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Behavior of a single element in a finite stochastic array
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We describe statistical properties of a single element in a nonlinear stochastic array with a finite number of
elements with mean-field-like (global) coupling. Desai and Zwanzig [J. Stat. Phys. 19, 1 (1978)] made use of a
self-consistent dynamic mean-field ansatz to derive, in the infinite-size limit, a nonlinear Fokker-Planck equation
(NLFPE) for the single-particle distribution function. In this work we explore the reliability of this approximation
to describe a finite system with a small number of elements. We carry out a numerical analysis of the NLFPE
as well as numerical simulations of the full set of Langevin equations governing the dynamics of the coupled
elements. We find that for parameter values such that the NLFPE has a single stationary solution, it provides
a reliable asymptotic approximation to the time evolution and stationary properties of a finite system of even
modest size. In contrast, for parameter values such that the NLFPE has two stable stationary coexisting solutions,
the NLFPE leads to results that are greatly at variance with those obtained from the numerical simulations of the
Langevin equations for small systems.
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I. INTRODUCTION

This work deals with the statistical mechanical description
of the behavior of a single element of a stochastic array
with N -coupled identical elements. We will use a model
that was introduced by Kometani and Shimizu [1] as a
model for muscle contractions and, in its infinite-size limit,
was extensively studied several years ago in a pioneering
paper by Desai and Zwanzig [2]. The model describes N

degrees of freedom globally coupled to each other via a
mean-field-like interaction term. Each degree of freedom has
an intrinsic nonlinear dynamics. The nonlinearity and the
action of noise terms render the behavior of the system far
from trivial. When the parameter characterizing the mean-field
interaction is positive, Desai and Zwanzig were able to derive
in the limit N → ∞ a nonlinear Fokker-Planck equation
(NLFPE) for the single-particle reduced distribution function.
Their analysis of the stationary distribution showed that in
the asymptotic limit, the model possesses a phase transition
with a bifurcation of the probability distribution containing
non-Gaussian characteristics. Later on, the critical dynamics
and the fluctuations at the critical point of the model were
studied also in the infinite-size limit by Dawson [3]. Shiino [4]
proved an extension to the NLFPE of the usual H theorem for
linear Fokker-Planck equations.

Similar models with globally coupled elements have been
used to study diverse problems in diverse areas. The coop-
erativity of the model arising from the coupling between the
individual elements and the nonlinearity and stochasticity of
the dynamics give rise to an ample variety of behaviors. It
is not surprising that the model itself (or similar ones) has
been used to investigate the formation of public opinion [5],
stochastic resonance effects in a single element [6] or in
collective variables [7], noise-induced synchronization in a
collective variable [8], etc. When considering systems driven
by an external time periodic force, the term system-size
stochastic resonance in models of coupled elements [9,10] has
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been used to analyze nonmonotonic behaviors of the system
response with a finite number of elements in the system.
Finite-size effects have also been studied recently in models
of opinion formation [11], where the fact that apparent phase
transitions in finite models of social behavior disappear in the
thermodynamic limit has been analyzed.

In a previous work [12] we considered the statistical
mechanical description of a collective variable characterizing
a finite system. In the present work we focus our interest on
the description of an individual degree of freedom. In Ref. [2]
Desai and Zwanzig introduced an ansatz to generate what
they called the self-consistent dynamics mean-field (SCDMF)
approximation to describe the single-particle distribution
function. This assumption leads, in the limit of an infinite
system, to a NLFPE. In this work we test the reliability of this
asymptotic NLFPE to describe the behavior of a single particle
in an array with a finite number of elements. We proceed by
numerically solving the NLFPE using the procedure described
in Ref. [13]. The results obtained are compared with those
provided by the numerical simulations of the whole set of
Langevin equations describing the dynamics of the finite
system for several values of the system size.

The structure of this paper is as follows. In Sec. II we
present the Langevin and Fokker-Planck description of the
N -particle model. The SCDMF approximation leading to the
NLFPE proposed by Desai and Zwanzig in Ref. [2] is also
briefly discussed. In Sec. III we analyze the behavior of
the first two cumulant moments using numerical simulations
of the full set of Langevin equations and the numerical solution
of the NLFPE. The stationary single-particle distributions
estimated from the simulation results are also compared with
those obtained from the NLFPE. Finally, in Sec. IV we present
a summary.

II. MODEL

The model can be viewed as a set of nonlinear oscillators.
Each oscillator is described by a coordinate xi so that the
dynamics of the system is given by the set of coupled Langevin
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equations (in dimensionless form)

ẋi = xi − x3
i + θ

N

N∑
j=1

(xj − xi) + ξi(t), (1)

where θ is the strength of the mean-field coupling term.
This parameter will be taken to be either positive or nega-
tive. The set ξi(t), i = 1,2, . . . ,N , represents N uncorrelated
Gaussian white noises with zero averages and 〈ξi(t1)ξj (t2)〉 =
2Dδij δ(t1 − t2).

An alternative formulation of the dynamics is in terms of the
linear Fokker-Planck equation for the joint probability density
fN (x1,x2, . . . ,xN ,t),

∂fN

∂t
=

∑
i

∂

∂xi

(
∂U

∂xi

fN

)
+ D

∑
i

∂2fN

∂x2
i

, (2)

where U is the potential energy relief

U =
N∑

i=1

V (xi) + θ

4N

N∑
i=1

N∑
j=1

(xj − xi)
2, (3)

with the single-particle potential

V (xi) = x4
i

4
− x2

i

2
. (4)

The term V (xi) describes a symmetrical potential with two
wells of equal depths separated by a hump at xi = 0. The
interaction part of the full potential modifies it in such a way
that for θ > 1 the two wells blend into a single minimum
at xi = 0. For θ < 1 the two wells exist, but their locations
and the barrier height depend on θ . Note that for θ > 0 the
interaction energy contribution to the full potential favors that
any pair xi and xj should have the same sign (both either
positive or negative), while for θ < 0 the opposite happens
and the interaction tends to favor configurations with positive
and negative values of the variable. In the long-time limit the
linear Fokker-Planck equation has a unique solution given by

f st
N (x1,x2, . . . ,xN ) = 1

Z
exp

(
−U

D

)
, (5)

where Z is a normalization function.
To study the dynamical properties of the system, Desai and

Zwanzig introduced the SCDMF approximation. From Eq. (2)
an infinite hierarchy of equations for the reduced probabilities
fs(x1, . . . ,xs,t) defined as

fs(x1, . . . ,xs,t) =
∫

dxs+1 · · · dxNfN (x1,x2, . . . ,xN ,t) (6)

can be obtained. This hierarchy is analogous to the well known
Bogoliubov-Born-Green-Kirkwood-Yvon hierarchy derived
from the Liouville equation for Hamiltonian systems [14].
For all practical purposes this infinite hierarchy has to be
truncated at some level. In particular, the molecular chaos
approximation leads to a closed equation for the single-particle
distribution function. Along this line of thought, Desai and
Zwanzig proposed the ansatz f2(x1,x2,t) ≈ ρ1(x1,t)ρ1(x2,t)
leading, in the N → ∞ limit, to the nonlinear Fokker-Planck
equation

∂ρ1

∂t
+ ∂

∂x
{[θX(t) − (θ − 1)x − x3]ρ1} = D

∂2ρ1

∂x2
, (7)

where x represents any of the xi variables and X(t) is given by
the self-consistency condition

X(t) =
∫ ∞

−∞
dx xρ1(x,t). (8)

Here X(t) is an intensive quantity playing the role of a
time-dependent order parameter for the model. We have
denoted the single-particle reduced distribution function in the
infinite-size limit by ρ1. Note that the SCDMF approximation
amounts to neglecting the correlation function between any
two pairs of degrees of freedom. Due to the nonlinearity
of Eq. (7), the possibility of coexistence of several stable
single-particle probability distributions cannot be ruled out.
The coexistence of several ρ1 for the same set of parameter
values is a qualitative aspect that is not present in the linear
Fokker-Planck description of the N -particle dynamics.

The NLFPE has a stationary solution given by

ρst = 1

Q
exp

[
− 1

D

(
x4

4
+ (θ − 1)

x2

2
− θX0x

)]
, (9)

where Q is a normalization constant and X0 is given by self-
consistent relation

X0 =
∫ ∞

−∞
dx xρst(x). (10)

Except for the stationary case, no other analytical solutions of
the NLFPE (7) with the condition (8) are known.

Desai and Zwanzig considered the case of θ > 0. Their
analysis of the stationary solution shows that for some regions
of the parameter space, there is just one stable probability
solution of Eqs. (9) and (10) centered around a zero-order
parameter X0 = 0. For other regions, the system shows the
coexistence of two stable probability distributions centered
around nonzero values. In this way, the model within the
SCDMF approximation seems to show a true phase transition
and not merely a change in the shape of the stationary
single distribution function from monomodal to bimodal. In
Ref. [2] the boundary line separating the ordered (nonzero-
order parameter) from the disordered (zero-ordered parameter)
phases is depicted in the model parameter space. In addition,
within the region of coexistence of two stable solutions, the
system will reach one or the other depending upon the initial
condition. In contrast, for θ < 0 and any noise strength, the
only stationary solution of Eqs. (9) and (10) corresponds to
X0 = 0, independently of the initial preparation.

III. NUMERICAL ANALYSIS

Analytical solutions of the multidimensional Fokker-
Planck equation (2) are not known, except in the stationary
long-time limit. The N -particle equilibrium distribution has
a canonical form with the potential as in Eq. (3) and the
noise strength D playing the role of a temperature. No closed
equation for the single-particle distribution f1(x,t) for N finite
exists. Even an explicit form for the stationary distribution
f st

1 (x) cannot be obtained analytically from the N -particle
equilibrium distribution except in the absence of coupling
(θ = 0). Thus, to obtain information about the behavior of a
single element of a finite system we have turned to numerical
simulations of the stochastic equations in Eq. (1). Using the
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numerical procedure detailed in Refs. [15], we have integrated
the Langevin equations for a large number of noise realizations
(typically 5000 realizations). Averaging over them, we have
evaluated the first two cumulant moments of a single variable
given by

M1(t) = 〈x(t)〉 ≈ 1

N

N∑
α=1

x(α)(t) (11)

and

M2(t) = 〈x2(t)〉 − M2
1 (t) ≈ 1

N

N∑
α=1

(x(α))2(t) − M2
1 (t), (12)

where N indicates the total number of trajectories and x(α)(t)
indicates the numerically obtained single-particle trajectory in
the α noise realization. Also binning the results for a single
variable, we have constructed histograms giving estimates of
the stationary solution f st

1 (x).
As noted above, analytical solutions of the NLFPE are not

available except for the stationary case. Several years ago we
developed a numerical scheme to solve the NLFPE (7) with the
consistency condition (8) [13]. Using this numerical scheme,
the single probability distribution ρ1(x,t) is propagated in
time starting from a given initial condition until it reaches
its stationary form ρst given by Eq. (9). Also, using the nu-
merically evaluated ρ1(x,t), the time evolution of the first two
cumulant moments is easily obtained by numerical quadrature
M1(t) = X(t) and M2(t) = ∫

dx x2ρ1(x,t) − X(t)2.

A. The case of θ positive

Let us first consider θ > 0. In this case, Desai and Zwanzig
distinguish four regions of parameter space separated by a
boundary line (see Ref. [2]). For two of those regions, the
NLFPE has more than one stable stationary distribution for a
given set of parameter values, while for the other two regions,
there is just one stable stationary solution, with a monomodal
shape for θ > 1 and bimodal for θ < 1.

In Fig. 1 we depict the results obtained from the long-
time limit of the NLFPEs (9) and (10) for θ = 2 and D =
1.33. We also depict the one-particle stationary distribution
function obtained using numerical simulations of the Langevin
equation (1) for N = 10,100,1000,10 000 for the same noise
and coupling strengths. It can be seen that even for systems
with a small number of particles (N = 10), the NLFPE yields
a relatively good approximation to the simulation results. For
N = 100 and beyond, there is a very good matching of the
stationary solution of the NLFPE and that provided by the
simulations.

The time evolution of the first two moments M1(t) and
M2(t) as obtained from the Langevin numerical simulations
and from the NLFPE are depicted in Fig. 2 for the same
parameter values as in Fig. 1. For the Langevin simulations, all
the particles are initially at xi = 0.3. For the NLFPE we take
ρ1(x,0) to be a sharply peaked Gaussian centered at x = 0.3.
We have also explored several other initial conditions. In all
cases the system relaxes to its stationary situation after a
transient time. Even for small N values, the NLFPE provides
a very acceptable approximation of the dynamical evolution
of the moments.
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FIG. 1. (Color online) The single-particle stationary distribution
function obtained from the simulations of Eq. (1) for N = 10 (blue
triangles), N = 100 (black dashed line), N = 1000 (red squares), and
N = 10 000 (cyan circles) are compared with the stationary solution
of the NLFPEs (9) and (10) (magenta solid line). The other parameters
are D = 1.33 and θ = 2.

Let us know consider a case where the stable stationary
distribution is bimodal. In Fig. 3 we depict the results for
f st

1 (x) as estimated from the simulations of Langevin equations
and ρst(x) as the stationary solution of the NLFPE. Several
system sizes have been used as indicated in the figure. Other
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FIG. 2. (Color online) Time evolution of the first two cumulant
moments M1(t) (bottom curves) and M2(t) (top curves) for N = 10
(blue dashed lines) and N = 1000 (red circles) obtained from the
numerical simulations of the Langevin equations for the N degrees
of freedom and from the numerical solution of the NLFPE (black
solid lines). The other parameters are D = 1.33 and θ = 2.
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FIG. 3. (Color online) The single-particle stationary distribution
function obtained from the simulations of Eq. (1) for N = 10 (blue
dashed line) and N = 1000 (red squares) are compared with the
stationary solution of Eq. (9) (black solid line). The other parameters
are D = 0.5 and θ = 0.5.

parameter values are D = 0.5 and θ = 0.5. The time evolution
of the first two moments is plotted in Fig. 4. Again, even for
rather small systems, the NLFPE reproduces the numerical
simulation results quite faithfully.

Our results indicate that the NLFPE approximation to the
single-particle distribution function is an acceptable one as
long as the noise strength D and the coupling parameter θ are
such that the NLFPE has a single stationary solution, regardless
of whether this is monomodal or bimodal.

Let us now turn our attention to those regions of parameter
space where the NLFPE has two stable coexisting solutions. In
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FIG. 4. (Color online) Time evolution of the first two cumulant
moments M1(t) (bottom curves) and M2(t) (top curves) for N = 10
(blue dotted lines) and N = 1000 (red circles) obtained from the
numerical simulations of the Langevin equations for the N degrees
of freedom and from the numerical solution of the NLFPE (black
solid lines). The other parameters are D = 0.5 and θ = 0.5.
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FIG. 5. (Color online) Single-particle stationary distribution
function obtained from the simulations of Eq. (1) for N = 10 (blue
dashed line), N = 100 (green circles), and N = 1000 (red triangles)
is compared with the stationary solutions of the NLFPE (9) (black
solid lines). The other parameters are D = 0.25 and θ = 0.5.

Figs. 5 and 6 we present results for the probability distribution
and the time evolution of the first moment. The most
remarkable feature of those figures is that the NLFPE provides
a picture of the finite-system dynamics that is qualitatively
wrong. In Fig. 5 we note that for all finite-N systems, there
is just one stationary solution with two symmetrically located
maxima around a minimum at x = 0. Except for the height
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FIG. 6. (Color online) Time evolution of M1(t) obtained from
the numerical simulations of the Langevin equations for N = 10
(red solid lines) and within the NLFPE (blue dotted lines) with
two different initial conditions. The (magenta) dashed line depicts
the evolution for N = 100 from M(0) = 0.3. In all cases the noise
strength is D = 0.25 and the coupling parameter is θ = 0.5.
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of the minimum, the shape of the distribution is practically
independent of the system size. Indeed, the shapes are almost
identical for N = 100 (circles) and N = 1000 (triangles). For
each value of N , the corresponding stationary distribution is
reached independently of the initial preparation of the system.
In contrast, within the NLFPE, there are two single-particle
distribution functions with just a single peak (solid lines). The
system reaches one or the other depending upon whether the
initial condition is centered initially around x > 0 or x < 0.
The NLFPE has also in this region an unstable third solution
describing a distribution centered around x = 0. Any slight
initial deviation from it forces the system to go quickly to one
of the two stable ones.

It should be pointed out that for any finite system the long-
time stationary solution of the linear Fokker-Planck equation is
given by Eq. (5). Then, due to the symmetry of the potential U

and the fact that all the particles are identical, it follows that the
single-particle distribution is symmetrical around the origin
x = 0 and consequently the stationary average equilibrium
value reached in the long-time limit has to be zero. This is
consistent with the simulations of the Langevin equations
but at variance with the results obtained with the NLFPE.
The discrepancies between the simulation results and those
obtained within the NLFPE are also evident in Fig. 6. In that
figure we plot the time evolution of M1(t) as obtained from the
numerical simulations of the Langevin equations for N = 10
and two different initial conditions (red solid lines) as well as
the evolutions given by the NLFPE for two different initial
conditions (black dashed lines). Note that the long-time limit
of the first moment M1(t) as given by the NLFPE depends on
the initial condition, while the simulation results indicate that
for a given set of system parameters, the long-time limit is
independent of the initial preparation.

For parameter values such that the NLFPE has just a
single stable distribution, such as those depicted in Figs. 2
and 4, M1(t) relaxes quite quickly to its zero stationary value
regardless of the system size or the initial condition. In contrast,
for those parameter values such that the NLFPE has two
stable distributions, the M1(t) relaxation time toward its zero
stationary value is strongly dependent on N , as illustrated in
Fig. 7, where we depict the time evolution of the first moment
M1(t) obtained from numerical simulations of the Langevin
equations for D = 0.25, θ = 0.5, and N = 100 (lower curve),
N = 1000 (middle curve), and N = 10 000 (higher curve).
The relatively large band of M1(t) values for larger sizes
is due to the small number of noise realizations used in
the simulations of those large systems. It seems interesting
to compare the time evolution of the noise average M1(t)
with that of a single trajectory x1(t). In Fig. 8 we depict
the time evolution of the noise average of a single variable
obtained from the numerical simulations of the Langevin
equations by averaging over 500 noise realizations [M1(t),
lower triangles] and the time evolution with a single noise
realization [x1(t), solid line] for N = 1500, D = 0.25, and
θ = 0.5. The statistical effect of noise averaging is clear. In
a single trajectory the variable explores the different potential
minima with random transitions among them. The randomness
of those jumps makes the noise average-time behavior very
different with no jumps between the minima but with a
monotonic decay towards its stationary zero value.
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FIG. 7. (Color online) Time evolution of M1(t) obtained from the
numerical simulations of the Langevin equations for the N = 100
(green bottom curve), N = 1000 (red middle curve), and N = 10 000
(purple top curve). In all cases the noise strength is D = 0.25 and the
coupling parameter is θ = 0.5.

An estimation of the characteristic relaxation time of M1(t)
from a given initial condition can be obtained by fitting the
overall time evolution to an exponential. From the inverse of
the exponent we have estimated the M1(t) relaxation time trxn.
In Fig. 9 we depict the natural logarithm of trxn for D = 0.25
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FIG. 8. (Color online) Time evolution of the noise average
evolution of a single variable obtained from the numerical simulations
of the Langevin equations by averaging over 500 noise realizations
[M1(t), blue triangles] and the time evolution with a single noise
realization [x1(t), black solid line] for N = 1500, D = 0.25, and
θ = 0.5.
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FIG. 9. (Color online) Natural logarithm of the relaxation time
(trxn) of M1(t) vs the system size. In all cases the noise strength
is D = 0.25 and the coupling parameter is θ = 0.5. The red dots
correspond to the data, while the black line is the fit indicated in the
main text.

and θ = 0.5 for several values of N . The results for N � 500
are well fitted by the linear relation ln trxn = 0.0025N + 4.6.

The short-time behavior of M1(t) is depicted in Fig. 10 for
several values of N . By short time we mean here time intervals
long enough for small systems to reach their equilibrium state,
but short compared to the total relaxation time of large systems.
For sufficiently large systems, if we gather information during
these short times to construct a histogram that mimics f1, we
find a distribution with a shape reminiscent of one of the two
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FIG. 10. (Color online) Short-time evolution of M1(t) obtained
from the numerical simulations of the Langevin equations for N = 10
(blue plus signs), N = 100 (green dots), N = 1000 (red solid line),
and N = 10 000 (black dashed line). In all cases the noise strength is
D = 0.25 and the coupling parameter is θ = 0.5.
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FIG. 11. (Color online) Single-particle distribution obtained from
short numerical simulations of the Langevin equations (green
squares) and long-time simulations for N = 1000 (red dots) as well
as from the stationary solution of the NLFPE (blue dashed line). In
all cases the noise strength is D = 0.25 and the coupling parameter
is θ = 0.5.

stable NLFPE distributions as depicted in Fig. 11 for a system
with N = 1000, D = 0.25, and θ = 0.5. In contrast, if we
wait long enough for the system to reach a stationary state,
then f st

1 differs largely from ρ as seen also in Fig. 11. For
much larger systems, for instance, N = 10 000, the relaxation
is so slow and the duration of the transient regime is so large
that the system stays in a sort of metastable state, with the
single-particle distribution being very well approximated by
ρst for very large observation times, as illustrated in Fig. 12
for a system with N = 10 000 elements. The time it takes such
a large system to reach its stationary distribution f st

1 �= ρst is
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FIG. 12. (Color online) The short-time single-particle distribu-
tion function obtained from the simulations of Eq. (1) (blue circles)
for a large system (N = 10 000) matches the long-time stationary
solution of Eq. (9) (red squares) very well. The other parameters are
D = 0.25 and θ = 0.5.
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FIG. 13. (Color online) Single-particle stationary distribution
function obtained from the simulations of Eq. (1) (red squares) and
the stationary solution of Eq. (9) (black stars) for several values of
the system parameters.

extremely long compared with the already very long transient
time.

B. The case of negative θ

We now turn our attention to the model with a negative
mean-field coupling parameter θ < 0. An extensive numerical
treatment of Eqs. (9) and (10) leads to the conclusion that for
θ < 0, X0 = 0 is the only stationary solution and consequently
there is just one stable stationary solution for the NLFPE
description. In Fig. 13 we plot the stationary distributions
obtained within the NLFPE and by Langevin simulations for
a system of just N = 10 elements and for a variety of system
parameters. In Fig. 14 the results of the time evolution of the
first two moments obtained from the Langevin simulations are
compared with those obtained by solving the NLFPE (9). As
one can see, the NLFPE provides an excellent description of
the relaxation dynamics as well as the stationary distribution
for all the parameter values, even for a system of rather modest
size (N = 10).

IV. CONCLUSION

In this work we have analyzed the reliability of the SCDMF
approximation to describe the statistical behavior of a single
particle immersed in a finite array of interacting identical
particles. The lack of analytical solutions has lead us to
investigate the problem by means of numerical schemes. The
NLFPE has been numerically integrated and the results have
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FIG. 14. (Color online) The bottom solid red line depicts the time
evolution of M1(t) while the top solid red line depicts the evolution
of M2(t) obtained from the simulations of Eq. (1). The black dashed
lines depict the corresponding evolutions obtained from the solution
of Eq. (7).

been compared with those provided by numerical simulations
of the Langevin equations for the array.

We have found that the sign of the parameter characterizing
the strength of the interaction θ is very relevant. For positive
values of θ , the SCDMF approximation provides a good
description of the relaxation dynamics and the stationary
distribution as long as we deal with system parameters (noise
and interaction strengths) such that the NLFPE derived within
the SCDMF has only one stationary solution.

In contrast, for system parameter values such that the
NLFPE has two independent stable stationary solutions, the
results of this asymptotic approximation are qualitatively
and quantitatively different from those obtained from the
Langevin (or Fokker-Planck) description of small finite sys-
tems. Nonetheless, the NLFPE leads to stable distributions that
are remarkably similar to those obtained during the Langevin
simulations of large-size systems using short trajectories.

Thus, for θ > 0 the SCDMF does not seem to provide
a consistent approximation to describe the single-particle
behavior of an N -particle system for all regions of parameter
space. The approximation leads to a close equation for
the single-particle distribution but at the expense of introducing
spurious qualitative features absent in the dynamics of finite
systems.

The case is different for θ < 0. In this case the NLFPE has
only a single long-time stationary solution for all parameter
values, centered around x = 0, to which the system relaxes
regardless of its initial preparation. The description of the
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dynamics for finite systems provided by the numerical simula-
tions is basically identical to that obtained within the NLFPE,
even for very small sizes.
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