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Statistical description of the collective motion of nanoparticles
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A synergetic model allowing the description of a Brownian motion of active nanoparticles within the framework
of the Lorenz three-parameter system is developed. The fluctuation’s influence on the transition between different
motion regimes is investigated. A diagram of possible motion modes of an active nanoparticle group and the
corresponding stationary values of velocity are analyzed.
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I. INTRODUCTION

Nowadays the development of nanotechnology provides
an opportunity to create a variety of technical devices. In
this case a special role is assigned to biotechnology, for
which various micro-organisms (bacteria) are used along with
proteins, enzymes, etc. It is known that micro-organisms
are characterized by high sensitivity and are able to convert
various kinds of energy: mechanical, magnetic, luminous, and
chemical. Thus, by understanding the individual and collective
behaviors of micro-organisms we can find an opportunity to
develop a special technique for the logical, computational,
and measuring microdevices. Such devices may be based on
physical and chemical effects that govern the processes of the
micro-organisms’ self-organization.

It is generally known [1–4] that under certain conditions
moving chaotic bacteria can form various constant as well
as time-varying structures [5,6]. It is also obvious [6–9] that
such systems can maintain their order only when the processes
that control their behavior are nonlinear. Thus the problem
of modeling the processes occurring in nonlinear biological
systems (in particular biological motion) has been a topic of
interest in recent years [10,11]. However, we must consider
not only the nonlinear effects of the environment, but also the
changes in environmental parameters due to the activity of
micro-organisms.

The distinguishing feature of many bacteria (e.g., E. Coli,
Salmonella typhimurium, and Bacillus) is the presence of
specific flagella, which have a surface spreading. The bacteria
are actively moving by changing periods of directional motion
for the periods of so-called tumbling. Under directional motion
flagella rotate and are interwoven in the spiral bundle behind
the cell body. This creates a periodic force, pushing the particle
forward [Fig. 1(a)]. The flagellar bundle is unwoven in the
state of tumbling when a particle loses its orientation and
makes abrupt chaotic rotation, which resembles trembling and
tumbling [Fig. 1(b)]; however, usually there is an alternation
of these movements [Fig. 1(c)]. The time of directed motion
is 1–4 sec and that of tumbling is approximately 0.1 sec
[12,13]. However, tumbling can be suppressed if the medium is
inhomogeneous, namely, it contains the so-called attractants.
This phenomenon is called chemotaxis, whereby the particles
are moving in the direction of increasing concentration of
attractants. In addition to modeling different devices, one
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can use the phenomena of magnetotaxis, phototaxis, and
the gyrotaxis. In the latter case the directional movement of
particles is caused by the torque compensation.

It appears that these motion regimes are not unique to the
micro-organisms, but also occur for more highly organized
birds and fish. In a comprehensive survey [14] about swarm
dynamics a classification of the collective motion regimes
of swarms is given. It is pointed out that there are three
typical modes of motion: directed motion, when the swarm
moves as whole, forming a tight group; rotational motion
around the empty center, forming the shape of a doughnut;
and amoebalike motion, when two previous modes alternate.
However, it turns out that different kinds of rotational motion
are realized for particles of different levels of organization.
For low-level organization (e.g., gold nanoparticles and
some bacteria) the rotational motion is reduced only to
the individual tumbling [15]; more highly organized micro-
organisms (e.g., some colonies of bacteria, phytoplankton, and
zooplankton) realize a highly organized collective rotational
motion [12–14].

We generalize these types of movement to the cases of
directed motion, tumbling, and run-and-tumble regime [16].
The described transition from random fluctuations to ordered
movements and spatial structures is not unique to biological
systems but is found in some physical ones as well [15,17]. For
example, in Refs. [15,17] the so-called hot Brownian motion
was investigated, which differs from ordinary Brownian mo-
tion in that the laser-heated gold nanoparticles [15] have a stock
of internal energy that is converted into mechanical energy.
As a result, one may observe an analogy between motion
regimes of bacteria and gold nanoparticles. The investigation
of analogies among living and nonliving systems has a great
practical interest.

In our paper we consider a stochastic dynamics of the
active nanoparticle motion within the Brownian movement
model [15,18]. The term active is easily understood by using
an analogy to biological particles (bacteria) that do not
only carry out disordered movement, but also have a stock
of internal energy, which further converts into mechanical
energy. In addition, the influence of noise is of particular
interest for us since noise is responsible for many interesting
effects and in particular noise may lead to transitions between
deterministic attractors [19,20]. By extending these studies
we will investigate the stochastic transitions between different
motion regimes of active nanoparticles, using as noise the
Ornstein-Uhlenbeck process [18].

051127-11539-3755/2012/85(5)/051127(6) ©2012 American Physical Society

http://dx.doi.org/10.1103/PhysRevE.85.051127


O. V. YUSHCHENKO AND A. YU. BADALYAN PHYSICAL REVIEW E 85, 051127 (2012)

a b

c

FIG. 1. Bacteria motion modes: (a) directed motion, (b) tumbling,
and (c) alternation of previous regimes.

The paper is organized as follows. Section II describes
the system of differential equations that form the basis
of our consideration. Section III discusses the statistical
analysis of the obtained equation of motion, from which we
arrive at the Fokker-Planck equation, whose solution is the
distribution function of nanoparticles velocity. The stationary
solution of the Fokker-Planck equation and the corresponding
dependencies are discussed in Sec. IV.

II. SYNERGETIC REPRESENTATION OF THE ACTIVE
NANOPARTICLES’ COLLECTIVE BEHAVIOR

Using the example of condensed matter [21–23], the
representation of self-organizing system reduces to the self-
coordinated description of the time dependencies of the order
parameter, the conjugate field, and the control parameter.
By using the order parameter, which distinguishes motion
regimes, we will take the average velocity v of the active
nanoparticles movement. By average velocity we mean the
velocity of directed movement. Thus, in the case of tumbling
motion, a particle is rotating and the mentioned average
velocity is zero. We also need to include the interaction
between the particles themselves or between the particles
and the environment via some kind of field or chemical
reagent [the concentration of this reagent may be represented
by a field H (r,t)]. Thus the conjugate field reduces to the
long-range force fh ≡ ∇H (r,t). Further we will consider
one-dimensional case since for the directed motion the
nanoparticles always have a priority direction (for example,
drug delivery by a vessel). According to Ref. [14], the active
particles have another internal degree of freedom θ , which
describes different activities and responses to the field and
takes on only two values: ±1. In our consideration we will
use another internal parameter ε, which describes internal
energy and takes different values. However, this parameter
is imposed on restrictions that are defined by the environment.

For example, for the hot Brownian motion the temperature
Te of the liquid, where heated nanoparticles are located, sets
the minimum internal energy of the particle εe. As a result,
the problem is reduced to the expression [21] of the rates of
change v̇,ḟh, and ε̇ through their values v,fh, and ε (further for
simplicity the one-dimensional case is considered). Assuming
that the order parameter v(t) subordinates the behavior of force
fh(t) and internal parameter ε(t), we obtain an expression for
the average acceleration in the linear form

v̇ = − v

tv
+ avfh. (1)

The first term on the right-hand side of Eq. (1) displays a
relaxation of the average velocity to zero value during the time
tv . The second term describes the linear reaction of acceleration
v̇ on increasing force (av is a positive constant). The equation
for the conjugate field is given by the expression

ḟh = −fh

tf
+ af vε, (2)

where the first term on the right-hand side again has a
relaxational nature with the characteristic time tf and the
second term represents a positive feedback of the average
velocity and the internal state parameter with a rate of
change of the conjugate field (af is a positive constant). This
correlation causes an increase of the conjugate field, which is
the reason for the system’s self-organization.

The last equation of the system evolution describes a
relaxation of the internal parameter ε playing the role of the
control parameter

ε̇ = εe − ε

tε
− aεvfh + ζ (t). (3)

In contrast to the Eqs. (1) and (2), the first term on the right-
hand side of Eq. (3) presents the relaxation of the parameter
ε to the final value εe (with tε the corresponding relaxation
time). According to Eq. (3), negative feedback (the constant
aε > 0) of the long-range force and the average velocity with
the speed of change of the internal state parameter results in
the reduction of this parameter, according to the Le Chatelier
principle. The last term reveals the stochastic behavior of the
average velocity with stochastic source ζ (t), which is defined
as the Ornstein-Uhlenbeck process

〈ζ (t)〉 = 0,

〈ζ (t)ζ (t ′)〉 ≡ I

τ
exp

(
−|t − t ′|

τ

)
, (4)

where I is the noise strength, τ is the correlation time of the
process ζ (t), and the angular brackets mean averaging.

According to Ref. [24], the system of the synergetic
equations (1)–(3) represents the elementary field scheme,
which shows the main effects of the self-organization. For the
analysis of this system it is convenient to take dimensionless
variables for time t , average velocity v, conjugate field f ,
internal state parameter ε, and strength I . The corresponding
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scales are

ts ≡ tv, vs ≡ (af aεtf tε)−1/2, fhs ≡ (
a2

v t
2
v af aεtf tε

)−1/2
,

εs ≡ (avaf tvtf )−1, Is ≡ (avaf tvtf tε)−2.

Thus the behavior of the active nanoparticle’s group is
presented by the dimensionless system of nonlinear equations

v̇ = −v + fh, (5)

ḟh

σ
= −fh + vε, (6)

ε̇

δ
= (εe − ε) − vfh + ζ (t), (7)

where the relations σ−1 ≡ tf /tv and δ−1 ≡ tε/tv of character-
istic times are entered.

Within the framework of the mentioned parametrization,
the directed regime of motion is represented as a result of
spontaneous velocity and force deviations if the internal state
parameter exceeds a critical value. It is presented [25] by the
appearance of the minimum of the effective potential, which
corresponds to the stationary value v0 of the velocity. Therefore
we will be interested in the further evolution of v.

In the general case the system (5)–(7) has no analytical
solution; therefore we use the following approximation:

tv � tε, tv ≈ tf . (8)

These conditions indicate that in the course of evolution the
internal state parameter ε is coordinated by velocity and force
variations. As a result, the parameter δ � 1, which allows us to
assume that ε̇/δ ≈ 0 in Eq. (7). Consequently, instead of three
differential equations we obtain a system of two equations

v̇ = −v + fh, (9)

ḟh = −σfh + σv[εe − vfh + ζ (t)]. (10)

To simplify the system it is necessary to express fh via v.
The equation for ḟh is determined by time differentiation of
Eq. (9). Substituting expressions for fh and ḟh from Eq. (9)
into Eq. (10), we get the canonical form of the motion equation
for the nonlinear stochastic oscillator:

v̈ + γ (v)v̇ = f (v) + g(v)ζ (t), (11)

where the friction function γ (v), effective force f (v), and
noise intensity g(v) are defined by the expressions

γ (v) = 1 + σ (1 + v2),

f (v) = σ (εe − 1)v − v3, (12)

g(v) = v.

III. STATISTICAL ANALYSIS OF THE SYNERGETIC
REPRESENTATION

Our task is to find a distribution function P (v,v̇,t) of the
system in the phase space formed by the velocity v and
acceleration v̇ depending on time t . For this purpose we
represent the Euler equation (11) within the framework of
the Hamilton formalism

v̇ = a, ȧ = −γ (v)a + f (v) + g(v)ζ (t). (13)

As a result, the required probability density P (v,a,t) is reduced
to the distribution function ρ(v,a,t) of the solutions of the
system (13),

P (v,a,t) = 〈ρ(v,a,t)〉ζ . (14)

Here 〈· · · 〉ζ stands for averaging over noise ζ . The continuity
equation is constructed in a standard manner:[

∂

∂t
+ L̂(v,a)

]
ρ(v,a,t) = −g(v)ζ (t)

∂

∂a
ρ(v,a,t), (15)

where the operator

L̂(v,a) = −γ (v)
∂

∂a
a + a

∂

∂v
+ f (v)

∂

∂a
(16)

is introduced. According to the method of cumulant expansion
in terms of Van Kampen [26,27], the equation for the averaging
of function ρ(v,a,t) takes the form of the integral-differential
equation[

∂

∂t
+ L̂(v,a)

]
〈ρ(v,a,t)〉

= − ∂

∂a
g(v)

∫ t

0
〈ζ (t)ζ (t ′)〉e−L̂(t−t ′)g(v)

∂

∂a
〈ρ(v,a,t)〉dt ′.

(17)

We now proceed to the initial distribution P (v,a,t) by
replacing the operator on the left-hand side of Eq. (17) with
N̂ : {

∂

∂t
+ L̂(v,a)

}
P (v,a,t) = N̂ (v,a,t)P (v,a,t). (18)

Since we consider the long time and smoothed behavior
according to Ref. [27], Eq. (11) can be summarized as

v̈i + γ (vi)v̇i = f (vi) + g(vi)ζi(t) (19)

for a set of variables v1,v2, . . . ,vn and ζ1,ζ2, . . . ,ζn (sum-
mation over repeated indices is implied). Analyzing Eq. (19)
instead of the integro-differential operator N̂ , we arrive at the
sum

N̂ (v,a,t) =
∞∑

n=0

N̂n = g(v)
∂

∂a

∞∑
n=0

MnL̂n(v,a). (20)

The moments of the correlation function are defined as follows:

Mn(t) = 1

n!

∫ ∞

0
tn〈ζ (t)ζ (0)〉dt. (21)

The use of Eq. (4) gives the relations for the zeroth and first
moments

M0(t) = I, M1(t) = Iτ. (22)

The operators L̂n are defined by the rule [27]

L̂n = [L̂n−1,L̂], L̂0 = g(v)
∂

∂a
, (23)

where the square brackets mean the commutator [A,B] =
AB − BA.

Expressions for N̂0 and N̂1 allow us to define Eq. (18) as
a Kramers equation, whose solution is a function P (v,a,t).
Since the integral

P(v,t) =
∫

a

P (v,a,t)da (24)
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is of our practical interest [more than P (v,a,t)], it is necessary
to consider the moments of the initial distribution

Pn(v,t) =
∫

a

anP (v,a,t)da. (25)

In this case a zeroth moment will be the required one:
P0(v,t) = P(v,t). After multiplying the Kramers equation
by an and integrating over acceleration a, one can obtain a
recurrent relation [27,28], which implies a hierarchical system
of equations

∂P
∂t

= −∂P1

∂v
,

γP1 = fP − ∂P2

∂v
− M1

[
g

∂g

∂v
P + g2 ∂P

∂v

]
, (26)

γP2 = g2(M0 − M1γ )P.

For brevity, the dependence of the velocity v is omitted. By
solving the cyclic system of equations (26), we arrive at the
Fokker-Planck [29] equation

∂P
∂t

= − ∂

∂v
(D1P) + ∂2

∂v2
(D2P), (27)

where

D1 = 1

γ

[
f − M0

g2

γ 2

∂γ

∂v
+ M1g

∂g

∂v

]
, (28)

D2 = M0
g2

γ 2
(29)

are the drift and diffusion coefficients, respectively.

IV. STATIONARY SOLUTION

Equation (27) may be presented as a continuity equation
for the probability distribution P(v,t),

∂P
∂t

+ ∂S

∂v
= 0, (30)

where S(v,t) is interpreted as the probability current

S = D1P − ∂

∂v
(D2P). (31)

In a stationary case the probability distribution P(v,t) does
not depend on time and the probability current (31) takes a
constant value (S = const). As a result we get a stationary
distribution

P(v) = 1

D2(v)
exp

∫ v

0

D1(v′)
D2(v′)

dv′

×
[
N − S

∫ v

0
exp

(
−

∫ v′

0

D1(v′′)
D2(v′′)

dv′′
)

dv′
]
,

(32)

where N is a normalization constant

N =
(∫ ∞

0

dv

D2(v)
exp

∫ v

0

D1(v′)
D2(v′)

dv′
)−1

×
{

1 + S

∫ ∞

0

[
exp

(∫ v

0

D1(v′)
D2(v′)

dv′
)

×
∫ v

0
exp

(
−

∫ v′

0

D1(v′′)
D2(v′′)

dv′′
)

dv′
]

dv

D2(v)

}
. (33)

If we choose a constant S as the origin of the probability
current (S = 0), the extremum condition for the distribution
(32) reduces to the expression

D1(v) − ∂

∂v
D2(v) = 0. (34)

Substituting the corresponding dependencies in Eq. (34), we
obtain a cubic equation

x3 −
(

α − 2

σ

)
x2 −

(
2α

σ
− 1

σ 2

)
x

+ 2I

(
1 + 1

σ

)
− α

σ 2
= 0, (35)

where x ≡ 1 + v2 and α ≡ εe + Iτσ . According to Eq. (35)
the distribution mentioned above realizes a maximum value at
the point v = 0 if the internal state parameter does not exceed
the critical value

εec = 1 − Iτσ + 2Iσ

1 + σ
. (36)

Since, according to the approximation (8), tv and tf are
approximately equal, the parameter σ = tv/tf can be equated
to one. Therefore, to simplify the calculations in all following
expressions, we assume that σ = 1.

To determine the conditions under which a directed motion
is possible, we find (after excluding the trivial solution v = 0)
a solution to Eq. (35),

v2
± = 1

2
[α − 5 ±

√
(α − 1)(α + 7)], σ = 1. (37)

To find the conditions for the existence of the solution (37), it
is necessary to equate to zero the discriminant of Eq. (35). As
a result, we arrive at the equation

εe1 = 3 3
√

I − Iτ − 1. (38)

0.0
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3.0

4.0
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1.0

2.0
3.0

4.0
5.0

I

e

FIG. 2. The surface corresponds to the characteristic value εe1,
which is given by the equation (38). The domain of the existence of
only trivial solution (v = 0) is located under the surface. Above this
surface a nonzero solution appears.
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FIG. 3. (a) Phase diagram of the system for τ = 0.4. Line 1 is
given by Eq. (36) and curve 2 is given by Eq. (38). The dashed
lines correspond to τ = 0.0 and dotted lines correspond to τ = 0.2.
(b) Dependence of the stationary velocity for I = 4 and τ = 0.4. The
dashed curve corresponds to I = 0.0 and the dotted curve corresponds
to I = 8. Rays A, B, and C meet the appropriate points of the phase
diagram.

The corresponding dependence is shown in Fig. 2. If the
internal state parameter εe exceeds the value εe1, then Eq. (35)
has three real solutions; otherwise it has only one solution.
This is easily seen by comparing the corresponding points of
the phase diagram [Fig. 3(a)] with the velocity dependence
[Fig. 3(b)].

The diagram shows that if the internal state parameter εe

takes values less than εec the zero solution is realized. If

εe > εe1 we have a nonzero solution. A shaded region between
line 1 and curve 2 [Fig. 3(a)] corresponds to the coexistence of
zero and nonzero velocity (i.e., the so-called stick-slip motion
regime). It is easy to see from Fig. 3(b) that for different
domains of the phase diagram a different number of points
(values of the stationary velocity) is realized. For example, ray
A meets on the dependence of the stationary velocity only one
point O, which corresponds to the tumbling mode (v = 0).
For another ray B there are three points O ′, M , and N . Point
O ′ has the same meaning v = 0, point N corresponds to the
directed mode v 
= 0, and point M is an intermediate point,
which can be considered a minimum, separating the maxima
O ′ and N of the corresponding distribution function. This
situation describes the coexistence of two phases (tumbling
and directed) or the so-called stick-slip regime. The last
ray C is characterized by the presence of only one point
N ′, which has the same meaning as N , but unlike the
previous case for these parameters only directed movement
is realized. The coordinates of the critical point T (indicated
in Fig. 3(a)],

IT = 1, εeT = 2 − τ, (39)

determine the connection point of three diagram regions.

V. CONCLUSION

For many experiments in nanotechnology it is necessary
to understand the motion features of nanoparticles for exact
control of the corresponding technique (for example, optical
tweezers). In our paper the simplest self-consistent scheme,
which allows one to describe the motion of nanoparticles in
liquid, was considered. Taking as a basis a synergistic Lorenz
system and taking into account the fluctuations of the control
parameter in the form of the Ornstein-Uhlenbeck process,
we were able to describe the transition between three types
of motion of the nanoparticles. In addition, the parameters
defining the behavior of the system were determined and values
of the stationary velocity were analyzed.

Note that the results described above do not claim to
be a general theory of synergy and cannot replace the
study of other real systems. However, these results may
provide additional information and different ideas in the
investigation of both living and nonliving systems. Alter-
native theory (more advanced with respect to accounting
for interactions between particles themselves and between
particles and the environment) will monitor and control the
movement of nanoparticles in the liquid. The application
of this theory is quite promising in the field of medical
research, where nanoparticles are used as markers or for drug
delivery.
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