Figs. 1(c) and 1(d) show that even a qualitative distinction
is difficult when η is not far enough from 0. The difference
between η = 0.5 and 0 is difficult to recognize directly from
these samples even for the smaller time step �t = 10−3.
The time steps much smaller than �t = 10−3 may improve
the ease of distinction, but the time step is not an arbitrary
parameter. In reality, e.g., in the case of SPT experiments, the
smallest time step is limited by the specification of the video
capturing system. In addition, the smaller time steps for the
same duration of observation time mean a larger amount of
total data storage. In general, the total amount of time required
for the observation of the phenomena of interest is not always
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FIG. 1. Sample trajectories of Brownian motion under different
conditions of anisotropy parameter η defined in Eq. (5) and time step
�t . All the trajectories have been generated from the same random
number sequences following the rule defined in Eqs. (6) and (7) with
τ = 1. The total number of time steps shown is fixed to be 103, and
hence the corresponding time duration changes accordingly.

known a priori. Thus, the time step cannot be arbitrarily small
while desired in general. We show the influence of time-step
scale on the results of the analysis later.

The typical quantity for the analysis of diffusion is the MSD,
but the MSD is independent of anisotropy parameter η [47].
The linear MSD with different magnitude of slope cannot
quantify the diffusion anisotropy, and it merely indicates
the overall isotropic diffusivity corresponding to the overall
diffusion coefficient. However, the large-deviation quantities
reveal this anisotropy. Figure 2 shows the large-deviation
quantities φm(q), um(q), χm(q), and Sm(um) defined as
follows:

φm(q) = 1
2 [φx(q) + φy(q)], (18)

um(q) = 1
2 [ux(q) + uy(q)], (19)

χm(q) = 1
2 [χx(q) + χy(q)], (20)

Sm(um) = 1
2 [Sx(q) + Sy(q)], (21)
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FIG. 2. (Color online) Large-deviation quantities obtained from
the displacement per time step under different conditions of aniso-
tropy parameter η with �t = 10−2, ntot = 106, and T = 1: (a) φm(q),
(b) um(q), (c) χm(q), and (d) Sm(um).

where the subscripts x and y stand for the large-deviation
quantities derived from the displacements per time step in the
x and y directions in an arbitrary laboratory frame. In the
definition of Eq. (21), an independent variable um is related
to each point of value of Sm by the same values of q as

those correspond to the right-hand side of Eq. (21). The x

and y directions in the laboratory frame do not require the
information of the particle orientation. The x and y directions
are equivalent in a sense that the infinite number of samples
will yield the same values of large-deviation quantities, and
the difference originates from the finiteness of the number of
samples. Thus, Eqs. (18)–(21) are defined to make full use of
the experimentally obtained data. In the numerical calculation
of Eq. (12), the following definition of ū is used in place of
Eq. (11):

ū(nspan) = 1

nspan

nspan∑
i=1

U (i), (22)

where U (i) stands for the displacement per time step at the ith
step. Figure 2 was obtained under the conditions of �t = 10−2

and total time of 104 (i.e., ntot = 106 steps), and T = 1 (i.e.,
nspan = 102). That is, we split the number sequences of 106

steps into 104 sets of data, each consisting of 102 numbers. If
we take longer T , we have fewer samples nens for the ensemble
average 〈 〉 in Eq. (12). We examine the influence of this choice
on the result of the analysis later.

It can be seen from Fig. 2(a) that the slope of the scaled
cumulant-generating function φm(q) for large q depends on the
anisotropy η. This trend is more straightforwardly illustrated
by um(q) [Fig. 2(b)], i.e., the derivative of φm(q) with respect
to q. The asymptotic values exist for both q → ±∞, and
um(∞) is larger for higher anisotropy. The absolute value of
um(−∞) is also larger for higher anisotropy. This is due to the
fact that the distribution of ū is symmetric in a sense that
the positive and negative values with the same absolute
values have the same probability of occurrence. Namely, there
is no asymmetry in the definition of positive and negative
directions of displacements. Hence, um(∞) = −um(−∞) for
the long-time limit. The difference of um(±∞) due to η can be
used for the signal to detect the diffusion anisotropy. Although
the difference of φm(q) and um(q) in the vicinity of q = 0 is
not clear, χm(q) is remarkably different [Fig. 2(c)]. χm(q) is
unimodal when the diffusion is completely isotropic (η = 0).
On the other hand, when the particle motion is anisotropic
(η > 0), the bimodal distribution emerges. The generalized
variance χm(q) at q = 0 has one-to-one correspondence to the
diffusion coefficient, and the value does not change with η. The
ordinary diffusion coefficient does not provide information of
the diffusion anisotropy as already mentioned. On the other
hand, the nonzero q reveals the difference of χm(q) originating
from the difference of η.

The η dependence of the rate function Sm(um) is also
observed [Fig. 2(d)]. The rate function does not show a
noticeable difference in the regime of small deviation from
u = 0, but the diffusion anisotropy is reflected in the regime
of large deviation. The values of Sm(um) with the same um are
largest at η = 0 and smallest at η = 1. Considering the basic
fact that the rate function indicates the speed (or the necessary
length of numerical sequence) of convergence to the mean
value, this difference means that the displacement per time
step converges more slowly for anisotropic diffusion than for
isotropic diffusion, where the latter is defined by the single
value of the diffusion coefficient. If the particle diffusion is
anisotropic, it has two distinctive diffusion coefficients. This
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leads to a broader range of occurrence in the displacement
per step. The rate function SG of the sample mean of
Gaussian distribution obeys SG(u) = (u − μG)2/(2σ 2

G) [50],
where μG and σG are the mean value and the standard
deviation, respectively. The SG(u) at specific values of u

takes smaller values for the dynamics with larger σG. If the
dynamics is intrinsically purely Gaussian, then the difference
in the variance is reflected in the MSD, or equivalently
the diffusion coefficient. However, the system of interest
here is the nondimensionalized equations (3)–(7), and the
difference in the dynamics originates only from diffusion
anisotropy η. Nevertheless, the existence of two distinctive
diffusion coefficients leads to the smaller value of the rate
function Sm(u). Thus, all of the large-deviation quantities
φm(q), um(q), χm(q), and Sm(um) reflect the difference of
anisotropy η. In addition, the difference between η = 0 and
0.5 can be observed, whereas it was not clear from the visual
inspection of the trajectories themselves (Fig. 1). The most
sensitive of the four quantities is apparently χm(q). However,
the two peaks in the case of η = 1 show some asymmetry
with respect to the positive and negative side of q, which is
basically caused by the finiteness of the number of samples.
Therefore, it is safer to analyze all of these large-deviation
quantities in order to confirm that the observed difference is
significant.

Since the diffusive phenomenon is observed in various
fields from physics to biology to engineering in a broad sense,
the characteristic time scales of the potential applications have
a broad range. Although the SPT of biomolecules in a fluidic
medium may sometimes demand a higher time resolution than
is possible today, the diffusion in a solid may consist of rare
events of hopping between the available sites as an elementary
process. In fact, the biomolecules in a cell membrane exhibit
hopping events from one compartment to another [27]. These
cases might require a huge amount of data storage, and
then the choice of the observation time step becomes the
important decision. Such choices should be based on the
already available knowledge on the subject of observation,
but it is also necessary to know the basic influence of the time
step on the large-deviation quantities obtained from the finite
number of samples.

Figure 3 shows the large-deviation quantities for η = 0.5
and nspan = 102 obtained under the different conditions of �t .
In order to see the direct influence of �t , the total number
of time steps is fixed to be 106 instead of the total duration
of the dynamics. It can be observed that the difference in
�t leads to the differences in the large-deviation quantities,
although the characteristic time scale τ is fixed. The larger �t

leads to larger values of φm(q) and the narrower range of the
nonlinear part around q = 0. This obviously corresponds to
the steeper um(q) around q = 0 and the faster convergence to
the larger asymptotic values. The larger �t leads to the narrow
range of nonzero χm(q) and the higher peaks. It becomes
difficult to recognize the bimodality of χm(q) if �t is too
large. The Sm(um) at specific values of um(q) is smaller for
larger �t . The larger �t means a longer time span of T

with the same nspan, which leads to a higher possibility to
explore the broader range of particle orientation θ and a
different diffusivity in the specific direction in the coordinate
of the laboratory frame. Thus, the large-deviation quantities
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FIG. 3. (Color online) Large-deviation quantities obtained from
the displacement per time step under different conditions of time step
�t with η = 0.5, nspan = 102, and ntot = 106: (a) φm(q), (b) um(q),
(c) χm(q), and (d) Sm(um). Note that the total time duration of the
dynamics and T vary with �t .

of different physical conditions have to be compared with the
same �t .

Although there are many influences on the large-deviation
quantities, we focus on the �t dependence of um(±∞) to
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FIG. 4. (Color online) �t dependence of u∞ at η = 0, 0.5, and 1
with nspan = 102 and ntot = 106. The total time duration of the
dynamics and T are varied accordingly.

observe the trend quantitatively. Since um(∞) = −um(−∞)
due to the symmetry in the ū(T ) distribution, as we mentioned
above, we define u∞ as follows:

u∞ = 1
2 [um(∞) − um(−∞)], (23)

in order to make full use of the available finite set of data. The
dependence of u∞ on �t is shown in Fig. 4. The u∞ is smaller
for smaller �t , and the power-law relation is observed. The
fitting to u∞ ∝ �tα indicates α = 0.499, 0.496, and 0.470 for
η = 0.0, 0.5, and 1.0, respectively. The trend of u∞ ∝ �t

1
2

originates from the simple fact that the smaller time steps
lead to smaller displacements per time step, which directly
corresponds to the term of �t

1
2 in Eq. (9). Figure 4 also

exhibits a clear trend showing that u∞ is larger for larger
η. Furthermore, it can be confirmed in combination with the
slope of the fitting that smaller �t is advantageous for the
distinction of η. This is consistent with the visual inspection
of trajectories (Fig. 1) and with the consideration that the
diffusion anisotropy should not be observable if �t ∼ τ . If �t

is too large, even a short successive sequence of displacement
per time step in a specific laboratory frame direction does not
represent the diffusion coefficient defined at specific θ because
the rotation of the particle of interest is too fast compared to
the time step. The quantitative detail of the limit of acceptable
�t depends on the total number of sampled data as well as the
external perturbative noise in the experiments.

Because the large-deviation theory itself deals with T →
∞ in principle, it is important to examine the influence of
finite T on the large-deviation quantities. Figure 5 shows the
large-deviation quantities calculated under different conditions
of T with η = 0.5 and �t = 10−2. ntot is also fixed to
be 106, which leads to different nens for different nspan.
Figure 5(a) indicates that larger T leads to smaller φm(q).
Correspondingly, um(±∞) is smaller for larger T [Fig. 5(b)].
In contrast to the �t dependence, the slope of um(q) around
q = 0 does not change noticeably with T [Figs. 5(a) and 5(b)].
The q where χm(q) takes the peak value is larger for smaller T ,
and a higher resolution of q is necessary for larger T to capture
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FIG. 5. (Color online) Large-deviation quantities obtained from
the displacement per time step under different conditions of the span
T with η = 0.5, �t = 10−2, and ntot = 106: (a) φm(q), (b) um(q),
(c) χm(q), and (d) Sm(um). nens is varied accordingly.

the detail of χm(q) at smaller q [Fig. 5(c)]. The bimodal nature
of χm(q) might be missed if the resolution of q is insufficient.
The rate function Sm(um) shows a simple dependence on T

[Fig. 5(d)]. The Sm does not vary significantly with T except for
the noticeable deviation in the vicinity of um(±∞). The choice
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FIG. 6. (Color online) T dependence of u∞ at η = 0, 0.5, and 1
with �t = 10−2 and ntot = 106. nens is varied accordingly.

of span T does not significantly alter the original essential
large-deviation property exhibited by the rate function, but the
larger T leads to a smaller range of Sm and um. This property
is caused by the basic nature of the large-deviation principle
of this system, or rather the central limit theorem. Namely,
the larger time span of the finite-time mean leads to a higher
possibility of taking the values closer to the most probable
value (i.e., 0 in this case).

The more quantitative relation between u∞ and T is shown
in Fig. 6. It should be noted that Fig. 6 is obtained under
the condition of fixed ntotal. Therefore, nens is smaller for
larger T . This corresponds to the situation in which a long
time series of the raw data is obtained experimentally and the
choice of T is flexible. Figure 6 shows the power-law behavior,
and the larger η leads to larger u∞. The fitting to u∞ ∝ T γ

indicates γ = −0.574, −0.599, and −0.620 for η = 0.0, 0.5,
and 1.0, respectively. Thus, the trend of a larger difference in
u∞ between the different η for smaller values of T is observed.
The smaller T in this figure means larger nens. The finiteness
of not only T but also nens affects the overall property. In
fact, the value of γ for η = 0.0 noticeably larger than −1/2
reflects the influence of variation in nens. Figure 7 shows that
u∞ increases monotonically with nens. When nens is fixed to be
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103 104 105

u ∞

nens
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η=0.5
η=1.0

FIG. 7. (Color online) nens dependence of u∞ at η = 0, 0.5, and 1
with �t = 10−2 and nspan = 101. The total duration of the dynamics
is varied accordingly.

103 (and ntot is varied accordingly), the fitting to the power-law
results is γ = 0.503, i.e., u∞ ∝ T − 1

2 when η = 0. This power
law is essentially derived from the mechanism of the finite
sample effect discussed in Ref. [51]. In our case, the threshold
of observing the value around u (i.e., [u,u + du]) in nspan can
be described as

nspan exp[−T S(u)] ∝ 1 (24)

from the large-deviation principle. If S(u) is quadratic, i.e.,

S(u) = 1
2S ′′(μG)(u − μG)2, (25)

substitution of S(u) from Eqs. (24) to (25) yields the following
expression:

u ∝ μG +
√

2 ln nspan

S ′′ T − 1
2 . (26)

This is also why γ �= −1/2 when η > 0 and the difference of
γ from −1/2 is larger for larger η. The non-Gaussian charac-
teristics observed in the finite-time mean are pronounced for
larger η.

As we have examined the influence of sampling discrete-
ness and finiteness (from �t and T ) on the large-deviation
quantities, now we would like to show the dependence of the
large-deviation quantity on the diffusion anisotropy η in an
explicit manner. As already shown in Fig. 2, the difference
in η is reflected in the large-deviation quantities in many
ways, namely the values of φm(q), u∞, the peak positions
and bimodality of χm(q), and S(u) for u away from the mean
value change with η. Here, we use u∞ as the representative of
these characteristics. In particular, we define the scaled u∞ as
follows:

u∗
∞(η = a) = u∞(η = a)

u∞(η = 0)
(27)

because the absolute values of u∞ vary with the choice of
T . The dependence of u∗

∞ on η is shown in Fig. 8. The u∗
∞

increases monotonically with and depends roughly linearly on
η except for some cases in the vicinity of η = 0 and 1. This
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FIG. 8. Scaled u∞ defined in Eq. (27) as a function of η under
different conditions of T in combination with nens with �t = 10−2

and ntot = 106. All the trajectories with different conditions of η have
been generated from the same random number sequences following
the rule defined in Eqs. (6).
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is useful for the comparison of η under different experimental
conditions. On the other hand, the different combinations of T

and nens lead to a substantial variation of u∗
∞(η) for the same

raw data. Since the T dependence is not simply monotonic,
this can be due to the finiteness of the number of samples.
The absolute evaluation of η from a single scalar quantity
by direct application of the large-deviation formalism in a
straightforward manner will require a huge amount of raw data.
Therefore, it is sensible to evaluate several large-deviation
quantities in detail. There may be room for improvements in
the numerical procedure as well, but it is beyond the scope of
this article.

We used the finite-time mean Eq. (22) of the raw data
instead of just estimating the rate function S(u) by Eq. (13)
from probability distribution. This is basically because we
focused on several quantities related to the large-deviation
principle rather than S(u) alone. The probability distribution
does not provide the information of time correlation, but the
orientation of a prolate particle at a given instant depends on
that of the past. Hence, the sequence of the fluctuation data
with sufficiently small time step �t holds the information
of time correlation, which can be reflected in the finite-time
mean. Although the large-deviation formalism is defined for
T → ∞, nonzero values of the finite sample mean are more
frequently obtained for smaller T . Intuitively speaking, the
observation of Da relative to Db is not the intermittent events
if the rotation of the particle can be regarded as a Wiener
process, and longer T is not likely to be advantageous for the
distinction of η. On the other hand, it has been pointed out
in Ref. [52] that the time span T has to be larger than the
correlation time of the quantity for the finite-time mean in
their case of the local expansion rate of the phase difference
of the chaotic oscillator. In our case, at least the characteristic

time scale is τ = D−1
θ . However, the T dependence of um(∞)

is simply monotonic even in the range across T = τ (Fig. 6).
This is attributed to the specific characteristics of the model
system. Therefore, it is recommended that the dependence of
T is examined in general applications where the dynamics of
the system of interest is the target of the analysis.

IV. CONCLUDING REMARKS

In this study, we have shown that the large-deviation
principle can be applied to compare the diffusion anisotropy
by evaluating the trajectory data where the only available
information is the particle position without orientation. The
difference of diffusion anisotropy between different conditions
of experiments can be compared without knowing the particle
orientation at each time step as long as the precision, the
resolution, and the amount of raw data are sufficient. When the
particle is observed only via the marker position, it means that
the distance between the center of diffusion for the particle
of interest and the position of the marker attached to it is
negligible. One has to be clear enough that the system under
study is well-described by the presented model [i.e., Eqs. (1)
and (2)] in the first place, because different factors can lead
to the same symptoms as mentioned in the Introduction.
When these conditions are satisfied, applications of the
analysis presented here to SPT or particle image velocimetry
experiments will offer highly valuable information that has not
been appreciated until today.
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[28] M. Dahan, S. Lévi, C. Luccardini, P. Rostaing, B. Riveau, and

A. Triller, Science 302, 442 (2003).
[29] J. Suh, M. Dawson, and J. Hanes, Adv. Drug. Del. Rev. 57, 63

(2005).
[30] D. Weihs, T. G. Mason, and M. A. Teitell, Biophys. J. 91, 4296

(2006).
[31] K. I. Willig, R. R. Kellner, R. Medda, B. Hein, S. Jakobs, and

S. W. Hell, Nat. Meth. 3, 721 (2006).
[32] K. Ritchie and J. Spector, Biopolymers 87, 95 (2007).
[33] A. Triller and D. Choquet, Neuron 59, 359 (2008).
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