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Phase transitions in trajectories of a superconducting single-electron transistor
coupled to a resonator
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Recent progress in the study of dynamical phase transitions has been made with a large-deviation approach
to study trajectories of stochastic jumps using a thermodynamic formalism. We study this method applied to an
open quantum system consisting of a superconducting single-electron transistor, near the Josephson quasiparticle
resonance, coupled to a resonator. We find that the dynamical behavior shown in rare trajectories can be rich even
when the mean dynamical activity is small, and thus the formalism gives insights into the form of fluctuations. The
structure of the dynamical phase diagram found from the quantum-jump trajectories of the resonator is studied,
and we see that sharp transitions in the dynamical activity may be related to the appearance and disappearance
of bistabilities in the state of the resonator as system parameters are changed. We also demonstrate that for a fast
resonator, the trajectories of quasiparticles are similar to the resonator trajectories.
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I. INTRODUCTION

Transitions in the dynamical behavior of open quantum
systems may be seen for a variety of driven systems. Notable
examples include the laser [1], atoms coupled to optical
cavity modes such as in the micromaser [2,3] and pumped
Bose-Einstein condensates [4], mechanical resonators coupled
to optical cavities [5], and nanoelectromechanical systems
[6]. Recently, an alternative perspective on the dynamics of
open quantum systems has been developed [7,8] by studying
ensembles of quantum-jump trajectories. Applying the so-
called s-ensemble [9–11] has given insights into dynamical
crossovers by extending the space of parameters [7,8,12,13].
The new parameter s is a counting field which may be adjusted
to give ensembles of trajectories biased toward fewer or
more quantum jumps. Varying s allows the phase structure of
quantum-jump trajectories to be explored in a way analogous
to tuning parameters across an equilibrium phase transition,
such as the temperature in a ferromagnetic transition.

The s-ensemble is developed in a formalism using a large-
deviation method [14], which treats the statistics of dynamical
trajectories in the same way equilibrium statistical mechanics
treats statistical ensembles of configurations [9–11]. Just as or-
der parameters, such as the magnetization for a ferromagnetic
transition, are used to characterize configurations, we can use
a dynamical order parameter to characterize quantum-jump
trajectories. The number of quantum jumps K in a given time
t is the extensive conjugate variable to the counting field s.
We therefore consider the activity k, defined as the number
of quantum jumps in unit time K/t , as a dynamical order
parameter. Characterizing dynamical phases in this way has
been shown to give rich phase diagrams with phase boundaries
marked by discontinuities in k, or its derivative with respect
to system parameters, occurring at first and second-order
transitions [8]. For the unbiased physical dynamics when s =
0, the transitions typically appear rounded, and we understand
these to be crossovers in dynamical behavior, which become
transitions in an appropriate thermodynamic limit [15].

Physical dynamics correspond to the s = 0 ensemble of
trajectories. The method gives a new perspective on these
unbiased s = 0 dynamics through the structure of phase

diagrams parametrized by s. Furthermore, it should be noted
that the statistics of trajectories when s �= 0 can be inferred
from accurate measurements of the physical trajectories. The
s-ensemble has already shown interesting results for driven
two- and three-level dissipative systems. For example, it has
been shown that for a particular ratio of driving and dissipation
[7], the two-level system exhibits a surprising self-similarity
in the fluctuation properties for all s, so that all trajectories
look the same if rescaled by the number of counts, k. For the
three-level system studied in Ref. [7] it was shown that the
intermittent bursts of quantum jumps [16] in the dynamics
arise from a sharp crossover in activity occurring at s = 0. In
Ref. [8], dynamical phases of the micromaser were studied.
The micromaser consists of a series of two-level atoms passing
through a microwave cavity in their excited state. As the flux of
atoms is increased, the atoms drive the cavity through different
dynamical states. It was shown that, as a function of the
counting field s and the atom flux, distinct dynamical phases
are seen, characterized by different values of the activity.

In this paper, we examine a more complex system consisting
of two coupled components with nontrivial internal dynamics.
We study a system constructed by coupling a resonator to
a superconducting single-electron transistor (SSET) close to
a Josephson quasiparticle resonance (JQP) [17–24]. Both the
resonator and SSET are themselves open quantum systems be-
cause the resonator loses energy to its surroundings and Cooper
pairs on the SSET break into quasiparticles which, one-by-one,
decay incoherently off the SSET into a second lead. This allows
us alternative ways of generating trajectories; we may either
keep a time record of quanta emitted by the resonator or mea-
sure charges leaving the SSET island. While SSET-resonator
systems were first demonstrated with nanomechanical beam
resonators [23], superconducting stripline resonators have also
been used in more recent experiments [24,29]. It is the latter
setup which, along with very recent progress toward detecting
single microwave photons from stripline resonators [25–28],
motivates our study of quantum jump trajectories presented
here.

This paper is organized as follows. In Sec. II, we introduce
the open-system model for the SSET and resonator before
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describing how the trajectories of the system may be studied
using the s-ensemble. In Sec. III, we present numerical results
for the trajectories of quantum jumps in the resonator. Then,
in Sec. IV, we discuss a mean-field theory which describes
the resonator limit cycles at s = 0. From this we develop an
effective stochastic master equation for the resonator, from
which we derive the activity of the resonator for all values of
s. Finally, in Sec. V we demonstrate briefly that studying the
trajectories of quasiparticles allows the resonator trajectories
to be inferred in certain regimes. In Sec. VI we state our
conclusions.

II. MODEL AND FORMALISM

The tandem of a resonator weakly coupled to an SSET near
the JQP resonance may be explored with an open quantum
system description [6]. The SSET island consists of a left- and
a right-hand Josephson junction, a gate capacitor across which
a gate voltage is applied and a capacitively-coupled resonator,
shown in Fig. 1(a). The detuning from the JQP resonance
in the left-hand Josephson junction can be controlled with
drain-source and gate voltages, Vds and Vg , while a resonator
gate voltage also allows the strength of the coupling to the
resonator to be adjusted. Near the JQP resonance, Cooper
pairs tunnel coherently across a Josephson junction, causing
oscillations between SSET island states |0〉 and |2〉, with zero
and two extra charges on the SSET, respectively. However, the

FIG. 1. (a) Schematic diagram of the SSET-resonator system
showing left and right Josephson junctions labeled L and R, with
gate voltage Vg applied across a gate capacitor and drain-source
voltage Vds across both Josephson junctions. The resonator is also
capacitively coupled to the SSET island. (b) Illustration of the JQP
cycle. Cooper-pair tunneling occurs at the left-hand junction between
states |0〉 and |2〉. This is interrupted by the quasiparticle decay to
state |1〉, which in turn decays back to state |0〉.

incoherent tunneling of quasiparticles through the right-hand
lead takes the SSET island to the state |1〉, with a single extra
charge, and then back to the state |0〉, as sketched in Fig. 1(b).
The coupling of a resonator to the SSET island allows for
energy exchange between resonator and SSET. Depending on
the sign of the detuning from the JQP resonance, the resonator
is either driven into states of self-sustaining oscillation [24] or
experiences a cooling effect [23] because of its coupling to the
SSET.

In the open-system model, the coherent oscillations of
Cooper pairs across the left-hand Josephson junction, the
motion of the resonator and the coupling of the resonator
position to the charge on the SSET island are all included in an
effective Hamiltonian. While the resonator may be a stripline
resonator [24] or a nanomechanical beam [23], for clarity
we will stick to language more appropriate for a mechanical
oscillator. Both the dissipative effects of the environment on
the resonator and the decay of quasiparticles from the SSET
island and the right-hand lead can be described by Lindblad
operators such that the dynamics of the SSET-resonator system
may be found from a master equation [6,30].

A. Master equation

We will focus on the regime where the SSET island exhibits
coherent oscillations of Cooper pairs across the left-hand
junction between charge states of the SSET island |0〉 and
|2〉. Including the quasiparticle decay to the right-hand lead
requires the inclusion of a third island state |1〉 with just a
single quasiparticle. Treating the resonator as a single-mode
harmonic oscillator with frequency ω and considering the fluc-
tuations in the resonator displacement to be small compared
with the SSET-resonator distance, allows the coupling to be
well approximated by expansion to linear order in the oscillator
displacement. The full Hamiltonian for the coherent dynamics
is then [6,30]

H = �E|2〉〈2| − EJ

2
(|0〉〈2| + |2〉〈0|) + h̄ωa†a

+Cxs(a
† + a)(|1〉〈1| + 2|2〉〈2|). (1)

The difference in electrostatic energy between states |0〉 and |2〉
is given by �E and EJ is the Josephson energy of the junctions.
The displacement xs is the change in the equilibrium position
of the resonator when one charge is added to the SSET island,
with C = (h̄ω3m/2)1/2. In addition to the coherent dynamics
governed by the Hamiltonian, dissipation occurs due to both
quasiparticle tunneling off the SSET island and the coupling
of the resonator to its environment. Including these effects, the
full master equation reads

ρ̇ = W(ρ) = − i

h̄
[H,ρ] + Lq.p.(ρ) + Losc.(ρ), (2)

where ρ is the density matrix for the combined SSET and
resonator system. The quasiparticle decay from states |2〉 to
|1〉 and from |1〉 to |0〉 is described by

Lq.p.(ρ) = �(|1〉〈2|ρ|2〉〈1| + |0〉〈1|ρ|1〉〈0|)
− �

2
({|2〉〈2|,ρ} + {|1〉〈1|,ρ}), (3)
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where {·,·} denotes the anticommutator and � is the quasiparti-
cle decay rate, which is, for simplicity, taken to be the same for
the two processes |2〉 → |1〉 and |1〉 → |0〉. The environment
of the resonator will also be included via

Losc.(ρ) = γextaρa† − γext

2
{a†a,ρ}, (4)

where γext is the rate, per energy quantum h̄ω, at which
the resonator loses energy to its environment. The Lindblad
form (4) describes a thermal bath at zero temperature, which,
although hard to achieve with a mechanical resonator, is valid
for the higher-frequency stripline resonators where kBT �
h̄ω. Indeed, Eq. (2) is valid for a broad range of oscillator
frequencies, provided the coupling between the SSET and the
resonator is weak. (A summary of the practical requirements
for a system to be well described by this model is given in the
Appendix.)

We assume throughout the model parameters [18] � =
Vds/eRJ , with RJ = h/e2 the SSET junction resistance. We
can define the coupling strength in terms of the dimensionless
parameter λ, where λ2 = mω2x2

s /eVds will be much smaller
than unity for the weakly coupled system studied in this
paper [31].

A characteristic of this system is the ability of the SSET
to drive [6,24] or cool [18,20,23] the resonator depending
on the sign of �E, which is set by the detuning of the
SSET bias point from the JQP resonance. When �E < 0,
the SSET can drive the resonator into different steady states
as the SSET-resonator coupling strength is increased. When
decoupled from the SSET, the resonator remains in its ground
state. Upon increasing the coupling, a continuous crossover is
reached where the oscillator enters a state of self-sustaining
oscillation. This is illustrated by the distribution over the
number states P (n) for the oscillator in its steady state, shown
in Fig. 2 for the model described by Eq. (2). It was shown
in Ref. [6] that the resonator Wigner functions indicate that
the crossover is from a fixed-point state in phase space to a
limit-cycle state. These steady states correspond classically to
a static state, where the amplitude is zero, and a state with
well-defined amplitude undergoing harmonic oscillations,
respectively. Upon increasing the coupling strength further, it
is possible to drive the resonator through a series of first-order

FIG. 2. (Color online) A density plot showing the state of the
resonator in the SSET-resonator system as a function of the coupling
strength, λ, between the resonator and the SSET island. Shown is
the occupation probability of resonator number states P (n) with
additional lines showing the expectation 〈n〉 (solid) and the most
probable number state nmp (dashed). The system parameters are
� = Vds/eRJ , with RJ = h/e2, EJ = eVds/16, and γext = 0.0005�.

crossovers. These dynamical crossovers are associated with
changes between limit cycles of different amplitudes. The
first-order crossovers are also illustrated in Fig. 2, where
the most-probable resonator state nmp is plotted. This allows
identification of the midpoints of the crossovers, where nmp

shows sharp jumps.

B. Quantum trajectories and the s-ensemble

We now turn to the study of the statistics of quantum-jump
trajectories in the system. A trajectory is a time record of
quantum jumps associated with particular stochastic operators
in the master equation [7,8]. In the SSET-resonator system we
have the choice of counting charges leaving the SSET island
through the right-hand lead or counting quanta entering the
environment of the resonator. The main focus of this paper is
on trajectories of the resonator, but we study briefly charge
trajectories in Sec. V. By considering the projection of the
density matrix ρ(t) on to the subspace where K events have
occurred within the time t , we can define the reduced density
matrix ρ(K)(t) such that the probability to observe K events
in time t is given by Pt (K) = Tr[ρ(K)(t)]. After long times,
Pt (K) takes a large-deviation form [14]:

Pt (K) � e−tϕ(K/t), (5)

where ϕ(K/t) is the large-deviation function which allows a
complete description of the statistics of K at long times. The
s-ensemble [7,8] enters by considering a moment-generating
function associated with counting probabilities

Zt (s) =
∑
K

Pt (K)e−sK � etθ(s), (6)

where the second equality is valid for long times. The large
deviation functions θ (s) and ϕ(k), with k = K/t , are related
by the Legendre transform θ (s) = − mink[ϕ(k) + ks] [14,32].
The s-field is the intensive conjugate field to the time-extensive
number of events K , and the scaled activity k may be used as
an order parameter to distinguish different dynamical phases.
The large deviation functions ϕ(k) and θ (s) [9–11] themselves
take on roles analogous to those of entropy density and free
energy density density in equilibrium statistical mechanics.

The large-deviation function θ (s) will be studied throughout
the rest of this paper as it encodes the full distribution of
trajectories [7,32]. Furthermore, analogous to minus a free
energy in equilibrium statistical mechanics, discontinuities in
the derivatives of θ (s) have been found to correspond to phase
transitions in ensembles of trajectories of the dynamics [7]. The
large-deviation function θ (s) may be found from a generalized
master equation [33], which takes the form of an s-dependent
modification [7] to Eq. (2). First, we introduce an s-biased
density matrix, ρs , defined by

ρs(t) =
∑
K

ρ(K)(t) e−sK . (7)

Then, when studying the trajectories associated with photons
leaving the resonator, θ (s) is the largest eigenvalue of the
generalized master equation

ρ̇s = Ws(ρs) = − i

h̄
[H,ρs] + Lq.p.(ρs) + Losc.

s (ρs), (8)
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where

Losc.
s (ρs) = γext

(
e−saρsa

† − 1
2 {a†a,ρs}

)
. (9)

For s −→ 0, the superoperator Ws collapses to W and,
necessarily, θ (s) −→ 0 as this corresponds to (the usual
trace-preserving) physical dynamics. Away from s = 0, the
dynamics are biased by the s-field toward rare trajectories
with, for s > 0, fewer events K within a time t or, for s < 0,
more events. We will refer to these as, respectively, less active
and more active rare trajectories. While the superoperator Ws

is no longer trace-preserving when s �= 0, the mapping is still
completely positive [34] as it can straightforwardly be shown
to be of Kraus form [35]. For all s, effective steady-state
properties can be determined from the right eigenmatrix
of Ws associated with the largest eigenvalue θ (s). Some
pedagogical examples of the s-ensemble applied to quantum
master equations are discussed in Ref. [7].

III. NUMERICAL RESULTS

The SSET-resonator generalized master equation (8) may
be expressed in matrix form and diagonalized numerically,
provided the basis for the oscillator is truncated. For the
oscillator damping γext/� = 0.0005 studied in this paper, the
Josephson energies will be chosen so that the maximum energy
of the resonator nh̄ω has n � 200 [36,37]. However, since
the charge on the SSET couples to coherences between the
oscillator eigenstates, it is necessary to keep a basis with
off-diagonal density matrix elements for the oscillator. In
practice, for the coupling linear in the oscillator position, it
is possible to truncate the basis such that only eigenstates
which differ in energy by mh̄ω (with m < n) have coherences
preserved. The choice of m may be tested numerically to ensure
that the results are not sensitive to this truncation. For the SSET
island, coherences are generated only between the states |0〉
and |2〉, such that propagation of the SSET density matrix in
time requires inclusion of just five of the nine matrix elements.
Therefore, the exact numerical study of θ (s) requires extraction
of the largest real eigenvalue of an approximately 5 nm × 5 nm
matrix. In the results which follow, we implemented an Arnoldi
iteration scheme [38] to find θ (s) from the generalized master
equation.

A. Resonator dynamics

When the SSET bias point is chosen such that �E < 0,
energy is transferred from the SSET island to the resonator
on average. When increasing the strength of the coupling
between the SSET and the resonator, λ, the resonator is driven
away from its fixed-point state through a continuous crossover
into a limit cycle. Further increases in λ drive the oscillator
through a series of apparently first-order dynamical crossovers
as the resonator demonstrates a series of bistabilities between
different limit cycles, as illustrated in Fig. 2.

By measuring the emission of photons from a stripline
resonator [25–28], it would be possible to infer the state of the
resonator. Due to the linear coupling to the bath, the activity is
proportional to both the energy of the oscillator h̄ωn and the
decay rate γext. The activity may be extracted in the s-ensemble
from the large deviation function θ (s). From Eq. (6), it is clear

in the steady state that the activity k = 〈K〉/t may be found as

k = −1

t

∂

∂s

∑
K

Pt (K)e−sK
∣∣∣
s=0

= −θ ′(0), (10)

where the prime in the last equality denotes differentiation
with respect to s. Higher derivatives of θ (s) correspond to
higher moments of the distribution of photon emissions from
the resonator.

In contrast to studies of full counting statistics [39,40]
which focus on the s = 0 physical dynamics (see also
Ref. [41]), we will study the dynamical phases as a function
of the counting field s. In this way, the dynamical behavior
at s = 0 as, for example, a function of λ may be understood
through its proximity to the phase boundaries in the λ − s

plane. We will first explore the full dynamical phase diagram
for the case of a resonator coupled to an SSET where the
quasiparticle decay rate is matched to the oscillator frequency,
ω = �, and the SSET level separation �E is negative, such
that there is, on average, transfer of energy from the SSET
island to the resonator.

For ensembles of trajectories with s �= 0, we will use the
activity at nonzero s, found from k(s) = −θ ′(s) by extending
(10) to nonzero s, as the order parameter to distinguish
dynamical phases. In Fig. 3, k(s) is used to construct the λ − s

phase diagram, shown for SSET parameters [18] �E/eVds =
−0.1 and EJ /eVds = 1/16. Figure 3 demonstrates how the
signatures of dynamical phase transitions in the s = 0 physical
dynamics shown in Fig. 2 may be related to the full λ − s

phase diagram. While at s = 0 we see smooth crossovers in
the dynamical behavior, for ensembles biased toward rare
trajectories the crossovers become sharp. The less active
trajectories for s < 0 show a series of first-order dynamical
transitions where the activity shows distinct jumps at singular
points in the λ − s plane. For s > 0, the more active trajectories
undergo a single phase transition provided that s > sc, where
sc > 0 is the s-coordinate of a critical point at which the right-
most transition line terminates when λ � 0.02. We illustrate
the connection between the dynamical phase diagram and
the s = 0 trajectories by plotting examples of trajectories at
different λ in Fig. 3. These were found by sampling the full
distribution of counting events in the nonequilibrium steady
state. In particular, we note the development of fluctuations in
the activity on a wide range of time scales close to the critical
point near λ = 0.02.

The similarity of the dynamical phase diagram in Fig. 3
to that derived for the micromaser (Fig. 1 in [8]) further
demonstrates the parallels between the SSET-resonator system
and the micromaser noted in Ref. [6]. However, the SSET-
resonator system allows a broader range of dynamical behavior
which can be found by varying its large number of tunable
parameters. In particular, we can vary the strength of coherent
oscillations in the SSET by altering the Josephson energy EJ ,
and study the corresponding dynamical states of the resonator.

In Fig. 4 phase diagrams equivalent to Fig. 3 are shown
for Josephson energies both increased and decreased by a
factor of two. For the case of the smaller Josephson energy
EJ /eVds = 1/32, the s = 0 dynamics appears uninteresting.
As λ is increased from zero, the activity shows a weaker
version of the continuous crossover seen for smaller λ in
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λ = 0.056

(e)

λ = 0.041

(f)

t

λ = 0.020

(g)

FIG. 3. (Color online) (a) A plot of the activity k as a function of
coupling strength λ and counting field s for system parameters as in
Fig. 2, where EJ /eVds = 1/16. With increasing λ, the less active rare
trajectories show a continuous transition boundary terminating in a
critical point close to s = 0 while the more active dynamics exhibit a
series of first-order transitions which become diffuse as s is increased
to zero. Cuts through the plot show the activity as a function of λ

for (b) s = −0.1, (c) s = 0, and (d) s = 0.1. Samples of the s = 0
quantum-jump trajectories for quanta leaving the resonator are shown
for couplings (e) λ = 0.056, (f) λ = 0.041, and (g) λ = 0.020, where
the system is close to the critical point shown in (a).

Fig. 3(a), but none of the first-order crossovers. However, the
other dynamical phases which occur when the resonator is
oscillating in a limit cycle may still be seen when biasing the
system toward more active rare trajectories. We can interpret
these findings from the s-ensemble for the physical dynamics
as follows: While on average the smaller Josephson energy
restricts the ability of the SSET to populate the oscillator with
a large number of quanta, on rare occasions the resonator will
be excited to one of the limit cycle states where it will release
photons into its environment more often. So when biasing the
ensemble of trajectories increasingly toward those with higher
activity, first-order phase boundaries are crossed, and we may
infer that the typical state of the resonator for this biased
ensemble must be higher in energy than for the s = 0 case of
the same λ. We note that the biased ensembles of trajectories,
where s �= 0, can be inferred from accurate measurements of
the distribution of trajectories at s = 0: With a knowledge of
the large-deviation function ϕ in (5), θ (s) can be derived by
Legendre transform, with k(s) then found by differentiation.

FIG. 4. (Color online) Plots of the activity k as a function of
coupling strength λ and counting field s for system parameters in
Fig. 3 but with (a) EJ /eVds = 1/32 and (b) EJ /eVds = 1/8 for fixed
� = eVds/h.

In this indirect way, the full phase diagram could in principle
be generated from measurements of the physical system. We
are therefore able to give a thermodynamic interpretation
of the distribution of trajectories, which gives insights into
the underlying internal dynamics. However, since the biased
ensembles may be generated from a knowledge of the full
distribution of trajectories at s = 0, the fluctuations at s = 0
must reflect the structure of the phase diagram found when
favoring rare trajectories.

We now study the case where EJ is increased from the
micromaser-like regime illustrated in Fig. 3. We show that this
introduces new features in the dynamical phase diagram even
at s = 0. For the Josephson energy EJ /eVds = 1/8 shown in
Fig. 4, the dynamical transitions remain sharp close to s = 0.
This is in contrast to Fig. 3 where the transition line where
s < 0 gradually becomes diffuse as it approaches s = 0. In
Fig. 4, there is also a new crossover in dynamical behavior
for s > 0 at coupling strengths larger than for the initial
continuous transition. The first-order transition line which
approaches from s < 0 extends to s = 0 but becomes diffuse
for positive values of s. These interesting new features go
beyond what can be seen in the micromaser [8], and their origin
will be explained using a mean-field treatment in Sec. IV. In
general, we observe that the sharpness of the transitions near
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s = 0 increases with the Josephson energy. Correspondingly,
the number of quanta in the resonator state increases, such
that these increases in EJ take the system closer to the
thermodynamic limit for dynamical phase transitions.

IV. MEAN-FIELD APPROACH

In this section we will first present an overview of mean-
field results [5,30], as applied to the SSET-resonator system
with the Lindblad baths used in this paper. These results
provide a mean-field theory for the resonator amplitude at s =
0 in terms of an effective damping, nonlinear in the resonator
amplitude, arising from coupling to the SSET. From this we
will develop an effective stochastic Liouvillian superoperator
for the resonator, from which the behavior at s �= 0 will be
derived. We will then relate these mean-field solutions to the
exact results found from numerical diagonalization of the full
generalized master equation (8) and explore the origin of the
dynamical phase boundaries in terms of multistabilities in the
resonator.

A. Mean-field dynamics at s = 0

At s = 0, the dynamical instabilities of the SSET-resonator
system may be understood from a mean-field description of
the dynamics. We follow the approach developed in Ref. [30].
Although the form of the bath for the resonator we use differs
from that in Ref. [30], the final mean-field descriptions are the
same.

We define the occupation probabilities of the SSET states
|0〉, |1〉, and |2〉, respectively, by p00, p11, and p22 and the
off-diagonal element of the SSET density matrix describing
coherences between states |0〉 and |2〉 by p02. The mean-field
equations of motion for the SSET are given by

〈ṗ11〉 = �(〈p22〉 − 〈p11〉), (11)

〈ṗ22〉 = −�〈p22〉 + iEJ

2h̄
(〈p02〉 − 〈p20〉), (12)

〈ṗ02〉 = iEJ

2h̄
(2〈p22〉 + 〈p11〉 − 1) − �

2
〈p02〉

+ i

h̄
[�E + 2xsC(〈a〉 + 〈a†〉)]〈p02〉, (13)

with the mean-field resonator dynamics described by

〈ȧ〉=−iω〈a〉 − ixsC(〈p11〉+2〈p22〉) − γext

2
〈a〉, (14)

〈ȧ†〉 = iω〈a†〉+ixsC(〈p11〉 + 2〈p22〉) − γext

2
〈a†〉. (15)

The occupation of the SSET state |0〉 is determined by the other
two SSET states since 〈p00〉 + 〈p11〉 + 〈p22〉 = 1. We have
replaced correlators 〈p02 a(†)〉 with 〈p02〉〈a(†)〉 in (13). This
approximation does not fully capture the quantum dynamics,
but comparisons with numerics [30] show that it provides a
reasonably accurate picture of the average dynamics of the
system, including the limit-cycle states of the resonator.

Because the SSET-resonator coupling is weak, we expect
the resonator to undergo harmonic oscillations at its fundamen-
tal frequency ω with an amplitude A which changes on time
scales much larger than ω−1. We will denote the position about
which the resonator oscillates (often described as its average
or fixed-point position) by xfp, which itself is a function of the

SSET parameters and the coupling strength. We will solve for
the SSET dynamics assuming such harmonic oscillations of
arbitrary amplitude in the resonator and then use these results
to find the stable nonequilibrium steady states of the resonator.
We therefore proceed to solve for the SSET dynamics by
choosing the following ansatz for the resonator state:

〈a〉 =
√

mω

2h̄
(xfp + Aeωt ),

(16)

〈a†〉 =
√

mω

2h̄
(xfp + Ae−ωt ).

Because EJ /h̄� � 1, we may also consider that the occupa-
tion probabilities 〈p11〉 and 〈p22〉 will remain much less than
unity [30] and can be neglected in (13). When using the ansatz
(16), Eq. (13) becomes

〈ṗ02〉 =
{
i

[
�E

h̄
+ 2mω2xs

h̄
(xfp + A cos φ)

]
− �

2

}
〈p02〉

− iEJ

2h̄
, (17)

which can be solved in closed form for a given resonator
amplitude A. We absorb the A dependence of 〈p02〉 in a
time-dependent phase shift α(t) = (2mωAxs/h̄) sin ωt and
then find the Fourier series such that 〈p02〉 = eiα(t) ∑

n eiωnt p̃n
02

[5]. We find Fourier coefficients p̃n
02 = ψnJn(−z), where Jn(z)

are Bessel functions of the first kind, and the parameters ψn

are given by

ψn = −iEJ /h̄

2[iωn − i(�E/h̄ + 2mω2xsxfp/h̄ − �/2)]
. (18)

We now turn back to the resonator dynamics. With our
ansatz (16), we use Eqs. (14) and (15) to find an equation
of motion for the resonator amplitude A. Since the amplitude
changes on time scales much longer than ω−1, we average A

over a time period 2π/ω to find

˙̄A = −γext

2
Ā − ωxs

1

2π

∫ 2π/ω

0
dt(〈p11〉 + 2〈p22〉) sin ωt,

(19)

where the bar on the amplitude signifies that the relation only
holds on time scales long compared with ω−1. The second
term on the right-hand side may be considered an effective,
amplitude-dependent damping term γSSET(A)A, but it should
be noted that when �E < 0, γSSET is actually negative as the
SSET pumps the resonator. Using Fourier series of the form
〈p11〉 = ∑

n eiωntpn
11 and 〈p22〉 = ∑

n eiωntpn
22 we find that

γSSET(A)A = − iωxs

2

[(
p1

11 − p−1
11

) + 2
(
p1

22 − p−1
22

)]
. (20)

This may be found using the Fourier transforms of Eqs. (11)
and (12) and Eq. (17). Ultimately we find

γSSETA = −ωxsEJ

h̄
Im

{[
2

� + iω
+ �

(� + iω)2

]
β

}
, (21)

where

β = 1

2i

∑
m

[ψ−mJm+1(z) − (ψ−m)∗Jm−1(z)]Jm(z). (22)
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This complicated form of β arises from the need to switch
between the phase-shifted Fourier series for 〈p02〉 and the
Fourier series without phase shifts. The s = 0 steady states are
found as solutions where ˙̄A = 0.

As well as finding the steady-state amplitudes of the
resonator, we may also find xfp. While the effective damping
is derived from the lowest frequency oscillating terms in the
Fourier series for the charge dynamics, the fixed-point position
may be found in terms of the zero-frequency terms. Using
again the Fourier series for Eqs. (11) and (12) and Eq. (17),
we find

xfp = −xs

(
p0

11 + 2p0
22

) = − 3E2
J xs

2� �E2 + 3E2
J + �2

. (23)

In order to find mean-field solutions when s �= 0, we would
need to repeat this analysis with s introduced from the start.
However, since the full s-dependent master equation (2) is not
trace preserving for general s, the method above is not easy to
extend to nonzero s. Instead we proceed via a different route:
We construct an effective master equation for the system with
a simpler structure. This new master equation is chosen to give
the mean-field results at s = 0 found from the solution above
and allows solutions with s �= 0 to be found using a variational
method.

B. Effective stochastic master equation

Using the above result for the effective (negative) damping
term for the resonator, arising from the weak coupling to the
SSET island, we now construct an effective master equation
for the resonator. By construction, this master equation will
correctly describe the average s = 0 dynamics to within the
mean-field approximations above. However, noise arising from
the stochastic quasiparticle decay process cannot be captured.
The structure of the master equation is simpler as it just
involves two Lindblad operators; one is associated with the
environment of the resonator and the other describes the
driving due to the SSET. The complexity of the mean field
solution will be contained in these driving terms, which must
be amplitude dependent. By applying the counting field s to
the trajectories defined by the time record of quanta entering
the environment from the oscillator, this generalized master
equation is

ρ̇s = W̃s(ρs) = LρsL
† − 1

2 {L†L,ρs}
+ γext

(
e−saρsa

† − 1
2 {a†a,ρs}

)
, (24)

where the new Lindblad operator is defined by

L =
√

g(n) a†, (25)

where n = a†a and

g(n) = −γSSET(n). (26)

The amplitude-dependent negative damping allows construc-
tion of an n-dependent driving term, where n is the number of
quanta in the oscillator state, which is related to its amplitude
via n = A2(mω/2h̄). In addition to its dependence on n, g(n)
depends implicitly on the SSET parameters and the coupling
strength λ. Because this stochastic description only couples
diagonal elements of ρs to other diagonal elements in the basis

FIG. 5. (Color online) Mean field: A plot of the activity k

as a function of coupling strength λ and counting field s for
system parameters γext/� = 0.0005, ω/� = 1, �E/eVds = −0.1,
EJ /eVds = 1/16 for fixed � = eVds/h.

of number states for the harmonic oscillator, we may construct
from (24) a normal operator Ws . This operator acts on diagonal
density matrices in the number basis, which we may represent
as vectors whose time evolution follows:

ρ̇s = Wsρs = {e−sγext

√
a†a + 1 a − γexta

†a

+ g(n)
√

a†a + 1 a† − g(n)(a†a + 1)}ρs. (27)

Using a variational ansatz of coherent states as in Ref. [8], we
set a = eiδ

√
n and a† = e−iδ

√
n. We can then find a mean-field

estimate of the largest eigenvalue, θ (s), by maximizing Ws

with respect to δ and n. This is done by finding the values of
δ and n which satisfy ∂Ws/∂δ = 0 and ∂Ws/∂n = 0. The first
equation allows δ to be eliminated so that

a = e−s/2

√
n g(n)

γext
(28)

and a† = n/a. Inserting these into Ws yields

Ws = 2e−s/2
√

n(n + 1)γextg(n) − γextn − g(n)(n + 1),

(29)

which may be maximized with respect to n numerically.
For the SSET parameters which show the micromaser-like

behavior demonstrated in Fig. 3, the mean-field solution found
from Eq. (29) is shown in Fig. 5. The case of larger EJ /eVds =
1/8 shown in Fig. 4 may be compared with the mean-field
results in Fig. 6.

For larger EJ there is excellent agreement, but for lower
EJ values the phase diagrams, though qualitatively similar,
differ quite noticeably in the exact locations of transitions.
(Accordingly, the mean-field result captures the dynamical
phase diagram less accurately when EJ /eVds = 1/32.) We
suggest that this is most likely due to the SSET charge
fluctuations which are neglected in Eq. (24). In the parameter
regime studied here, these fluctuations are more significant
when EJ is smaller. Support for this view comes from
the numerical result for the full distribution P (n) for the
occupation of the resonator number states for EJ /eVds = 1/8
shown in Fig. 7(b). This should be contrasted with the P (n)
distribution in Fig. 2 for EJ /eVds = 1/16, which shows
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FIG. 6. (Color online) Mean field: A plot of the activity k

as a function of coupling strength λ and counting field s for
system parameters γext/� = 0.0005, ω/� = 1, �E/eVds = −0.1,
EJ /eVds = 1/8 for fixed � = eVds/h.

significant blurring between the peaks in n corresponding
to different limit cycles, when compared to Fig. 7(b). These
effects will not be captured by the mean-field solution as it
neglects these fluctuations.

Another observation we make is that the mean-field phase
diagrams show an extra phase boundary when s > 0 for
EJ /eVds = 1/8, which is also present in the numerical result
in Fig. 4. We will show that the appearance of this new
phase boundary may be understood in terms of the mean-field
equations involving the nonlinear driving term due to the
SSET.

C. Phase transitions at s = 0

At s = 0, the dynamical states of the resonator are a set
of limit cycles whose amplitudes are determined by balancing
the effects of the dissipation due to the environment, which
is linear in the resonator amplitude, and the nonlinear driving
due to the SSET. This is clear from Eq. (29) when written in
the form

Ws = −[
√

γextn −
√

g(n)(n + 1)]2

+ 2(e−s/2 − 1)
√

n(n + 1)γextg(n). (30)

At s = 0 we require θ (0) = 0. This occurs when Eq. (30) is
maximized since, for s = 0, Ws � 0. Multistabilities for the
resonator state occur when there is more than one value of n

which satisfies Ws = 0. From Eq. (30), we can also see that
these multistabilities are associated with phase boundaries at
s = 0. To see this, consider the case where many values ni ,
with ni+1 > ni , satisfy Ws = 0 with s = 0. Now, noting that
g(n) is a smooth function of n, if we perturb s from zero by a
small amount δs, changes in the positions of maxima ni will
be of order δs and, therefore, much smaller than ni+1 − ni .
Now if we consider the values of Ws when introducing small
shifts δs at the maxima ni , we see that

Wδs = −δs
√

γextg(ni)ni(ni + 1) = δs γext ni (31)

to first order in δs. From Eq. (31) we can see that if δs > 0,
maximization of Ws is found by selecting the smallest ni .
Conversely, for δs < 0, Ws is maximized by picking the

FIG. 7. (Color online) The state of the resonator close to s =
0. Full distributions of P (n) are plotted as a function of λ for the
parameters in Fig. 4 with EJ /Vds = 1/8. Shown are three s values:
(a) s = −0.005, (b) s = 0, and (c) s = 0.005. Shown with solid lines
are the expectation values 〈n〉.

largest ni . Therefore we understand multistabilities, where
there are two or more solutions to the s = 0 mean-field
equations, are associated with s = 0 mean-field dynamical
phase boundaries. Upon changing λ, phase boundaries extend
into the s > 0 or s < 0 half-planes when, respectively, the
smallest ni solution or the largest ni solution changes. With
this insight, we now turn to the question of why increasing EJ

introduces a new phase boundary on the less active side of the
phase diagram.

For EJ /eVds = 1/16, as shown in Fig. 2, the onset of
bistability occurs at λ � 0.012 and the resonator remains
multistable as λ is increased further. In contrast, when
EJ /eVds = 1/8, there exists a second region of monostablilty
as λ is increased beyond the bistable region. In Fig. 7 we show
the full P (n) distribution for the occupation of the oscillator
number states when EJ /eVds = 1/8, obtained from exact
diagonalization of the generalized master operator. The initial
onset of bistability occurs at λ � 0.06 with monostability again
beyond λ � 0.077. This is consistent with the phase boundary
shown at s = 0 between these values of λ in both the exact
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FIG. 8. (Color online) Plots of the effective negative damping
on the resonator due to the charge on the SSET island. Plotted are
the damping curves corresponding to Josephson energies EJ /eVds =
1/16 (solid) and EJ /eVds = 1/8 (dashed), with a magnified plot of
the area of interest shown inset. All other parameters are as in Figs.
5 and 6. The dotted line of gradient γext/E

2
J λ2 = 1.8 illustrates the

origin of the second region of monostability when EJ /eVds = 1/8
since this line has just one intersection with the dashed curve.

phase diagram in Fig. 4 and the mean-field phase diagram in
Fig. 6. In Fig. 7 we also show that for s perturbed slightly
from the zero, the bistability disappears from the full P (n)
distribution as one of the two possible limit cycles is selected,
consistent with Eq. (30).

We now turn specifically to the origin of the second
monostability present for EJ /eVds = 1/8. We may understand
this with reference to the effective negative damping γSSET

on the oscillator provided by the SSET. If we neglect the
effects of the SSET on the fixed-point displacement of the
resonator, xfp, from Eqs. (18), (21), and (22), we note that
γSSETA/xs scales with E2

J so that γSSETA/E2
J xs is a function of

λA/xs . Therefore, where xfp may be neglected, we expect the
same structure of limit cycles and multistabilities at different
EJ from the mean-field theory. However, if we include the
effects of the modified fixed point using Eq. (23), we find that
the effective damping is modified by a small but significant
amount. In Fig. 8 we show how xfp perturbs the form of
γSSET upon increasing EJ . By plotting −γSSETA/E2

J xs against
λA/xs , we show disappearance of bistability when increasing
EJ /eVds from 1/16 to 1/8. Limit cycle solutions occur where
−γSSET = γext. These solutions are illustrated on Fig. 8 by the
intersection of −γSSETA/E2

J xs with lines of constant gradient
γext/E

2
J λ2. To understand the existence of new limit cycles

upon increasing λ, it should be noted that these occur when λ

is large enough that such lines have shallow enough slope to
intersect peaks in the effective damping at larger λ2A/xs . The
case where γext/E

2
J λ2 = 1.8 is plotted to illustrate that while

monostability exists beyond the first region of bistability when
EJ /eVds = 1/8, for EJ /eVds = 1/16 these solutions are not
possible due to the smaller ratio xfp/xs .

V. QUASIPARTICLE TRAJECTORIES

We now turn to the trajectories of quasiparticles decaying
into the right-hand lead of the SSET. For oscillators with
ω/� � 1, there are no features in the current corresponding
to changes in the dynamical state of the resonator. So far we
have considered the case of a resonator with relative frequency
ω/� = 1. In this regime, we are not able to resolve individual

FIG. 9. (Color online) A plot of the �E − s phase diagram
showing the activity for quantum jumps associated with the environ-
ment of the resonator. The vertical axis shows �E/h̄ω. The system
parameters are ω/� = 3.5, γext/� = 0.002, λ = 0.2 with Josephson
energy EJ /Vds = 1/16.

features in the resonator energy as a function of �E, which
arise from inelastic absorption of energy quanta from the
SSET when �E = −jh̄ω, for integral j > 0. However, if we
consider a fast oscillator where ω/� � 1, the time scales for
the SSET and resonator dynamics become separated, and the
oscillator does show distinct peaks in energy when �E =
−jh̄ω [6]. Between these peaks, the SSET has little influence
on the resonator dynamics. In Fig. 9 we plot numerical results
for the �E − s phase diagram in this regime. The resonator
absorption peaks separated by h̄ω correspond to strong features
in the phase diagram. We have also applied the mean field
theory developed in Sec. IV to this parameter regime. This
method also exhibits features separated by h̄ω but shows only
qualitative agreement with Fig. 9, a result which we attribute to
the small resonator energy across much of the �E − s phase
diagram in this case.

The quasiparticle current in the resolved side-band limit, oc-
curring when ω/� � 1, does exhibit maxima which coincide
with peaks in the energy of the resonator as a function of �E

[36]. We understand the emergence of these peaks as follows:
when ω/� � 1, the separation of time scales of resonator
and SSET means that for most bias points, the quasiparticle
current is low and not strongly influenced by the presence of
the resonator. However, at the particular values �E = −jh̄ω,
absorption of energy by the resonator from the charges occurs
allowing a greatly enhanced charge flow through the SSET
island (analogous to an inelastic tunneling current). This
correlation between resonator energy and charge dynamics
motivates our study of the trajectories of SSET quasiparticles.

We now apply the s-ensemble to charges leaving the SSET
island. We wish to explore the extent to which the trajectories
of the SSET quasiparticles mirror the trajectories of the
photons entering the environment of the resonator. To do this,
we apply the s-ensemble to the counting of charges leaving
the SSET island by diagonalizing the superoperator Wq.p.

s (ρ)
defined by

Wq.p.
s (ρ) = − i

h̄
[H,ρ] + Lq.p.

s (ρ) + Losc.(ρ), (32)
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FIG. 10. (Color online) A plot of the �E − s phase diagram using
the quasiparticle activity, found from the generalized master equation
(32). The vertical axis shows �E/h̄ω. The system parameters are
identical to those in Fig. 9.

where

Lq.p.
s (ρ) = �e−s(|1〉〈2|ρ|2〉〈1| + |0〉〈1|ρ|1〉〈0|)

− �

2
({|2〉〈2|,ρ} + {|1〉〈1|,ρ}). (33)

The large-deviation function for quasiparticle trajectories,
θq.p.(s), is given by the largest real eigenvalue of Wq.p.

s (ρ).
We will study the dynamics of SSET charges using the
quasiparticle activity −∂θq.p.(s)/∂s.

For a resonator where ω/� � 1, we see no transitions
in the dynamical behavior of the SSET charges, consistent
with the known s = 0 behavior [36]. However, for the system
parameters in Fig. 9 corresponding to a fast oscillator, we
find that the �E − s phase diagram, shown in Fig. 10, shows
similar structure to the dynamical phase diagram for the
trajectories of quanta leaving the resonator in Fig. 9. In the
resolved side bands, where multiples of the oscillator level
spacing closely match the level spacing of the SSET charge
states, the inelastic interaction between SSET and resonator
enhances the rate at which quasiparticles decay. Therefore the
trajectories of both resonator photons and charge quasiparticles
allow inference of the resonator state in this regime. However,
the peaks in the respective activities in Figs. 9 and 10 at
�E = 0 show a marked difference. When �E = 0, there
is no significant driving of the resonator by the SSET, and
so the number of quanta leaving the resonator is small. In
contrast, the decay of quasiparticles into the right-hand lead is
large, such that the activity when counting charge quanta is
large at �E = 0. Finally, we mention another interesting
feature of Fig. 9. When biasing toward more-active trajectories,
we find that the activity associated with counting quanta
from the resonator is bigger when �E = −2h̄ω than when
�E = −h̄ω. This effect is seen only for biased ensembles
with s < 0.

VI. CONCLUSIONS

In this paper we have used the s-ensemble approach to study
the dynamics of a complex system with two components, each
of which has nontrivial dynamics. The coupling of an SSET

and a resonator has been studied using mean-field techniques
previously [30]. We devised a method to extend a standard
mean-field theory for the coupled system to enable us to
study ensembles of trajectories with nonzero s. Comparing the
results of our mean-field theory to those employing essentially
exact numerical diagonalization of the generalized master
equation, we found good agreement for system parameters
where the resonator is driven into high-energy states of
self-sustaining oscillation.

We find the accuracy of mean-field results improves
for large Josephson energy, where the resonator energy is
large. We were able to use our method to understand the
correspondence between multistabilities in the state of the
resonator and boundaries in the dynamical phase diagram at
s = 0. This demonstrates how the dynamical phase diagram
for trajectories can be used to infer properties of the internal
dynamics of the system. However, even when there are no
phase boundaries near s = 0, as we showed to be the case for
small Josephson energy, signatures of the underlying complex
internal dynamics are encoded in rare trajectories, which in the
s-ensemble correspond to dynamical phases away from s = 0.
Thus we demonstrated how the s-ensemble provides a method
for interpretation of accurate measurements of the distribution
of trajectories.

Exploring the SSET-resonator system also allowed us to
examine trajectories in the s-ensemble created from different
operators. As each of the coupled components is itself an open
system, we were able to study both trajectories formed by
measuring charges in the right-hand SSET lead and photons
emitted by the resonator. Previous studies have shown that fast
oscillators imprint a signature of their energy absorption from
the SSET on the SSET charge statistics [36]. We demonstrated
that, in this regime, the phase structure of trajectories of
decaying quasiparticles mirrors that found by measuring
photons emitted by the resonator.

Finally, we emphasize the potential significance of this
work with regard to future experiments. SSET-resonator
systems have been constructed with a stripline resonator
[24]. Impressive progress toward measuring single microwave
photons [25–28] makes measuring the trajectories studied in
this work an exciting possibility.
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APPENDIX: PRACTICAL REQUIREMENTS

In this Appendix we give a brief overview of the practical
requirements for reaching a regime where the dynamics of a
SSET-resonator system is described by Eqs. (1) to (4). Fuller
accounts are available in works which focus on the theory
of SSETs [19,22] or SSET-resonator systems [18,20,30,42]
and in experimental studies of SSETs coupled to either a
mechanical [23] or electrical resonator [24].

We start by considering the conditions that must be
fulfilled for the current through the SSET to be dominated
by JQP processes, which are composed of cycles involving a
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combination of coherent Cooper-pair tunneling and quasipar-
ticle decay. The JQP resonances occur in the low-temperature
regime where the electrostatic charging energy of the SSET
island, Ec = e2/2C� , with C� the total capacitance of the
island, is much larger than kBT . Within this regime, the
number of different charge states accessible to the SSET island
becomes severely limited, and we can treat it as a few-level
system. The other two important energy scales for the SSET
are the superconducting gap, �, and the Josephson energy
associated with the junctions EJ = h�/(8e2RJ ), where RJ is
the resistance of the Josephson junctions.

A JQP resonance occurs when the gate and bias voltages,
Vg and Vds, respectively, are chosen so that the electrostatic
energy difference between states on the island differing by
one Cooper pair, �E, is zero and the drain-source voltage
is large enough so that both of the quasiparticle tunneling
processes associated with the cycle are allowed. The gate
voltage induces a polarization charge ng = (CgVg + CJ Vds)/e
on the island [18], where Cg and CJ are the capacitances of the
gate and the Josephson junctions, respectively. This then leads
to an electrostatic energy difference �E = −4Ec(ng − n − 1)
where n is an integer, corresponding to the number of Cooper
pairs on the island, (we take n = 0 for simplicity in the main
text) and hence resonance occurs along lines in the Vg − Vds

plane given by ng = n + 1 [18]. Both of the quasiparticle
processes involved in the JQP cycle are allowed for eVds >

2� + Ec; provided the charging energy is large enough

compared to the gap, Ec > 2�/3, the JQP cycle dominates
the current up to eVds = 4�, at which point current can
flow through the motion of quasiparticles alone. The master
equation description of the quasiparticle tunneling processes
is derived assuming high resistances for the junctions [18–20],
RJ � h/e2.

The coupling of a nanomechanical resonator to a SSET
is discussed in detail in Refs. [18,20], while the case of
coupling to a superconducting stripline resonator is discussed
in Ref. [24], though from a theoretical point of view the
form of the coupling is essentially the same in both cases.
In the case of a mechanical resonator, a metal layer is added
to a nanomechanical beam fabricated from a semiconductor
which is adjacent to the SSET island. The beam acts as
an additional voltage gate and the length scale, xs , which
describes the coupling between the island and the resonator
[see Eq. (1)] is given by xs = 2EcCmVm/(emω2d), where Cm

is the beam-island capacitance, Vm is the voltage applied to the
beam, d is the distance between the beam and the island, and m

the effective mass of the resonator. Temperatures ∼30 mK [23]
are routinely used in experiments with SSETs. We note that
experiments using a superconducting stripline resonator have
the advantage that the relevant mode frequency of the stripline,
ω are large enough so that h̄ω � kBT under typical conditions.
For example, in the experiment using a stripline resonator
reported in Ref. [24] the mode frequency was ω/2π =
9.9 GHz.
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