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We study fluctuating tilt Brownian ratchets based on fractional subdiffusion in sticky viscoelastic media
characterized by a power law memory kernel. Unlike the normal diffusion case, the rectification effect vanishes
in the adiabatically slow modulation limit and optimizes in a driving frequency range. It is shown also that the
anomalous rectification effect is maximal (stochastic resonance effect) at optimal temperature and can be of
surprisingly good quality. Moreover, subdiffusive current can flow in the counterintuitive direction upon a change
of temperature or driving frequency. The dependence of anomalous transport on load exhibits a remarkably
simple universality.
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I. INTRODUCTION

Diverse research fields such as anomalous diffusion and
transport [1–4], Brownian ratchets [5–9], and stochastic
resonance (SR) [10] have attracted much attention over the
past two decades with a huge amount of research produced
and a number of insightful reviews written which address
both fundamental aspects of nonequilibrium statistical physics
and various interdisciplinary applications in physics, chem-
istry, biology, and technology. The existing ratchet literature
is restricted mostly to normal diffusion ratchets. Here, a
rectification current can emerge for the particles diffusing
in some periodic and unbiased on average potential due to
breaking the symmetry of thermal detailed balance by an
external time-dependent driving. This in turn requires breaking
some spatiotemporal symmetry [8,9], for example, the spatial
inversion symmetry as in Fig. 1 in the case of a fluctuating tilt
ratchet [6,7] driven by harmonic force, which we consider in
this work. The emergence of net directed motion in unbiased
on average systems is a strongly nonequilibrium and nonlinear
effect that is absent, for example, within the linear response
approximation or linear Onsager regime of nonequilibrium
thermodynamics. A characteristic feature of any true ratchet is
its ability to sustain a load, that is, a force directed against the
transport direction. The presence of a nonzero stopping force
distinguishes the genuine ratchets or Brownian motors capable
of doing useful work from the futile ones or pseudoratchets
[8,9]. In any isothermal Brownian motion which never ceases,
the dissipative loss of energy is compensated at thermal
equilibrium by the energy (heat) gain due the thermal noise
of environment so that on average the classical Brownian
particle has a kinetic energy kBT /2 per degree of freedom.
This ensures the absence of a net directed motion and of the
total heat exchange between the particle and its environment.
The directed Brownian motion requires an external source
of energy—a part of it will be put into the directed motion
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and a part dissipated as an excess heat to the environment.
The thermal noise plays a constructive role here, as a sort of
lubricant to smooth the friction and also to provide thermal
energy fluctuations. It allows to overcome potential barriers
met on the particle’s pathway. Restricted to the classical world,
without noise the Brownian particle would remain localized in
a potential well, starting there with subthreshold energy and
driven by a weak external drive. Therefore, in such a setup
one generally expects that the rectification current response
to subthreshold driving will increase with the noise intensity,
which is proportional to temperature. However, for a very
strong noise the potential barriers cease to matter and one
expects that the rectification effect due to a spatial asymmetry
of potential will vanish. Therefore, there should exist optimal
thermal noise intensity and a corresponding temperature which
typifies SR, at least in a broad sense [10].

The focus of this paper includes both the ratchet and SR
effects in subdiffusive transport occurring in a viscoelastic en-
vironment, where both the mean displacement and the position
variance grow sublinearly, 〈δx(t)〉 ∝ tα , and 〈δx2(t)〉 ∝ tα ,
respectively, with 0 < α < 1. Such viscoelastic environments
are typified by dense polymer solutions [11,12], colloidal
suspensions [13,14], and molecularly crowded cytoplasm of
biological cells [15–20]. The use of microrheology [14,21]
allows the study of the frequency-dependent medium’s viscos-
ity, which causes an anomalously slow spread of the position
variance of Brownian test particles. It relates these quantities to
the frequency-dependent complex shear modulus G∗(ω) [11]
using the model of the overdamped generalized Langevin
equation (GLE) [22–24]. There are numerous experimental
studies revealing power law scaling G∗(ω) ∝ (iω)α (in a cer-
tain frequency range) in such viscoelastic media, as reviewed,
for example, in Ref. [21]. They are consistent with a GLE
description if we assume a power law decaying memory
kernel, which is also used in this paper and yields the frac-
tional Brownian motion description [25] in the overdamped
potential-free case [26]. Within this description, the dielectric
response of the particles trapped in the parabolic potentials is
known to be of the Cole-Cole type [27,28], which indeed is
typical for such media. However, the corresponding nonlinear
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FIG. 1. Ratchet potential and central Brownian particle coupled
to auxiliary Brownian particles modeling a viscoelastic environment.

dynamics is highly nontrivial [29–31] and remains largely
unexplored. In particular, the operation of Brownian motors in
such environments presents a very important unsolved problem
of both general and applied interest. For example, recent
experimental results [32] raise the question of how molecular
motors efficiently operate in viscoelastic environments such
as cytosol in biological cells. We do not attempt to solve this
important biophysical problem in the present paper. However,
we do study a toy model of general interest in statistical physics
of nonequilibrium anomalous transport which is inspired by
this general question.

Indeed, the very existence of such a nonlinear subdiffusive
ratchet transport is not obvious and can be questioned. For
example, within a continuous time random walk (CTRW)
mechanism of subdiffusion featured by divergent mean res-
idence times (MRTs) [1,3], the current response to external
periodic driving is asymptotically zero [33]. This clearly pro-
hibits any asymptotic rectification effect for such fluctuating
tilt ratchets. However, a subdiffusive rocking ratchet based on
the fractional Brownian motion (FBM) does exist [34], and
the corresponding flashing-potential subdiffusive ratchet was
introduced recently in Ref. [35]. In this paper, we explain
the unusual properties of the rocking subdiffusive ratchets
and show, in particular, that a resonance-like character of the
emerging anomalous nonadiabatic ratchet effect is indeed of
SR origin and that it is a genuine ratchet effect.

II. THE MODEL

Let us consider a GLE [22–24] for a Brownian particle with
mass m,

mẍ +
∫ t

0
η(t − t ′)ẋ(t ′)dt ′ = f (x,t) + ξ (t), (1)

where f (x,t) = −∂V (x,t)/∂x is a deterministic force, ξ (t) is
zero-mean and Gaussian-distributed thermal noise, and η(t) is
the frictional memory kernel related to noise by the fluctuation-
dissipation relation (FDR)

〈ξ (t ′)ξ (t)〉 = kBT η(|t − t ′|) . (2)

The FBM emerges as solution of GLE (1) in the overdamped
limit, m → 0, of a force-free motion, f → 0, for a power
law frictional kernel η(t) = ηαt−α/�(1 − α), with 0 < α < 1
[�(x) is standard gamma-function], and the FDR-related noise
ξ (t), which is termed the fractional Gaussian noise (FGN) [25].
The corresponding GLE is also termed the fractional Langevin
equation (FLE) [24,36,37]. The GLE can be derived from a
standard Hamiltonian model of the Brownian motion based

on the coupling of Brownian particle to a thermal bath of
harmonic oscillators modeling the environment [23]. The FLE
model corresponds to subohmic thermal bath characterized by
the spectral bath density J (ω) ∝ ηαωα [38]. Such a modeling
requires a dense spectrum of the thermal bath or quasi-
infinite number of oscillators. Alternatively, one can model the
environment by a finite set of comoving auxiliary Brownian
particles (cf. Fig. 1), with masses mi coupled elastically
with the spring constants ki to the central Brownian particle
and experiencing the viscous Stokes friction (with frictional
constants ηi) and uncorrelated, 〈ξi(t)ξj (t ′)〉 = δij δ(t − t ′),
white-noise thermal Gaussian forces

√
2ηikBT ξi(t):

mẍ = f (x,t) −
N∑

i=1

ki(x − xi),

(3)
miẍi = ki(x − xi) − ηiẋi +

√
2ηikBT ξi(t).

These equations are similar to the starting equations of motion
in the purely dynamical model [23,38] leading to the GLE
description. These dynamical dissipationless equations can
be obtained by setting ηi → 0, that is, considering a purely
dynamical evolution with a tremendously large number of
oscillators N → ∞ with a dense spectrum ωi = √

ki/mi . The
only nondynamical assumption in the dynamical model is that
initially the thermal bath oscillators are canonically distributed
at the temperature T , like in a standard molecular dynamics
setup. We replace them by a finite set of auxiliary Brownian
particles.

Considering the overdamped limit for auxiliary particles,
mi → 0, this yields

mẍ = f (x,t) +
N∑

i=1

ui(t),

(4)
u̇i = −kiv − νiui +

√
2νikikBT ξi(t),

upon introduction of fluctuating viscoelastic forces, ui =
−ki(x − xi), where νi = ki/ηi are the relaxation rates of
viscoelastic forces. The last equation for ui has the form of
relaxation equation for elastic force introduced by Maxwell
in his macroscopic theory of viscoelasticity [39], which is
augmented by the corresponding Langevin force in accordance
with FDR. Such a description was introduced in Refs. [29,34]
to model anomalous Brownian motion in complex viscoelastic
media within a generalized Maxwell model. Indeed, by
choosing initial ui(0) as independent zero-mean Gaussian
variables with variance 〈u2

i (0)〉 = kikBT and excluding the
dynamics of auxiliary variables ui , the GLE (1) with FDR (2)
follows immediately with the memory kernel

η(t) =
N∑

i=1

kie
−νi t . (5)

For N = 1, an earlier Markovian embedding of the GLE
with exponentially decaying memory kernel [40] is readily
reproduced. Furthermore, by choosing νi = ν0/b

i−1, ki =
Cα(b)ηανα

i /�(1 − α), where b is a scaling parameter and
Cα(b) is a fitting dimensionless constant, the above power
law kernel η(t) can be well approximated over about r =
N log10 b − 2 temporal decades between two time cutoffs,
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τl = ν−1
0 < t < τh = τlb

N−1. Similar scaling and approxima-
tion are well known in the anomalous relaxation theory [1,41].
Physically, ν0 corresponds to a high-frequency cutoff in J (ω),
or the largest medium’s frequency, and ν0/b

N−1 corresponds to
the slowest medium’s mode, both of which are always present
in reality. For the case α = 0.5 studied numerically in this
work, the choice b = 10, C0.5 = 1.3, N = 12, and ν0 = 100
provides an excellent approximation to the FLE dynamics over
at least ten time decades, until tmax ∼ 0.1τh = 108. This is
checked [29,34,42] by comparison with the exact solution
for the position variance obtained within both GLE and
FLE [22,36] in the force-free case. The anomalous friction
coefficient ηα and the memory kernel η(t) are assumed to be
temperature independent in accordance with the Hamiltonian
model of the generalized Brownian motion [23,38], yielding
a temperature-independent spectral bath density J (ω). This is
a standard assumption done also in other toy ratchet models
[8,9].

Stochastic dynamics is studied in a driven ratchet potential,
V (x,t) = U (x) − Ax cos(�t) + f0x, where [7]

U (x) = −U0[sin(2πx/L) + 0.25 sin(4πx/L)] (6)

is a spatially asymmetric periodic potential with amplitude
U0 and period L, A and � are the amplitude and frequency
of the periodic forcing, and f0 is a load. We scale time in
units of the (anomalous) velocity relaxation constant τv =
(m/ηα)1/(2−α), distance in the units of L, energy in units
of Ẽ = mL2/τ 2

v , force in F̃ = Ẽ/L, and temperature in
T̃ = Ẽ/kB . The role of the inertial effects can be characterized
by the dimensionless parameter rv = 1/(ωbτv), where ωb =
(2π/L)(33/8/21/4)

√
U0/m is the bottom and (imaginary) top

frequency of the considered potential at A = 0, f0 = 0. The
inertial effects can only be negligible for rv � 1 and not too
small α [37]. The borderline value of U0 corresponding to
rv = 1 is in the dimensionless units U ∗

0 ≈ 0.0157. For the
simulations done in this work the inertial effects are very
essential. This might seem paradoxical since in the Markovian
approximation ẋ(t ′) → ẋ(t) to Eq. (1) the effective Markovian
friction ηeff(t) = ∫ t

0 η(t ′)dt ′ ∝ ηαt1−α increases to infinity in
the course of time. Such a Markovian approximation is, how-
ever, not affordable for the considered viscoelastic dynamics.
Figure 1 illustrates this point: A part of auxiliary particles is
strongly coupled to the Brownian particle. They are comoving,
being strongly correlated, similar to a polaron-like picture
for quantum particles in polar media. However, particles that
are more weakly coupled, more strongly damped, and much
slower cannot follow immediately. They create an elastic
force, pulling the central particle back and retarding its overall
motion [35]. This prohibits any Markovian approximation on
the level of the reduced (x,v) dynamics as the corresponding
slow hidden dynamics cannot be adiabatically eliminated.
Nevertheless, a highly dimensional Markovian approximation
with N extra dimensions for overdamped auxiliary particles
works remarkably well. Of course, given a finite N the
truly asymptotical dynamics becomes normal for t  τh =
bN−1/ν0. However, τh grows exponentially fast with N and
therefore it can be totally irrelevant, as in our simulations, to
figure out the correct asymptotic FLE dynamics. We take a
physical limit of very large t to study subdiffusive dynamics

with τh regarded as infinite on this time scale and define the
subvelocity as

vα = �(1 + α) lim
t→∞

〈x(t)〉
tα

. (7)

Practically, the corresponding values of vα were calculated
by fitting the dependence 〈x(t)〉 with the atα dependence,
extracting the corresponding prefactor a within a last time
window of simulations done until tsim = 106 � τh. In all
simulations we have used n = 104 trajectories for ensemble
averaging. The stochastic Heun algorithm has been imple-
mented with double precision on a graphical processor unit
(GPU) [43], which allowed us to parallelize and accelerate
stochastic simulations by a factor of about 100 as compared
with the standard computing. The driving strength was fixed
at A = 0.8, whereas the temperature, potential amplitude, and
the driving frequency varied.

III. RESULTS

First, we fixed the temperature at T = 0.25 and varied the
driving frequency and the potential amplitude; see Fig. 2. Re-
markably, the rectification response is absent in the adiabatic
limit � → 0. A similar result was obtained earlier in Ref. [34],
where the time scaling was different. This is in a sharp contrast
with the case of normal diffusion where the adiabatic current
is maximal [8,9]. Indeed, the subdiffusion and subtransport in
periodic potentials turn out to be asymptotically insensitive
to the potential amplitude U0 [29–31]. This surprising feature
is due to the influence of sluggish dynamics of the medium’s
degrees of freedom, which cannot immediately follow a faster
moving Brownian particle. They cause ultraslow dynamics
on the time scale which largely exceeds the mean time spent
in a potential well. In this respect, the medium’s dynamics
is not influenced directly by an external force. Therefore,
for an adiabatically slow driving a periodic potential does
not play any role in the long time limit and the ratchet
transport is absent. For a very fast driving, the transport is
also obviously increasingly suppressed upon increasing the
driving frequency. Therefore, there should exist an optimal
value of driving frequency when the corresponding subvelocity
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FIG. 2. (Color online) Anomalous current (subvelocity vα) as
a function of the driving frequency for different U0 at T = 0.25,
A = 0.8, for zero load f0 = 0.
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FIG. 3. (Color online) Mean times of transitions, 〈τ1,f 〉 and 〈τ2,f 〉,
as functions of the driving frequency � for the same barrier heights,
temperature, and driving amplitude as in Fig. 2. The values �max

corresponding to the maxima of subvelocity in Fig. 2 are indicated by
the symbol on the line (in the double logarithmic plot) T1/2 = π/�.

attains a maximum, vα,max = max� vα(�), which turns out to
be a SR-related effect. This maximal value is optimized also
with the potential amplitude. For example, vα,max is larger for
U0 = 0.645 than for U0 = 0.5 and U0 = 1.0; see Fig. 2.

In order to clarify the physical origin of maximal vα,max we
have calculated the frequency-dependent mean times of the
transitions to the neighboring potential well, 〈τ1,f 〉, and to the
second next potential well, 〈τ2,f 〉, in the transport direction.
If the maximum of vα is due to a SR-related synchronization,
then the transport should become optimal when the particles
advance in the transport direction over one or two potential
periods during the driving half-period T1/2 = π/� [10]. This
means that the condition 〈τ1,f 〉 < T1/2 < 〈τ2,f 〉 should be
obeyed. Indeed, the numerical results displayed in Fig. 3 show
that this is the case for not too high potential amplitude U0.
However, since 〈τ1,f 〉 and 〈τ2,f 〉 are only weakly frequency
dependent, we are dealing with the phenomenon of SR rather
than stochastic synchronization. Here, the response maximizes
when an external driving frequency fits into an intrinsic
frequency of stochastic dynamics. However, no frequency
entrainment occurs.

Also noteworthy is the inversion of the current direction
for sufficiently large U0 and �. The subtransport then occurs
in the counterintuitive direction, contrary to the direction
predicted by the slow adiabatic tilt argumentation; see Fig. 2
for U0 = 0.645 and U0 = 1.0. It occurs only for a sufficiently
fast driving with the period which becomes comparable with
the time scale of velocity relaxation given by the corresponding
anomalous relaxation constant τv = 1. A similar inversion for
high-frequency driving occurs also in the normal diffusion
case [7,8]. However, in contrast to [7,8], where the dynamics
is overdamped, the considered anomalous dynamics includes
essential inertial effects.

A SR-related phenomenon occurs also in the dependence
of subvelocity on temperature; see Fig. 4. An adiabatic driving
argumentation predicts vα(T ) ∝ T −n exp(−U/T ) with n =
2 and U = 2U0 in the lowest order of perturbation theory
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FIG. 4. (Color online) Anomalous current (subvelocity vα) as
a function of temperature for different values U0 and �. Symbols
correspond to numerical results and curves (except for one curve
magnified in the insert, which displays the current inversion) to a
typical SR dependence with fitting parameters U and n as discussed
in the text.

over A/T (quadratic response) for a weak driving, AL �
2πU0. This is a typical SR dependence yielding the maximum
versus temperature at Tmax = U/n. We are dealing with a
strong nonadiabatic driving beyond this perturbative result and
hence the validity of this approximation is not guaranteed. As
a first educated-guess correction, one can assume that strong
nonadiabatic driving somehow renormalizes the parameters
entering this SR dependence. Therefore, we use U and n

in it and in Fig. 4 as some fitting parameters to describe the
numerical results. The SR origin of the maxima for sufficiently
small � is substantiated by a correspondence between the
forward tilt half-periods and the numerical mean times 〈τ1,f 〉
of the jump durations in the forward directions (i.e., 〈τ1,f 〉 =
π/� [10]) at a temperature near to the transport optimization
as indicated by arrows in Fig. 4. Even though the optimal
transport does not correspond precisely to this matching
condition, nevertheless the tendency is obvious. Therefore,
we are dealing here with a genuine SR phenomenon.

Furthermore, an inversion of the subcurrent direction with
temperature is detected in Fig. 4 (see also the insert therein)
for U0 = 0.645 and a high-frequency driving � = 1.0. Similar
temperature inversions occur also in the normal diffusion
case [7]. Moreover, the negative current for a larger � is also
optimized with temperature. This does not have any relation to
a true SR or synchronization, as the driving here is very fast.
Similar situations are commonly described in the literature as
SR in a broad sense [10].

Not only anomalous transport but also its dispersion is
of profound interest. In particular, a small dispersion means
intuitively a high quality of transport. Viscoelastic subdiffusion
exhibits highly surprising properties in periodic potentials.
It turns out that such subdiffusion is asymptotically not
affected by the presence of periodic potential even though
the time course of the transient to this asymptotical regime
does strongly depend on the potential amplitude and can
last a very long time [29–31]. Asymptotically, in the con-
sidered units, 〈δx2(t)〉 ∼ 2Dαtα/�(1 + α) with subdiffusion
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function of positive load f0 at different U0, T , and a small driving
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coefficient Dα = T . A periodic driving can generally affect
Dα . However, it is not changed strongly [31,34,35]. Therefore,
the generalized Peclet number [34,35] Peα := vαL/Dα , which
measures the coherence of transport [44], can be appreciably
large. Namely, with lowering the barrier height in Fig. 4 the
maximum of subvelocity is shifted towards smaller tempera-
tures and the diffusion coefficient becomes smaller. Therefore,
the corresponding Peα can substantially exceed the value of
one, signifying thereby that a highly coherent (low dispersive)
subdiffusive ratchet transport is possible. This property of
viscoelastic subdiffusive transport stays in sharp contrast to
the alternative highly dispersive CTRW mechanism, where
Peα = 0 (e.g., for a statically tilted periodic potential [31]) and
the very existence of a similar ratchet transport is questionable
overall.

Finally, the dependence of the directed subtransport on the
load f0 in the opposite direction is shown in Fig. 5. The exis-
tence of a stopping force shows clearly that we are dealing with
a genuine ratchet effect. Given the asymptotic independence

of the viscoelastic subtransport on the potential amplitude U0

in static washboard potentials [29], one expects a very simple
dependence vα(f0) = vα(0) − f0 (in dimensionless units) to
hold for small driving frequencies �. Indeed, the numerical
results are consistent (taking numerical errors into account)
with this prediction. However, for larger � and the inverted
transport, the deviations become more pronounced.

IV. CONCLUSION

In conclusion, in this work we elaborated on a toy yet fun-
damental model of viscoelastic subdiffusive ratchet transport,
which is related to a fractional stochastic Langevin dynamics in
driven periodic potentials, within a highly efficient Markovian
embedding approach. We showed that such a transport is
not only possible beyond the adiabatic driving regime but
also displays a number of surprising properties which cannot
be even expected within an alternative CTRW mechanism
based on divergent mean residence times. In particular, the
viscoelastic subdiffusive ratchet transport can be optimized by
ambient thermal noise and/or frequency of the external driving
due to a genuine SR effect. The very occurrence of SR in
such a profoundly non-Markovian dynamics with long-lasting
memory effects presents a highly nontrivial result. This kind
of non-Markovian SR differs from the one described earlier in
Ref. [45]. Furthermore, the subdiffusive transport can exhibit
a surprisingly good quality due to a small dispersion (linearly
diminishing subdiffusion coefficient) at low temperatures and
small barrier heights. We also demonstrated that this is a
genuine ratchet effect and our subdiffusive Brownian motors
can sustain a substantial load and do a useful work. A
number of questions, in particular one on the thermodynamical
efficiency of such anomalous isothermal engines, remain open.
They will be addressed in subsequent studies.
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