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Resonant response in nonequilibrium steady states
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The time-dependent probability density function of the order parameter of a system evolving toward a stationary
state exhibits an oscillatory behavior if the eigenvalues of the corresponding evolution operator are complex.
The frequencies ωn, with which the system reaches its stationary state, correspond to the imaginary part of such
eigenvalues. If the system (at the stationary state) is further driven by a small and oscillating perturbation with
a given frequency ω, we formally prove that the linear response to the probability density function is enhanced
when ω = ωn for n ∈ N. We prove that the occurrence of this phenomenon is characteristic of systems that are
in a nonequilibrium stationary state. In particular, we obtain an explicit formula for the frequency-dependent
mobility in terms of the relaxation to the stationary state of the (unperturbed) probability current. We test all these
predictions by means of numerical simulations considering an ensemble of noninteracting overdamped particles
on a tilted periodic potential.
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I. INTRODUCTION

Linear response theory has long been investigated for
systems at thermodynamic equilibrium [1–6]. Recently, much
effort has been made to develop a parallel theory of linear
response for systems far from equilibrium and, in particular, for
those which attain a nonequilibrium stationary state (NESS)
[6]. Moreover, the study of relaxation phenomena toward
a NESS has also become an important issue in a variety
of systems. Examples of the latter are biochemical reaction
systems [7,8], growth processes [9], and systems in which
transitions occur between stationary states [10], among others.

In this work we are concerned with the response to a
time-dependent perturbation of systems with (continuous or
discrete) Markovian dynamics. We report a resonant behavior
which is exhibited by systems in a NESS and a relationship
between such a response function and the relaxation properties
of the system toward the NESS. The occurrence of the reso-
nances in the response function can be intuitively explained
as follows. The probability density function (PDF) relaxes to
the stationary state through a superposition of oscillations with
frequencies {ωn}. The latter are given by the imaginary part
of the (complex) eigenvalues of a given generator L. If this
system is further perturbed with an external forcing oscillating
with a given frequency ω, then we would expect to have an
enhancement of the response to the PDF just at ω = ωn. Then,
this effect can be perceived in some observable quantities such
as, for example, the probability current. That the system must
attain a NESS is a necessary (but not a sufficient) condition
for the resonant response to occur. Indeed, it is known that
for discrete Markovian systems the detailed balance (DB)
condition implies that the generator L can be transformed
into a symmetric one L∗ [11]. This is then equivalent to saying
that DB implies real eigenvalues. Nevertheless, for continuous
systems a symmetry property has been derived [12] from the
detailed balance, which we show leads to a similar result.
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This excludes the possibility of having a resonant response for
Markovian systems fulfilling the detailed balance.

At this point it is worth speaking about some other works
related to ours. First of all, we should point out that the
resonance phenomenon in the susceptibility function was first
predicted by Ruelle [13,14] for uniformly and nonuniformly
hyperbolic dynamical systems. The former systems are known
to have the property that time averages are uniquely determined
by a Sinai-Ruelle-Bowen measure. The latter kind of measures
have been proposed as candidates for nonequilibrium station-
ary states [15] and some important consequences have been
inferred from such a hypothesis. An example of the latter is the
Gallavotti-Cohen fluctuation theorem [16,17]. In the context
of dynamical systems, Ruelle stated that the susceptibility
function should have two types of singularities in the ω-
complex plane: some of them related to the unstable dynamics
and others corresponding to the stable one [13,14] of the
hyperbolic dynamics. Such singularities are called resonances
(see Sec. 4.9 of Ref. [15] and Ref. [14]). In particular,
Ruelle stated that the singularities corresponding to the stable
dynamics “would correspond to resonances in the ‘oscillations
of the system around its attractor’ ” [14], while the singularities
corresponding to the unstable one are the same as those of
the spectral density (i.e., the fluctuation-dissipation relation
holds only for the unstable contribution [13,14]). Ruelle’s
general framework is applicable to chaotic systems and the
presence of such resonances has been verified analytically and
numerically [18–20] in specific chaotic models. However, in
the context of stochastic systems attaining a nonequilibrium
stationary state, such phenomena have not been previously
studied. In this paper we extend part of Ruelle’s ideas to
the stochastic domain. It is worth mentioning that the linear
response for the case of stochastic systems is very different
from that of the chaotic case [6]. For example, difficulties
related to the possibility that the Sinai-Ruelle-Bowen measures
might be singular (i.e., not absolutely continuous with respect
to Lesbegue) and the decomposition of the state space into
stable and unstable directions are absent in our case. Thus,
the phenomena observed in the linear response for the models
analyzed in Refs. [18–20] are different and more complex
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than the behavior found in the systems explored in this
work.

This paper is organized as follows: In Sec. II we prove that
the resonance in the linear response may occur if the system
reaches a NESS via oscillations due to complex eigenvalues. In
Sec. III we show the occurrence of the resonant phenomenon in
titled periodic potentials by means of numerical experiments.
Finally, in Sec. IV we give our conclusions. Some appendices
containing detailed calculations are included.

II. THE LINEAR RESPONSE AND THE RELAXATION
OF THE PDF

Consider an unperturbed Markovian system with state
space X, whose dynamics is defined by a generator L.
Throughout this work we will use Dirac’s bracket notation
as in Ref. [12]. We denote the time-dependent PDF of such a
system by ρ(x,t) = 〈x|ρ(t)〉, with x ∈ X. Then, the evolution
equation for |ρ〉 can be written as

∂|ρ〉
∂t

= L|ρ〉. (1)

By using the separation ansatz |ρ(t)〉 = eλt |Pλ〉, we arrive at
the eigenvalue problem for L,

L|Pλ〉 = λ|Pλ〉. (2)

It is known that the largest eigenvalue is λ = 0. By assuming
nondegeneracy of the latter, the corresponding eigenvector
|P0〉 is the unique stationary solution of Eq. (1) on the set �X

of all normalized PDFs. The set �X of probability densities
is commonly called the simplex space and is defined as
�X := {|ρ〉 : 〈−|ρ〉 = 1}. Here |−〉 is a probability density
(called the flat distribution) perpendicular to the simplex �X

and is defined by the equation 〈−|x〉 = 1. It is clear that
all the other eigenvalues satisfy Re(λ) < 0. Moreover, the
eigenvectors corresponding to the nonvanishing eigenvalues
are parallel to the simplex �X, i.e., 〈−|Pλ〉 = 0 for all λ �= 0.

We now consider the perturbed evolution equation,

∂|ρp〉
∂t

= L|ρp〉 + εeiωtLp|ρp〉, (3)

where ε > 0 is a small control parameter, ω > 0 is a given
frequency, and Lp is a perturbing operator. We now follow
the usual way of obtaining the linear response to the PDF [6].
First, we assume that the perturbed solution can be written as

|ρp〉 ≈ |P0〉 + εeiωt |R〉. (4)

In the above ansatz, the deviation from the stationary state of
the perturbed system, with respect to the unperturbed one, is
represented by ε|R〉eiωt . As |ρp〉 is a normalized probability
vector, it follows that |R〉 is a vector parallel to the simplex
�X, i.e., 〈−|R〉 = 0. We will refer to |R〉 as the response to the
stationary PDF. It is clear that in the ansatz (4) we use the basic
assumption that the perturbed PDF will eventually be periodic,
oscillating with the same frequency of the perturbation. Using
Eq. (4) in Eq. (3) we obtain the following equation for |R〉:

(iω − L) |R〉 = Lp|P0〉. (5)

The linear response to the PDF has the formal solution
|R〉 = (iω − L)−1 Lp|P0〉. We now use the fact that the inverse

operator (s − L)−1 can be formally written in an integral
representation as Ref. [21]

(s − L)−1 =
∫ ∞

0
dt e−st eLt ,

for Re(s) > 0. If we set s = δ − iω, with δ > 0, we can write
R as

|R〉 = lim
δ→0+

∫ ∞

0
dt e−st eLtLp|P0〉. (6)

At this point it is necessary to point out that the perturbing
operator is such that 〈−|Lp = 0. The latter follows from
the probability conservation of both the perturbed and the
unperturbed systems [12]. Such a property lets us interpret
eLtLp|P0〉 as the time evolution of a vector parallel to the
simplex with initial condition Lp|P0〉. With this in mind we
can see that eLtLpP0 can be expanded in a series of the
eigenvectors of L as

eLtLp|P0〉 =
∑
λ �=0

cλe
λt |Pλ〉. (7)

Notice that the eigenvector corresponding to λ = 0 is excluded,
since eLtLp|P0〉 has no components perpendicular to the
simplex. If we put the last expression into Eq. (6) we obtain

|R〉 = lim
δ→0

∑
λ �=0

∫ ∞

0
dt e−(s−λ)t cλ|Pλ,〉

= lim
δ→0

∑
λ �=0

cλ|Pλ〉
s − λ

,

which results in

|R〉 =
∑
λ �=0

cλ|Pλ〉
iω − λ

. (8)

The mechanism leading to the resonant response becomes
clear from Eq. (8): the enhancement of the amplitude of the
response to the PDF, as a function of ω, is a consequence of
the oscillations of the PDF in the simplex space toward its
NESS. At this point it is important to stress that, under our
assumptions, the resonant behavior predicted by Eq. (8) is
a characteristic of nonequilibrium stationary states which is
not present in systems at equilibrium. This follows from the
fact that DB implies that the eigenvalues of L are real. The
latter is a consequence of the fact that DB can be used to
transform the operator L to a symmetric one. This has been
shown in Ref. [11] if L is a transition matrix with a discrete
state space X. In Appendix A we give a proof, based on a
symmetry property derived from the DB by Kurchan [12], for
the equivalent statement when L stands for a Fokker-Planck
operator.

The above-described resonant behavior occurs at the level
of probability densities since it corresponds to an enhancement
of the PDF oscillations. However, in a real experiment it is not
always possible to measure the PDF itself. Then, it is important
to explore how this behavior is displayed by a given observable.
Here we analyze the case in which such an observable is
the probability current. Consider the perturbed system (3) in
the asymptotic (time-dependent) state |ρp〉 and let K(t) be the
operator for the probability current. The expected value of the
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operator K(−∞) gives the probability current at the stationary
state,

j0 = 〈−|K(−∞)|P0〉.
In a number of cases the generator L can be factorized as
L = DK0. For example, if L represents the Fokker-Planck
operator, D = ∂x and K0 = f − β−1∂x , with f as minus the
gradient of a given potential V . In a similar way we also
assume that the perturbing operator Lp can be factorized
as DKp, and, therefore, the probability current operator can
be written as K(t) = K0 + εKpeiωtH (t). Here H (t) stands
for the Heaviside function. From the form of K(t) we infer
that K(−∞) = K0. The probability current for the perturbed
system jp can be obtained by

jp(t) = 〈−|[K0 + εKpeiωtH (t)]|ρp(t)〉.
With the above expression we can calculate the probability
current at first order in ε. Using Eq. (4) we obtain, for t > 0,

jp(t) = j0 + εeiωt (〈−|Kp|P0〉 + 〈−|K0|R(ω)〉),
and from the last expression we identify

μ(ω) := 〈−|Kp|P0〉 + 〈−|K0|R(ω)〉 (9)

with the linear response to the probability current (the
frequency-dependent mobility). Substituting |R〉 by the ex-
pression given by Eq. (6) into the above equation we obtain

μ(ω) = 〈−|Kp|P0〉 + lim
δ→0

∫ ∞

0
dt e−st 〈−|K0e

LtLp|P0〉,

or, equivalently,

μ(ω) = 〈−|Kp|P0〉 +
∫ ∞

0
dteiωt 〈−|K0e

LtLp|P0〉. (10)

In order to give some physical interpretation to the above
expression let us consider again the evolution equation (1) of
the unperturbed system. First, we prepare the system with
the initial PDF |ρ∗(0)〉 := |P0〉 + γLp|P0〉, where γ is, to
some extent, arbitrarily chosen, just requiring that |ρ∗(0)〉 > 0.
Here |P0〉 represents the stationary state of our system and
γLp|P0〉 is a vector parallel to the simplex. This observation
makes it clear that |ρ∗(0)〉 fulfills the normalization condition.
The formal expression for the time-dependent PDF, with
the described initial condition, is given by |ρ∗(t)〉 = |P0〉 +
eLtLp|P0〉. If we use the latter to calculate the probability
current j ∗(t) for this specific system we find that

j ∗(t) = j0 + γ 〈−|K0e
LtLp|P0〉. (11)

The last result lets us rewrite Eq. (10) as

μ(ω) = 〈−|Kp|P0〉 + γ −1
∫ ∞

0
dt eiωt [j ∗(t) − j0], (12)

which relates the relaxation toward the stationary state with
the linear response to an external perturbation.

III. RESONANT RESPONSE IN TILTED PERIODIC
POTENTIALS: NUMERICAL EXPERIMENTS

In this section we show the presence of the resonant
behavior predicted by Eq. (8) in tilted periodic potentials

by means of numerical simulations. In particular, we test the
relationship between the relaxation to the steady state and the
response to an external perturbation given by Eq. (12). First, we
consider an unperturbed system consisting of noninteracting
overdamped particles in a tilted periodic potential V (x) with
period L and tilt F0 [i.e., V (x + L) = V (x) − F0L] subjected
to Gaussian white noise. The stochastic dynamics of these
particles is ruled by the Langevin equation

γ̃
dx

dt
= f (x) + ξ (t), (13)

where γ̃ is the friction coefficient, which, as usual, will be set
to one. The function f (x) is minus the gradient of the tilted
periodic potential V (x). With this we have that f (x) is periodic
with period L. The term ξ (t) represents Gaussian white noise
with zero mean and correlation 〈ξ (0)ξ (t)〉 = 2β−1δ(t). Here
β is the inverse temperature of the system.

The Fokker-Planck equation corresponding to the Langevin
dynamics (13) is given by

∂ρ

∂t
= LFPρ, (14)

where LFP is given by

LFP = − ∂

∂x

(
f (x) − β−1 ∂

∂x

)
. (15)

Unfortunately, the exact eigenvalues λn for the Fokker-Planck
operatorLFP are not generally known. Nevertheless, the author
and coworkers have given an approximation to λn in Ref. [22].
Such an approximation is valid for large values of the tilt, F0 

max{f (x)} − min{f (x)}, and is given by λn = i2πnj0/L +
(2πn/L)2Deff . Here j0 is the probability current, Deff is the
effective diffusion coefficient, L is the period of the (tilted)
periodic potential, and n ∈ N. From this it follows that ωn =
2πnj0/L is an approximation to the natural frequencies of the
system.

According to Sec. II, we have that if this system is perturbed
by a time-dependent periodic forcing εF (t), characterized by
a frequency ω, then, a resonant behavior in the PDF will be
exhibited at some ω = ω∗. Such a perturbed system is modeled
by the Langevin equation

γ̃
dx

dt
= f (x) + εF (t) + ξ (t), (16)

with γ̃ set to one. To achieve the numerical experiments
showing the occurrence of resonances at the frequencies
given above, we chose the tilted periodic potential as V (x) =
cos(2πx)/(2π ) − xF0. With this potential we have that
f (x) = sin(2πx) + F0 and that L = 1. The external forcing
F (t) is taken as F (t) = cos(ωt) and ε, the small control
parameter, is fixed to ε = 0.05.

In Fig. 1(a) we show the mobility (the amplitude of the
current oscillations with respect to the stationary current) as a
function of the frequency for the deterministic tilted periodic
potential with tilt F0 = 1.80. In such a figure we can observe
that at zero temperature the system exhibits several resonant
peaks at the frequencies given by the formula ωn = 2πnv̄/L

[see Eq. (B7) from Appendix B]. Here the mean velocity
is v̄ ≈ 1.5, and therefore ωn ≈ 9.4n. This behavior can be
readily appreciated in Fig. 1(a). In Fig. 1(b) we show the
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FIG. 1. (Color online) Frequency-dependent mobility μ(ω) for
the tilted periodic potential V (x) = cos(2πx)/(2π ) − xF0 with F0 =
1.80 (a) at zero temperature and (b) at a temperature β−1 = 0.01. The
external perturbation is taken as 0.05 × cos(ωt) (i.e., ε = 0.050). In
(a) we can see that the deterministic response exhibits several peaks
corresponding to the resonance frequencies ωn = 2πnv̄/L (see text).
The inset shows an amplification in the region near the main resonance
peak occurring at ω = 9.4 to better appreciate the complex structure
of the response. In (b) we observe a similar behavior of the response
vs frequency at a finite temperature. However, most of the resonant
peaks observed in the deterministic case disappear. We also see that
the relaxation of the probability current obtained by Eq. (17) (solid
line) and the response to the stationary current (filled circles) are
related according to the expression (12) (see text for details).

behavior for the system at a finite temperature chosen as
β−1 = 0.01. In this figure we see that frequency-dependent
mobility μ(ω) (filled circles) displays a behavior similar to
that of its deterministic counterpart. It exhibits a resonant peak
at the natural frequency (which is estimated, according to
Ref. [22], as ω0 = 2πj0/L ≈ 9.4). However, the successive
resonant peaks seem to be suppressed by the noise in the
thermalized system.

Besides the response to the probability current, in Fig. 1(b)
we have also plotted the numerically obtained “relaxation
curve” (solid line), i.e., the right-hand side of Eq. (12).
Within the accuracy of our simulations we note that the
relaxation curve and the response to the probability current
overlaps each other, as stated by Eq. (12). We now explain
how the “relaxation curve” was calculated. First, we pre-
pared the unperturbed system with the initial PDF given
by Pinitial(x) = P0(x) + γLpP0(x) with γ = 0.08. Here the
perturbing operator Lp is given by Lp = −∂x and P0(x) is the
stationary PDF, which takes the form

P0(x) = 1

N0
exp[−βV (x)]

∫ x+L

x

exp[βV (y)] dy,
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t
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FIG. 2. (Color online) The relaxation of the probability current
toward the stationary state. (a) The probability current jrelax as
a function of time for the unperturbed system (13) with V (x) =
cos(2πx)/(2π ) − xF0, F0 = 1.80, and β−1 = 0.01. We obtained this
time series through a simulation of 20 000 particles obeying the
Langevin equation (13) up to a time t = 100 arb. units. The particles
were initially distributed according to the PDF P0(x) + γP ′(x) with
γ = 0.080. (b) The real part of the Fourier transform of jrelax − j0.
To calculate the Fourier transform we used a time series for the
probability current shown in (a). After that we used formula (17)
to obtain the “relaxation curve” shown in Fig. 1(b) (solid line). We
proceeded in the same way to calculate the “relaxation curves” shown
in the subsequent figures.

with N0 a constant such that
∫ L

0 P0(x) dx = 1. Once we have
prepared the system in such a state, we let it evolve to the
stationary state P0(x). We then measure the time-dependent
probability current jrelax(t) from t = 0 up to a given time T0

which is large enough to assume that the system has reached the
stationary state. In Fig. 2(a) we plotted jrelax(t) for the potential
V (x) and the parameter values used to perform the numerical
experiment corresponding to Fig. 1(b). As stated by the right-
hand side of the Eq. (12), we use the time series obtained
above to calculate the real part of the Fourier transform of
jrelax(t) − j0 shown in Fig. 2(b). This quantity is then used to
calculate

〈−|Kp|P0
〉 + γ −1

∫ ∞

0
eiωt [jrelax(t) − j0] dt, (17)

which corresponds to the “relaxation curve” displayed in
Fig. 1(b) (solid line). Note that the first term in the above
expression equals one since Kp = I in this case.

In Fig. 3(a) we show the mobility as a function of the
frequency for the deterministic tilted periodic potential for
a tilt F0 = 0.90. The behavior of the amplitude oscillations
in this case is a monotonically decreasing curve whose
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FIG. 3. (Color online) Frequency-dependent mobility μ(ω) for
the tilted periodic potential V (x) = cos(2πx)/(2π ) − xF0 with F0 =
0.90 (a) at zero temperature and (b) at a temperature β−1 = 0.01. The
external perturbation is taken as 0.05 × cos(ωt) (i.e., ε = 0.050). In
(a) we can see that the deterministic response is a monotonically
decreasing curve. In (b) we observe a nonmonotonic behavior of
the linear response (filled dots), which is quite different from its
deterministic counterpart. We also compare the relaxation of the
current given by Eq. (17) (solid line) with the linear response (filled
circles) in order to test the relaxation-response relation given by
Eq. (12).

minimum occurs at ω = 0. This behavior is consistent with
the analytically predicted one in Appendix A for this case.
In Fig. 3(b) we show the mobility for the very system
but at a temperature β−1 = 0.01. All the other parameters
remain the same as in the case F = 1.80. In this figure we
can see that the response becomes a nonmonotonic curve.
This is an important feature of the tilted periodic potential
below the critical tilt since the noise induces a behavior
which is quite different from its deterministic counterpart.
This nonmonotonic behavior can be seen as emerging from a
competition between the deterministic dynamics and the noisy
escape rate. At low frequencies we have that the dynamics of
the system is dominated mainly by the noise. This is because
the slow variation of the perturbation lets the particles escape
from one potential well to another in every time period. Thus,
many particles increase and decrease their velocities, giving
large amplitudes to the current oscillations. As the frequency
increases, the number of particles escaping from the potential
wells during each oscillation diminishes. Then, the amplitude
of these current oscillations no longer profits from the escape
events and the amplitude of the current starts to behave as in the
determinist case. This behavior can be observed in Fig. 3(b):
above some frequency value (approximately at ω = 5) the
response curve mimics the form of its deterministic counterpart
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FIG. 4. (Color online) Frequency-dependent mobility μ(ω) for
the tilted periodic potential V (x) = cos(2πx)/(2π ) − xF0 at temper-
ature β−1 = 0.01 (a) for F0 = 0.98 (below the critical force Fc = 1)
and (b) for F0 = 1.50 (above the critical force Fc = 1). The external
perturbation is taken as 0.05 × cos(ωt) (i.e., ε = 0.050). The graphs
compare the mobility obtained by the response of the system (filled
circles) and the one obtained by the relaxation of the probability
current (solid line) given by Eq. (12). The latter formula is shown to
be right within the accuracy of our numerical simulations.

shown in Fig. 3(a). Figure 3(b) also shows that the relation
between the relaxation and the response (12) also holds for
this case within the accuracy of our numerical experiments.

In Fig. 4 we test again the relaxation-response relation
given by Eq. (12) for other values of the tilt. In Figs. 4(a) and
4(b) we fix F0 = 0.98 and F0 = 1.50, respectively. For such
values of the tilt we measured the probability current j0(F0) for
the unperturbed system, giving j0(0.98) = 0.28 ± 0.005 and
j0(1.50) = 1.12 ± 0.005. According to Ref. [22] this gives the
“natural frequencies” ω0(0.98) ≈ 1.74 and ω0(1.50) ≈ 7.0,
respectively. We perturb the system with the same time-
dependent forcing used in the experiment described above. We
then calculated the mobility shown in the mentioned figures by
means of the linear response to the perturbation (filled circles)
and by means of the relaxation of the probability current (solid
line). We observe again a good agreement of expression (12)
in both numerical experiments.

In the case F0 = 0.98 it is interesting to notice that, although
the response is enhanced at the predicted frequency ω0(0.98) ≈
1.74, it does not seem to correspond to a maximum located at
such a frequency. Rather, we observe that the maximum seems
to occur at ω = 0. Actually, in our simulation the response is
measured for ω values bigger than one. However, we are not
able to observe any maximum in the interval 1 < ω < 2. This
could probably be due to either the lack of statistics or the fact
that the imaginary part of the (nonvanishing) largest eigenvalue
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FIG. 5. (Color online) The Fourier transform of the time-
dependent probability current toward the stationary state for (a)
F0 = 0.90 and (b) F0 = 1.50. In both cases we prepared the system
at three different initial states: (i) Pinitial = P0(x) + γP ′

0(x) with γ =
0.08 (black line), (ii) Pinitial = δ(x) (red line), and (iii) Pinitial = 1/L

(green line). Neither of the two latter initial conditions reproduces
the behavior of response to the probability current. Nevertheless, in
all cases the curves obtained show a resonance-like behavior near
the location of the “true resonance.” Thus, we can say that these
experiments are able to qualitatively indicate where the resonance
peaks are probably located.

of such a system is actually smaller than the one predicted in
Ref. [22].

On the other hand, in the numerical experiments performed,
we have seen that Eq. (12) is correct within the accuracy of
our simulations. The expression (12) states that the relaxation
from a given initial state to the NESS is related to the response
to the stationary PDF. The initial state referred to above is
very specific and it is interesting to see what happens with
different initial conditions. In Figs. 5(a) and 5(b) we calculated
the “relaxation curves” for the cases F0 = 0.90 and F0 =
1.50, respectively. In both figures the initial conditions used
were (i) Pinitial = P0(x) + γP ′

0(x) with γ = 0.08 (black line),
(ii) Pinitial = δ(x) (red line), and (iii) Pinitial = 1/L (green line).
It is possible to observe that, although the initial conditions (ii)
and (iii) do not reproduce the behavior of the response, they do
indicate qualitatively the position of the resonance peaks. This
fact is important since it can be used to predict the resonance
character of a given system, not by directly performing the
perturbation on it but by observing its relaxation properties.

IV. DISCUSSION AND CONCLUSIONS

We have shown the existence of a resonant behavior that is
exclusive of nonequilibrium stationary states. The requirement

that the system be in a NESS is a necessary but not a
sufficient condition for the resonant behavior to be present.
We proved the latter statement for systems with Markovian
dynamics which includes discrete and continuous systems. In
particular, we have also found that the frequency-dependent
mobility of a given system is related to the relaxation
of the probability current to the stationary state with a
specific initial condition. We verified the presence of these
resonances for the unperturbed system which consists of an
ensemble of noninteracting overdamped particles in a tilted
periodic potential. It has been shown that the correspondence
established between the mobility and the Fourier transform
of the relaxation of probability current [Eq. (12)] agreed with
our numerical experiments for several values of the strength
of tilt. Finally, we analyzed the relaxation properties of the
system for other initial conditions different from the specific
ones mentioned in the text. We found that the relaxation curves
obtained do not reproduce the response of the system, but they
do exhibit a “peak” near the resonant frequencies. On this
basis, we say that it could be possible to predict the resonant
behavior of a given system by analyzing its relaxation to the
NESS.

We would like to remark that our results could be useful
in understanding phenomena such as the relaxation properties
of systems that attain a NESS [7–10] or so-called resonant
transport [23,24]. It would also be interesting to see how
the relaxation-response relation (12) is connected to noise-
enhanced stability of metastable states [25–27].
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APPENDIX A: DETAILED BALANCE IMPLIES REAL
EIGENVALUES

Let the elements of T be denoted, as usual, by Ti,j , with
i,j ∈ X. The detailed balance condition states that Ti,jπi =
Tj,iπj , where π stands for the stationary probability vector
for T . Following Ref. [11], we should notice that the latter
can also be written as π

−1/2
j Ti,jπ

1/2
i = π

−1/2
i Tj,iπ

1/2
j . If we

define T ∗
i,j := π

−1/2
j Ti,jπ

1/2
i we can see that the matrix T ∗ is

symmetric and therefore its eigenvalues are real. Additionally,
we can see that T ∗ is obtained by a similarity transformation
from T , since T ∗ = S−1T S, where, Si,j = π

1/2
i δi,j . This

implies that T ∗ and T have the same eigenvalues. Then it
follows that if T complies with the detailed balance condition,
then it has only real eigenvalues. The proof of the latter
statement for L as a Fokker-Planck operator is carried out
in a similar way. First assume that L complies with the
detailed balance condition and define P0(x) := 〈x|P0〉 as the
corresponding equilibrium stationary state. Then note that
the transformation defined by S = P0(x)1/2|x〉〈x| has inverse
S−1 = P0(x)−1/2|x〉〈x| since

SS−1 = (P0(y)1/2|y〉〈y|)(P0(x)−1/2|x〉〈x|)
= P0(y)1/2P0(x)−1/2δ(x,y)|y〉〈x| = I,
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where I stands for the identity operator. On the other hand, we
have that

S2 = (P0(y)1/2|y〉〈y|)(P0(x)1/2|x〉〈x|)
= P0(y)1/2P0(x)1/2δ(x,y)|y〉〈x| = P0(x)|x〉〈x|.

In Ref. [12] it has been shown that the detailed balance
condition leads to the following symmetry property for the
Fokker-Planck operator:

Q−1LQ = L†, (A1)

where Q is defined through the equation

Q|x〉 = P0(x)|x〉.
It is clear that a representation forQ is given byS2. This makes
it possible rewrite Eq. (A1) as

(SS)−1 LSS = L†,

or, equivalently, as

L∗ := S−1LS = SL†S−1

= (S−1LS)† = (L∗)†. (A2)

The above equation states that, if the balance condition holds,
there is a similarity transformation making the Fokker-Planck
operator Hermitian. Then, the detailed balance condition
implies that all the eigenvalues of L are real. This proves
that a system having a equilibrium state does not exhibit the
resonant behavior predicted by Eq. (8).

APPENDIX B: TILTED PERIODIC POTENTIALS AT ZERO
TEMPERATURE

Consider an ensemble of noninteracting overdamped par-
ticles in a tilted periodic potential V (x) = Vp(x) − F0x. Here
Vp(x) represents the periodic part of the potential, which
has period L, and F0 represent the tilt of the potential. The
deterministic evolution equation for one overdamped particle
in such a potential is given by

dx

dt
= f (x) = fp(x) + F0, (B1)

where f (x) is the gradient of the tilted periodic potential
and fp(x) = −V ′

p(x) is the gradient of the corresponding
periodic part. We will first consider the case in which F0

exceeds the “critical tilt” Fc := max{|fp(x)|}. In such a case
Eq. (B1) has only running solutions and, as we anticipated in
Sec. III, it exhibits a resonant behavior in the frequency-
dependent mobility.

Let x(t) be a solution of Eq. (B1) with a given initial
condition x0 and consider the perturbed system

dy

dt
= f (y) + εF (t), (B2)

where ε � 1 is a dimensionless control parameter and F (t)
is a time-dependent periodic external forcing with period T .
For ε small we can measure the response of the system as the
deviation of the perturbed trajectory y(t) from the unperturbed
one x(t) having the same initial condition y(0) = y0 = x0.
Then we will analyze the behavior of the “linear response”

η(t) := [y(t) − x(t)]/ε. From the above we can see that the
evolution equation for η(t) is approximately given by

dη

dt
= f ′(x(t))η + F (t), (B3)

at first order in ε. The above equation can be easily solved if
we notice that the integration factor ν(t) is given by

ν(t) := exp

(
−

∫ t

0
f ′(x(s)) ds

)
. (B4)

This lets us write a solution for η(t) as follows:

η(t) = 1

ν(t)

∫ t

0
ν(s)F (s) ds.

The integration factor ν can be written in a more compact form
if we use the fact that the solution x(s) is always increasing and
therefore invertible. A change of variables in the integration in
Eq. (B4) shows that

ν(t) = f (x0)

f (x(t))
,

which can be used to express η as

η(t) = f (x(t))
∫ t

0

F (s)

f (x(s))
ds. (B5)

In Appendix C we show that any running solution x(t)
of the unperturbed system with F0 > Fc has the property
x(t + τ ) = x(t) + L, where τ is the time that the particle
takes to travel one spatial period. From this property it follows
that f (x(s)) is periodic with “natural frequency” ω0 = 2π/τ ,
which is proportional to the mean velocity v = L/τ . If we
denote by cn the coefficients of the Fourier series of 1/f (x(s)),
and we take F (s) = eiωt , we obtain for η

η(t) = f (x(t))
∑

n

cn

ei(ω−nω0)t − 1

ω − nω0
. (B6)

From this we can see that the deviation of the perturbed
trajectories from the unperturbed ones is enhanced (and even
diverges) when the frequency of the driving force is 2π/L

times the mean velocity of the particle,

ωn = 2πv

L
. (B7)

To tackle the case F0 < Fc we should notice that Eq. (B3)
and its solution (B5) is valid in this case. The only difference
is that x(t) no longer has the property x(t + τ ) = x(t) + L.
Instead, the solution x(t) to the differential equation (B1) has
the asymptotic behavior x(t) = x∗ + C0 exp(−λt) for t → ∞.
Here x∗ is a root of f (x), λ = f ′(x∗) and C = x0 − x∗. Thus,
for large t we can expand f (x(s)) and f (x(t)) around x∗ to
obtain for η

η(t) =
∫ t

0
e−λ(t−s)F (s) ds.

To obtain the linear response to the particle current we fix
F (t) = eiωy and take the time derivative to η, giving

η̇(t) =
(

1 − iω

λ + iω

)
e−λt + iωeiωt

λ + iω
.
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R. SALGADO-GARCÍA PHYSICAL REVIEW E 85, 051130 (2012)

From the latter we see that η̇ is asymptotically periodic, and
the amplitude of (the real part of) such a function is given by

A(ω) = ω2

λ2 + ω2
,

which is a monotonically increasing function of ω.

APPENDIX C: ANALYTIC RUNNING SOLUTIONS

The evolution equation for overdamped particles in a tilted
periodic potential V (x) = Vp − xF0 is

dx

dt
= f (x), (C1)

where f (x) = fp(x) + F0 is the gradient of V (x). Since it
is assumed that F0 is greater than the critical tilt Fc :=
max{|fp(x)|}, we have that f (x) has no real roots. This means
that we can integrate the above equation with the initial value
x(0) = x0, giving

t =
∫ x(t)

x0

dy

f (y)
. (C2)

Define τ as the time that the particle takes to travel one
spatial period, i.e.,

τ :=
∫ L

0

dx

f (x)
,

and notice that this time does not depend on where the particle
starts its motion. Now define the invertible function

h(x) := L

τ

∫ x

0

dy

f (y)
.

Due to periodicity of f (x) we have that h(x + L) = h(x) + L.
In terms of this function we can write Eq. (C2) as

Lt

τ
= h(x(t)) − h(x0).

The invertibility of h lets us write x(t) as

x(t) = h−1

(
h(x0) + Lt

τ

)
. (C3)

It is easy to see that h−1 has also the property h−1(x + L) =
h−1(x) + L, from which we obtain that x(t + τ ) = x(t) + L.
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