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Nonequilibrium phase transitions and stationary-state solutions of a three-dimensional
random-field Ising model under a time-dependent periodic external field

Yusuf Yüksel,* Erol Vatansever,* Ümit Akıncı, and Hamza Polat†
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Nonequilibrium behavior and dynamic phase-transition properties of a kinetic Ising model under the influence
of periodically oscillating random fields have been analyzed within the framework of effective-field theory
based on a decoupling approximation. A dynamic equation of motion has been solved for a simple-cubic lattice
(q = 6) by utilizing a Glauber-type stochastic process. Amplitude of the sinusoidally oscillating magnetic field is
randomly distributed on the lattice sites according to bimodal and trimodal distribution functions. For a bimodal
type of amplitude distribution, it is found in the high-frequency regime that the dynamic phase diagrams of
the system in the temperature versus field amplitude plane resemble the corresponding phase diagrams of the
pure kinetic Ising model. Our numerical results indicate that for a bimodal distribution, both in the low- and
high-frequency regimes, the dynamic phase diagrams always exhibit a coexistence region in which the stationary
state (ferro or para) of the system is completely dependent on the initial conditions, whereas for a trimodal
distribution, the coexistence region disappears depending on the values of the system parameters.
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I. INTRODUCTION

The Ising model in a quenched random magnetic field
[random field Ising model (RFIM)] has attracted a considerable
amount of interest over the past three decades. The model,
which is actually based on the local fields acting on the
lattice sites that are taken to be random according to a given
probability distribution, was introduced by Larkin [1] for
superconductors and later generalized by Imry and Ma [2].
A lower critical dimension dc of the RFIM has remained
an unsolved mystery for many years, and now, based on
the domain-wall argument of Imry and Ma [2], it is well
established that a transition should exist in three and higher di-
mensions for finite temperature and randomness, which means
that dc = 2 [2–6]. On the contrary, dimensional reduction
arguments [7] conclude incorrectly that the system should not
have a phase transition at finite temperature in three dimensions
or fewer, so dc = 3 [7–11]. A great many experimental
works have paid attention to the equilibrium properties of
RFIM, and quite noteworthy results have been obtained. For
instance, it has been shown that diluted antiferromagnets
such as FexZn1−xF2 [12,13], Rb2CoxMg1−xF4 [14,15], and
CoxZn1−xF2 [15] in a uniform magnetic field just correspond
to a ferromagnet in a random uniaxial magnetic field [16,17].
From the theoretical point of view, finite-temperature phase-
transition properties of equilibrium RFIM have been studied
using a wide variety of techniques, including mean-field theory
(MFT) [18–22], effective-field theory (EFT) [23–27], Monte
Carlo (MC) simulations [28–31], and the series expansion (SE)
method [32]. Based on these theoretical works, it is well known
that different random-field distributions may lead to different
phase diagrams, and the presence of quenched randomness
constitutes an important role in material science, since it may
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induce some important macroscopic effects on the thermal
and magnetic properties of real materials. On the mean-field
level and for infinite-dimensional models, Schneider and Pytte
[18] have shown that phase diagrams of the model exhibit
only second-order phase-transition properties for a Gaussian
probability distribution. Following the same methodology,
Andelman [19] discussed the order of the low-temperature
transition in terms of the maxima of the distribution function.
Aharony [20] and Matthis [21] have introduced bimodal and
trimodal distributions, respectively, and they have reported
the observation of tricritical behavior. For a trimodal field
distribution, Kaufman et al. [22] found that an ordered phase
persists for arbitrarily large random fields at low temperatures.
Recently, phase-transition properties of infinite-dimensional
RFIMs with symmetric double- [33] and triple- [34] Gaussian
random fields have also been studied by means of a replica
method, and a rich variety of phase diagrams have been
presented. On the other hand, based on the EFT, a tricritical
point with a reentrant phase transition has been observed
for three-dimensional (3D) lattices with nearest-neighbor
interactions [23,24,27]. Theoretically, the situation has also
been handled at zero temperature. For instance, D’Auriac
and Sourlas [35] studied the RFIM on cubic lattices of
various linear sizes L in three dimensions, and they found
that the magnetization is discontinuous at the transition both
for the Gaussian and bimodal distribution. Dhar et al. [36]
considered the single-spin-flip dynamics of the RFIM on a
Bethe lattice, and they observed that the qualitative behavior of
magnetization as a function of the external field unexpectedly
depends on the coordination number q of the Bethe lattice.
Namely, for q = 3, with a Gaussian distribution of the
quenched random fields, they found no jump in magnetization
for any nonzero strength of disorder, whereas for q � 4 and for
weak disorder, the magnetization shows a jump discontinuity
as a function of the external uniform field, which disappears for
a larger variance of the quenched field. Moreover, Hartmann
and Nowak [37] investigated the critical behavior of the 3D
RFIM with both Gaussian and bimodal distribution of random
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fields and also a 3D diluted Ising antiferromagnet in an
external field. They showed that while the random-field model
with a Gaussian distribution of random fields and the diluted
antiferromagnet appear to be in the same universality class,
the critical exponents of the random-field model with bimodal
distribution of random fields were found to be significantly
different. Furthermore, much effort has been devoted to deter-
mine the critical exponents of the model at zero temperature,
and although the value of the heat capacity exponent α is
still controversial, the values of many exponents are well
established [38].

When a ferromagnetic material is subject to a periodically
varying time-dependent magnetic field (kinetic Ising model),
the system may not respond to the external magnetic field
instantaneously, which causes interesting behaviors due to the
competing time scales of the relaxation behavior of the system
and periodic external magnetic field. At high temperatures
and for the high amplitudes of the periodic magnetic field,
the system is able to follow the external field with some
delay, while this is not the case for low temperatures and
small magnetic field amplitudes. This spontaneous symmetry
breaking indicates the presence of a dynamic phase transition
(DPT) [39], which shows itself in the dynamic order parameter
(DOP), which is defined as the time average of the magnetiza-
tion over a full period of the oscillating field. DPT properties
of the kinetic Ising model were first observed theoretically
by Tomé and Oliveira within the framework of MFT [40].
Since then, much attention has been devoted to investigate the
dynamic nature of the phase transitions by means of several
theoretical and experimental works. On the theoretical side,
nonequilibrium phase-transition properties of the kinetic Ising
model have been widely investigated using various techniques
[41–51]. In addition, on the experimental side, a DPT occurring
for the high-frequency magnetic fields was studied by Jiang
et al. [52] using the surface magneto-optical Kerr-effect
technique for epitaxially grown ultrathin Co films on a Cu
(001) surface. For a [Co(4 Å)/Pt(7 Å)] multilayer system with
strong perpendicular anisotropy, an example of DPT has been
observed by Robb et al. [53]. They found that the experimental
nonequilibrium phase diagrams strongly resemble the dynamic
behavior predicted from theoretical calculations of a kinetic
Ising model. It is clear from these works that there exists
strong evidence of qualitative consistency between theoretical
and experimental studies.

On the other hand, nonequilibrium stationary states and
dynamic phase-transition properties of RFIM have not been
well understood, and there exists a limited number of works
in the literature [54–58]. For instance, Hausmann et al. [54]
considered the behavior of an Ising ferromagnet under the
influence of a fast switching, random external field. According
to the analytical results based on MFT for the stationary state
of the system, they observed a novel type of first-order phase
transition which has also been verified by their extensive
MC simulations. Paula et al. [55] determined the stationary
states of the RFIM by using MFT and constructed the phase
diagrams from the stationary states of the magnetization as a
function of temperature and field amplitude. They found that
the continuous phase transitions coincide with the equilibrium
ones [20], while the first-order transitions occur at fields larger

than the corresponding values at equilibrium. In addition, they
also observed that the difference between the fields at the limit
of stability of the ordered phase and that of the equilibrium
is maximum at zero temperature and vanishes at the tricritical
point. Furthermore, Acharyya [56] studied the nonequilibrium
dynamic phase transition in the two-dimensional kinetic Ising
model in the presence of a randomly varying magnetic field
both by MFT and MC simulations, and he discerned that in
contrast to the results found in Ref. [54], the nature of the
transition is always continuous. In a recent work, Crokidakis
[57] performed MC simulations on cubic lattices for a
nonequilibrium Ising model that stochastically evolves under
the simultaneous operation of several spin-flip mechanisms
where the local magnetic fields change sign randomly with
time due to competing kinetics. From the numerical results, it
has been predicted that there exist first-order transitions at low
temperatures and large disorder strengths, which correspond
to the existence of a nonequilibrium tricritical point at finite
temperature. Very recently, Costabile et al. [58] studied the
dynamical phase transitions of the kinetic Ising model in
the presence of a random magnetic field by using EFT with
correlations where the EFT dynamic equation has been given
for the simple-cubic lattice (q = 6) and the dynamic order
parameter has been calculated. It has been observed that the
system presents ferromagnetic and paramagnetic states for low
and high temperatures, respectively. Apart from this, they have
predicted a nonequilibrium tricritical point in a phase diagram
in the temperature versus applied field amplitude plane. They
have also compared the results with the equilibrium phase
diagram [23,24], where only the first-order line is different.
In the theoretical works mentioned above, the random-field
effects have been taken into account either by a given
probability distribution function (random in space), namely
a bimodal distribution, or by generating a new configuration
of random fields uniformly at each time step (random in
time).

Recently, some of us have investigated the static properties
of the RFIM for continuous field distributions by introducing
an EFT method in which an approach has been made to
take into consideration the multisite as well as the single-site
correlations between different spins [27], which provided
a treatment beyond the conventional MFT and EFT in a
quantitative manner. However, before attempting to adopt
the consideration of multisite correlations to the kinetic
RFIM model, it would be beneficial to shed some light on
critical properties of the system by utilizing an uncomplicated
tool. Hence, in the present paper, we have studied dynamic
phase transitions and stationary states of the RFIM driven
by a periodically varying time-dependent magnetic field on
a simple-cubic lattice in which the multisite correlations
between different sites that emerge when expanding the
identities are treated by introducing a decoupling procedure
that is quite superior to conventional MFT. The amplitude of
the applied magnetic field is sampled from both bimodal and
trimodal probability distributions, which are relevant to diluted
antiferromagnets in a uniform field [22]. For this purpose, we
organized the paper as follows: In Sec. II, we briefly present
the formulations. The results and discussions are summarized
in Sec. III, and finally Sec. IV contains our conclusions.
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II. FORMULATION

We consider a three-dimensional Ising ferromagnet (J >

0) defined on a simple-cubic lattice with a time-dependent
external magnetic field. The time-dependent Hamiltonian
describing our model is

H = −J
∑
〈ij〉

SiSj −
∑

i

Hi(t)Si, (1)

where the first term is a summation over the nearest-neighbor
spins with Si = ±1, and Hi(t) is a time-dependent external
oscillating magnetic field which is given by

Hi(t) = H0i cos(ωt), (2)

where H0i is the amplitude of the external magnetic field
acting on the site i, and ω denotes the angular frequency
of the oscillating external field. The amplitude of the field
is distributed according to a given probability distribution
function. The present study deals with a trimodal field
distribution which has a form

P (H0i)=pδ(H0i) +
(

1 − p

2

)
[δ(H0i − H0) + δ(H0i + H0)] .

(3)

In order to describe the dynamical evolution of the
system, we follow a Glauber-type stochastic process [59].
The dynamical equation of motion can be obtained by using
the master equation as follows:

τ
d〈Si〉
dt

= −〈Si〉 +
〈
tanh

[
Ei + Hi(t)

kBT

]〉
, (4)

where τ is the transition rate per unit time, Ei = J
∑

j Sj is
the local field acting on the lattice site i, and kB and T denote
the Boltzmann constant and temperature, respectively.

In Eq. (4), we set τ to unity. If we apply the differential
operator technique [60,61] in Eq. (4) by taking into account
the random configurational averages, we get

dm

dt
= −m +

〈〈
q=6∏
j=1

cosh(J∇) + Si sinh(J∇)

〉〉
r

F (x)|x=0,

(5)

where m = 〈〈Si〉〉r represents the average magnetization,
∇ = ∂/∂x is a differential operator, q is the coordination
number of the lattice, and the inner 〈· · · 〉 and the outer
〈· · · 〉r brackets represent the thermal and configurational
averages, respectively. Actually, the representation 〈〈Si〉〉r is a
conventional notation, and the lattice sites are independent of
the random configurations of the local magnetic fields. In fact,
the disorder averaging procedure is relevant to the function
F (x) in Eq. (5), which explicitly includes the magnetic field
term. The function F (x) in Eq. (5) is then defined by

F (x) =
∫

dH0iP (H0i) tanh

[
x + Hi(t)

kBT

]
. (6)

Hence, in order to perform the disorder-averaging procedure,
one should evaluate the numerical integration defined in Eq. (6)
at each time step t for given Hamiltonian parameters and
temperature. When the right-hand side of Eq. (5) is expanded,
the multispin correlation functions appear. The simplest

approximation, and one of the most frequently adopted, is
to decouple these correlations according to

〈〈SiSj · · · Sl〉〉r ∼= 〈〈Si〉〉r〈〈Sj 〉〉r · · · 〈〈Sl〉〉r (7)

for i �= j �= · · · �= l [62]. If we expand the right-hand side of
Eq. (5) within the help of Eq. (7), then we obtain the dynamical
equation of motion as follows:

dm

dt
= −m +

q=6∑
j=0

�jm
j . (8)

The coefficients in Eq. (8) are defined as

�j = 1

2q

q−j∑
r=0

j∑
s=0

(
q − j

r

) (
j

s

)
(−1)s

× exp[(q − 2r − 2s)J∇]F (x)|x=0, j = 0,1, . . . ,q.

(9)

These coefficients can be calculated by employing the math-
ematical relation exp(α∇)F (x) = F (x + α) after evaluating
Eq. (6) numerically. Equation (8) can be regarded as a kind of
initial-value problem and the solution can be easily found by
benefiting from the initial value of the average order parameter
m0, and by using the fourth-order Runge-Kutta method (RK-
4). For selected values of the Hamiltonian parameters and
temperature, the time dependence of magnetization converges
to a finite value after some iterations, i.e., the solutions have
the property m(t) = m(t + 2π/ω) for the arbitrary initial
value of the magnetization (m0). Thus, by obtaining this
convergent region after some transient steps (which depends
on Hamiltonian parameters and the temperature), the DOP,
which is the time average of the magnetization over a full
cycle of the oscillating magnetic field, can be calculated from

Q = ω

2π

∮
m(t)dt, (10)

where m(t) is a stable and periodic function which can be one
of the two types, according to whether it has the following
property or not [40]:

m(t) = −m(t + π/ω). (11)

A solution satisfying Eq. (11) is called a symmetric solution,
which corresponds to a paramagnetic (P) phase where the
magnetization oscillates around zero; the solution which does
not ensure Eq. (11) is called a nonsymmetric solution, and it
corresponds to a ferromagnetic (F) phase where the magnetiza-
tion oscillates around a nonzero value. In these two cases, the
observed behavior of the magnetization is independent of the
choice of the initial value of magnetization. On the other hand,
in contrast to the equilibrium RFIM, there exist coexistence
regions (F + P phases) in the phase diagrams in temperature
versus field amplitude plane where the stationary state of
the nonequilibrium RFIM problem depends on the initial value
m0 of the time-dependent magnetization. Furthermore, it is
not possible to obtain the free energy for kinetic models in the
presence of time-dependent external fields. Hence, in order to
determine the type of dynamic phase transition (first or second
order), it is convenient to check the temperature dependence
of DOP. Namely, if the DOP decreases continuously to zero in
the vicinity of critical temperature, this transition is classified
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as second order, whereas if it vanishes discontinuously, then
the transition is assumed to be first order.

III. RESULTS AND DISCUSSION

In this section, we discuss how the random fields affect the
phase diagrams of the kinetic Ising model. Also, in order to
clarify the type of dynamic phase transitions in the system,
we give the temperature dependence of the dynamic order
parameter.

A. Nonequilibrium phase diagrams of the kinetic model:
Pure case

In order to provide a testing ground for our calculations,
we have primarily studied the dynamic phase diagrams of
the kinetic Ising model under an oscillating magnetic field
where the amplitude of the externally applied field was
taken as a uniformly constant value. This model defines
nonequilibrium properties of the pure system and has been
examined previously within the framework of EFT [49,51].
In these works, the authors investigated the phase diagrams
of the system in a (kBTc/qJ − H0/qJ ) plane, where q is
the coordination number of the lattice. From these works,
we see that, for the oscillation frequency values ω = 0.5 and
1.0, the location of the dynamic tricritical (DTC) point was
identified imprecisely. Hence, in order to compare our results
with those found in Refs. [49,51], we depict the phase diagrams
in Fig. 1 in the same plane. It is clear from Fig. 1 that our
numerical values of the DTC point coordinates for ω = 0.5
and 1.0 agree qualitatively well with Ref. [51], whereas they
are qualitatively and quantitatively quite different from those
obtained in Ref. [49]. It is not possible to compare our
numerical results for DTC point coordinates as a function
of ω in the (kBTc/qJ − h0/qJ ) plane with those obtained in
Ref. [51] since they did not report numerical values. On the
other hand, in Ref. [49], numerical results for DTC points

FIG. 1. Dynamic phase diagram of the pure kinetic Ising model in
the (kBT /qJ − H0/qJ ) plane for oscillation frequency values ω =
0.5 (a) and ω = 1.0 (b), for comparison with Refs. [49,51]. Solid
(dashed) lines correspond to second- (first-) order phase transitions,
and hollow circles represent dynamic tricritical points (denoted as
DTCP).

are reported as (0.406,0.473) and (0.402,0.608) for frequency
values ω = 0.5 and 1.0, respectively, which are quite different
from our results (0.192,0.630) for ω = 0.5 and (0.233,0.688)
for ω = 1.0. The discrepancy is probably due to the fact that
in Ref. [49], an insufficient number of data points was used
to construct the phase diagrams of the system. In addition,
another conflict between the results obtained in the present
work and those obtained in Ref. [49] is that the F + P phase,
which is located in the low-temperature and large-amplitude
region in Fig. 1, is not reported in Ref. [49].

B. Nonequilibrium phase diagrams of the RFIM
for a bimodal distribution

The distribution function given in Eq. (3) corresponds to
a bimodal field distribution for p = 0 where the amplitude
of the oscillating field can be either +H0 or −H0 with equal
probability. In this case, the system can be thought of as a spin
system under the influence of two oscillating external field
sources. In Refs. [55,58], a similar model has been studied
within MFT and EFT, respectively, where the authors did
not consider any oscillating external magnetic field. The main
conclusion of those studies was that the dynamic second-order
phase-transition lines in the (kBTc/J − H0/J ) plane coincide
with the equilibrium counterparts [20,23,24], whereas the
maximum and minimum differences between the dynamic and
equilibrium first-order phase transition lines were observed at
the zero temperature and at the tricritical point, respectively.
However, as seen in Figs. 2(a) and 2(b), if the external magnetic
field has an oscillatory character with an amplitude which
is applied at random, then a completely different situation
arises. Namely, the second-order phase-transition fields of
nonequilibrium RFIM with oscillating random external fields
are greater than those obtained for the static RFIM [23,24].
We should note that the consideration of multisite correlations
in the static RFIM [27] produces qualitatively similar phase
diagrams to those obtained in Refs. [23,24], where the
authors neglected these higher-order correlations by using the
approximation given in Eq. (7). On the other hand, according
to the dynamic phase diagrams shown in Figs. 2(a) and 2(b),
the system may exhibit F phase for low-field amplitude values
even at high temperatures. As the field sources are switched on,
the spins tend to point up or down randomly by aligning with
the periodically oscillating local fields acting on the lattice
sites. For small H0/J values, the nearest-neighbor bonds
are dominant against the periodic local fields to allow all
spins to order. Hence, a relatively large amount of thermal
energy is needed to observe a dynamic phase transition in
the system, due to the response of the spins to the external
magnetic field. As H0/J increases, then the ferromagnetic
exchange interaction loses its dominance against the external
field amplitude and it becomes possible to observe a dynamic
phase transition at lower temperatures. Hence, the system is
able to follow the external field with some delay. In addition, as
the oscillation frequency ω increases, the DTC point depresses
and the F + P phase region gets narrower. In Figs. 2(c) and
2(d), variations of DTC point coordinates Ht

0/J and kBT t/J

with respect to the frequency w are plotted, respectively. As
seen in this figure, Ht

0/J grows whereas kBT t/J decays with
increasing ω, and these values saturate at Ht

0/J = 4.512 and
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FIG. 2. (Color online) Phase diagrams of the kinetic RFIM in the (kBTc/J − H0/J ) plane for a bimodal distribution with (a) ω = 0.1 and
(b) 0.5, in comparison with the static model [23,24]. Solid (dashed) lines correspond to second- (first-) order phase transitions, and hollow
circles represent tricritical points. The right panel shows the variation of the dynamic tricritical point coordinates (c) Ht

0/J and (d) kBT t/J as
a function of frequency ω.

kBT t/J = 1.54. This means that the coexistence region in
the phase diagrams gets narrower but does not disappear with
increasing ω. In other words, for sufficiently high frequencies,
both the location of the DTC point and the area of the
F + P region become independent of oscillation frequency of
the external field. We also note that the F region is always
independent of frequency for the whole range of ω.

In Fig. 3, we show the temperature dependence of the
dynamic order parameter Q as a function of the oscillation
frequency ω corresponding to the phase diagrams depicted
in Fig. 2. As we mentioned before, increasing or decreasing
frequency values do not affect the area of the F region. Namely,
for a fixed H0/J value, the system always undergoes a dynamic

FIG. 3. (Color online) Temperature dependence of the dynamic
order parameter Q as a function of frequency ω for (a) H0/J = 2.0
and (b) 4.0. Insets in both panels show the time variation of the
average magnetization m(t) at kBT /J = 4.0 (left) and 1.75 (right),
respectively, where the oscillation amplitude of the magnetization
decreases as ω increases from 0.1 to 0.5.

phase transition on the F-P phase boundary line, and the
critical temperature value is independent of ω. This situation
is independent of the selection of the initial magnetization for
H0/J < Ht

0/J , whereas it is valid for H0/J > Ht
0/J only if

one starts with an initial condition m0 = 0. As is clearly seen in
Fig. 3(a), all curves coincide with each other for H0/J = 2.0.
The inset in Fig. 3(a) shows the average magnetization m(t) as
a function of time t at kBT /J = 4.0 and for ω = 0.1,0.3, and
0.5, where we see that the m(t) curve oscillates with smaller
amplitude as ω increases, but the average value, i.e., DOP (Q)
over a complete cycle of the magnetic field, does not change.
On the other hand, as shown in Fig. 3(b), for sufficiently strong
amplitudes of the external field, such as H0/J = 4.0, DOP
versus temperature curves exhibit different characteristics with
increasing frequency, although the critical temperature does
not change, and interestingly, for sufficiently high-frequency
values such as ω � 0.5, DOP curves resemble those of the
pure kinetic Ising model driven by a periodic external field
with the high oscillation frequency.

In Fig. 4, dynamic phase diagrams of the system are
depicted for a wide range of oscillation frequency values.
In this figure, we observe that the DTC point depresses for
a while and the area of the coexistence region in the phase
diagrams gets slightly narrower and then remains unchanged
with increasing frequency values. The low-frequency phase
diagrams of the system are found to be completely different
from those of the pure kinetic Ising model [51], whereas for
the high-frequency regime, dynamic phase diagrams of the
system are exactly identical to those of the pure case. These
observations originate from the symmetry of the random-field
distribution. Namely, for a bimodal field distribution, we
have two oscillating magnetic field sources. Initially, half
of the lattice sites are under the influence of a periodically
oscillating field (source 1) with an amplitude H0/J , and
the remaining spins on the other half of the lattice are
influenced by an oscillating external field with an amplitude
−H0/J (source 2). As time progresses, due to the sinusoidal
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YÜKSEL, VATANSEVER, AKINCI, AND POLAT PHYSICAL REVIEW E 85, 051123 (2012)

FIG. 4. (Color online) Dynamic phase diagrams of the system in a (kBTc/J − H0/J ) plane for a bimodal distribution with some selected
values of frequency (a) ω = 0.1, (b) ω = 0.25, (c) ω = 1.0, and (d) ω = 2.0. The solid (dashed) lines correspond to second- (first-) order phase
transitions, and hollow circles represent dynamic tricritical points.

form of the periodic fields, magnetic field sources acting
on the lattice sites change their sign instantaneously at the
end of one-half of the oscillation period. Consequently, the
presence of a phase difference between source 1 and source 2
stimulates some unusual effects on the system. Furthermore,
for sufficiently high frequencies of the oscillating external
fields, the relaxation time of the system becomes greater
than the oscillation period of the external field. As a result,
source-1 and source-2 fields receive identical responses from

FIG. 5. (Color online) Variation of the dynamic order parameter
Q as a function of the temperature for ω = 1.0 with some selected
values of initial magnetization and external field amplitude: (a) m0 =
0.0 and H0/J = 4.4, (b) m0 = 0.0 and H0/J = 4.52, and (c) m0 =
1.0 and H0/J = 4.6. The dashed lines correspond to the first-order
phase transitions.

the system, which perceives the field sources as a single
oscillatory field source, hence the dynamic phase diagrams
of the system resemble the high-frequency phase diagrams of
the corresponding pure model. We may also note that F + P
regions in the (kBTc/J − H0/J ) phase diagrams always exist
for the whole range of frequency values.

In Fig. 5, we represent some examples of typical DOP
versus temperature profiles corresponding to the phase dia-
grams shown in Fig. 4 with ω = 1.0. Namely, the system
always undergoes a second-order dynamic phase transition
for H0/J = 4.4. In this case, the dynamic nature of the
phase transition and the stationary state of the system are
independent of the initial magnetization m0. On the other
hand, two successive first-order dynamic phase transitions
(i.e., a first-order reentrant phenomena) occur at the value
H0/J = 4.52 with the initial condition m0 = 0.0. In addition,
for H0/J = 4.6 with m0 = 1.0, the DOP curve exhibits a
discontinuous jump at a phase-transition temperature, which
suggests the existence of a first-order transition in the system.
For the latter two examples, the dynamic nature of the phase
transition and the stationary state of the system strictly depend
on the initial magnetization.

C. Nonequilibrium phase diagrams of the RFIM
for a trimodal distribution

For a trimodal field distribution of magnetic fields defined
in Eq. (3), we plot the dynamic phase diagrams of the system
in a (kBTc/J − H0/J ) plane in Fig. 6 for ω = 0.5 and with
some selected values of disorder parameter p. This distribution
corresponds physically to a diluted bimodal distribution in
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FIG. 6. (Color online) Dynamic phase diagrams of the system in a (kBTc/J − H0/J ) plane for a trimodal distribution of random fields with
ω = 0.5 and for some selected values of p. The solid (dashed) lines correspond to second- (first-) order phase transitions, and hollow circles
represent dynamic tricritical points.

which a fraction p of the lattice sites are not exposed to
the oscillating external field [21]. As shown in Fig. 6(a), the
system exhibits DTC behavior for a relatively narrow range
of p. The temperature coordinate kBT t/J of the DTC point
decreases as p increases, whereas the field amplitude part
Ht

0/J increases, and consequently the DTC point depresses to
zero at a certain value of p. After the destruction of the DTC
point, all dynamic phase-transition processes are found to be
second order. We also note that at zero temperature, there exists
a critical value p∗ = 0.53 below which the system exhibits a
dynamic phase transition at a critical magnetic field. This value
of p∗ is independent of ω. In other words, as p increases,
the fraction of the spins which are subjected to no magnetic
field increases. Consequently, for p > p∗ this fraction is
sufficient for the system to form an infinite cluster in which
the spins can order ferromagnetically at low temperatures
for arbitrarily large values of the random amplitude of the
oscillating magnetic field. Hence, the ferromagnetic region
extends to large H0/J values at low temperatures in the

FIG. 7. (Color online) Variation of dynamic order parameter Q as
a function of the amplitude of the oscillating field H0/J for a trimodal
distribution corresponding to the dynamic phase diagrams depicted
in Fig. 6 with some selected values of p for m0 = 0, ω = 0.5, and for
the reduced temperatures (a) kBT /J = 0.5, (b) kBT /J = 2.5.

(kBTc/J − H0/J ) plane. Further increase in p means a wider
ferromagnetic region in the phase diagram, and finally for
p = 1.0, the ferromagnetic region achieves its maximum size,
and we recover the standard zero-field Ising model. Moreover,
according to Fig. 6(b), as p increases, the area of the F + P
region in the dynamic phase diagrams gets narrower, and after
a specific value of p, we cannot observe any coexistence region
in the (kBTc/J − H0/J ) plane.

Variation of DOP (Q) as a function of the amplitude
of the oscillating field H0/J for a trimodal distribution
corresponding to the dynamic phase diagrams depicted in
Fig. 6 is plotted in Fig. 7 with some selected values of p. In this
figure, the initial value of the average magnetization is selected
as m0 = 0.0. According to Fig. 7, DOP curves undergo first-
and second-order dynamic phase transitions at low and high
temperatures, respectively. At low temperatures, the critical
amplitude value Hc

0 /J at which a dynamic phase transition
occurs depends on the initial magnetization m0. Namely, for
m0 = 0.0, the critical Hc

0 /J value is greater than that obtained
for m0 = 1.0, which is due to the presence of the F + P phase
in the system at a fixed value of p [see Fig. 6(b)].

Finally, for a fixed oscillation frequency ω = 0.5, let us
investigate the time dependence of the average magnetization
m(t) corresponding to the phase diagrams shown in Fig. 6(b).
In Figs. 8(a) and 8(b), we plot the time series of m(t) curves for
p = 0, kBT /J = 1.0, and with two values of field amplitude
H0/J = 4.4 and 4.58, respectively. From Fig. 8(a), we see
that the dynamic nature of the stationary state of the system
is independent of the initial magnetization m0 for H0/J =
4.4. Namely, for this set of system parameters, the average
magnetization of the system oscillates around a nonzero value
(F phase) after some transient time. However, as shown in
Fig. 8(b), for H0/J = 4.58 (while the other parameters are the
same), the stationary state of the system (F or P) depends on
the initial magnetization m0, which indicates that the dynamic
phase diagrams exhibit a coexistence region (F + P phase) in
the (kBTc/J − H0/J ) plane. On the other hand, as seen in
Figs. 8(c) and 8(d), which are plotted for p = 0.15, we cannot
observe any coexistent phase region in the system. Namely, for
H0/J = 5.1 with kBT /J = 1.0, m(t) curves oscillate around a
finite nonzero value, whereas for H0/J = 5.22 and kBT /J =
0.25 the curves oscillate around zero, which means that the
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FIG. 8. (Color online) Time dependence of the average magnetization m(t) for ω = 0.5 with some selected values of the parameters.
Left panel: kBT /J = 1.0, p = 0.0, and (a) H0/J = 4.4; (b) H0/J = 4.58. Right panel: p = 0.15 with (c) kBT /J = 1.0, H0/J = 5.1;
(d) kBT /J = 0.25, H0/J = 5.22.

system is in the P phase. Hence, we see that the stationary
state of the system for a trimodal distribution of the oscillating
field amplitude may be independent of m0, depending on the
value of distribution parameter p.

IV. CONCLUDING REMARKS

In conclusion, we have investigated the kinetic behavior
of a spin-1/2 Ising model on a simple cubic lattice (q = 6)
under the influence of a quenched random magnetic field which
oscillates periodically in time by means of an effective-field
theory based on a standard decoupling approximation, and the
time evolution of the system has been presented by utilizing
a Glauber-type stochastic process. For bimodal and trimodal
field distributions, we have studied the global dynamic phase
diagrams of the system in a (kBTc/J − H0/J ) plane and
variation of the dynamic order parameter with respect to the
temperature and random amplitude of the oscillating field, as
well as the time series of the average magnetization curves.
We found that the dynamic behavior of the random-field Ising
model with a periodically oscillating magnetic field exhibits
quite different characteristics in comparison with the static
RFIM problem.

Our numerical analysis clearly indicates that such field
distributions result in topologically different dynamic phase
diagrams and may lead to a number of interesting phenomena.
For example, we have found that for a bimodal distribution
with sufficiently high frequency values, DOP curves, and
nonequilibrium phase diagrams of the system resemble those
of the pure kinetic Ising model driven by a periodic external
field with the high oscillation frequency. On the other hand,
we have also observed that F + P regions in (kBTc/J − H0/J )
phase diagrams always exist for the whole range of frequency
values for a bimodal distribution of oscillatory field amplitude,
whereas for a trimodal distribution, the area of the F + P
region gets narrower with increasing distribution parameter
p, and if we increase p further, then we cannot observe any
coexistence region in the (kBTc/J − H0/J ) plane. One of the

main conclusions of the present work is that the dynamic phase
transitions occurring between F (or P) and F + P phases in the
(kBTc/J − H0/J ) plane are found to be of first order, which
signals the existence of a dynamic tricritical point. However,
the nature of the transition (continuous or discontinuous) and
the existence of the DTC point in the kinetic Ising model
have been questioned throughout the years [42,46–48], and
the situation also persists for the dynamic phase-transition
properties of disordered systems, especially for the kinetic
RFIM [54,56,57]. Hence, even according to the results based
on some powerful methods such as MC simulations, in which
one explicitly consider the thermal fluctuations, there is a
controversy over whether kinetic RFIM exhibits a DTC point
or not. In addition, the F + P phase region, which is quite
clearly observed in conventional MFT predictions, gets rather
narrower in EFT calculations [50], which is due to the fact
that the EFT method takes the standard mean-field predictions
one step forward by taking into account the single-site
correlations, which means that the thermal fluctuations are
partially considered within the framework of EFT.

Although all of the observations reported in this work show
that EFT can be successfully applied to such nonequilibrium
systems in the presence of quenched disorder, the true nature
of the physical facts underlying the observations displayed
in the system (especially the origin of the coexistence phase)
may be further understood with an improved version of the
present EFT formalism, which can be achieved by attempting
to consider the multisite correlations that originate when
expanding the spin identities. Such a method has been
introduced by some of us [27] for the static RFIM problem.
Therefore, the generalization of that work to the kinetic RFIM
problem with a more general type of random fields, such as
continuous disorder distributions, could resolve those specific
questions mentioned above. In this context, we believe that
this attempt could provide a treatment beyond the present
approximation, and the results obtained in the present work
would help to shed some light on the critical properties of the
system.
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