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Strongly anisotropic nonequilibrium phase transition in Ising models with friction
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The nonequilibrium phase transition in driven two-dimensional Ising models with two different geometries is
investigated using Monte Carlo methods as well as analytical calculations. The models show dissipation through
fluctuation induced friction near the critical point. We first consider high driving velocities and demonstrate
that both systems are in the same universality class and undergo a strongly anisotropic nonequilibrium phase
transition, with anisotropy exponent θ = 3. Within a field theoretical ansatz the simulation results are confirmed.
The crossover from Ising to mean field behavior in dependency of system size and driving velocity is analyzed
using crossover scaling. It turns out that for all finite velocities the phase transition becomes strongly anisotropic
in the thermodynamic limit.
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I. INTRODUCTION

The interest in magnetic contributions to friction due to
spin correlations has strongly increased in recent years. One
interesting aspect is the energy dissipation due to the formation
of spin waves in a two-dimensional Heisenberg model induced
by a moving magnetic tip [1–3], which can be of Stokes
or Coulomb type depending on the intrinsic relaxation time
scales [4]. On the other hand, magnetic friction occurs also in
bulk systems moving relative to each other. Kadau et al. [5]
used a two-dimensional Ising model, cut into two halves
parallel to one axis and moved along this cut with the velocity
v, to explore surface friction. The motion drives the system
out of equilibrium into a steady state, leading to a permanent
energy flux from the surface to the heat bath. This model
exhibits a nonequilibrium phase transition, which has been
investigated in several different geometries [6] by means of
analytical treatment as well as Monte Carlo (MC) simulations.
The critical temperature Tc of the considered models depends
on the velocity v and has been calculated exactly for various
geometries in the limit v → ∞. In this limit the class of
models show mean-field-like critical behavior. Subsequent
investigations have been done in a variety of context, in
particular for driven Potts models [7] and for rotating Ising
chains of finite length [8].

The nature of nonequilibrium phase transitions is still a field
of large interest, and simple models helping to explore this
field are seldom. A very famous example is the driven lattice
gas (DLG) [9–11], exhibiting a strongly anisotropic phase
transition. Despite many similarities between the driven lattice
gas and the Ising model with friction, there is an important
difference: The order parameter is conserved in the former,
while it is nonconserved in the latter model. A further class of
models characterized by nonequilibrium phase transitions are
sheared systems [12–14], experimentally accessible within the
framework of binary liquid mixtures.

Like the driven lattice gas, the systems investigated in the
following exhibit a strongly anisotropic phase transition, which
is investigated by means of Monte Carlo (MC) simulations as
well as a field theoretical ansatz. In addition, the case of finite
velocities v is analyzed by means of crossover scaling, where
a broad range of velocities and system sizes are analyzed.
We show that for all v > 0 the considered models end up in

the mean field class with strongly anisotropic correlations as
soon as the system size exceeds a velocity-dependent crossover
length L×(v).

While a crossover behavior from Ising to mean-field class
occurs in various thermodynamic systems such as ionic
fluid [15,16] and spin systems with long-range interactions
[17], to our knowledge such a crossover including a change
from isotropic to strongly anisotropic behavior has not been
investigated in detail. The paper is organized as follows:
After introducing the model and geometries, we determine the
anisotropy exponent for v = ∞ using MC simulations as well
as a field theoretical model. Then we turn to finite velocities
and present the crossover scaling analysis. Finally we discuss
our results.

II. MODELS

The systems considered in this work are denoted 2d and
1 + 1d and are shown in Fig. 1 (for a classification see
Ref. [6]). The 2d system is a two-dimensional two-layer Ising
model with L‖ × L⊥ × 2 lattice sites, where the two layers
are moved relative to each other along the parallel direction.
Each lattice site carries one spin variable σi,j,k = ±1, and only
nearest-neighbor interactions are taken into account. Periodic
boundary conditions are applied in both planar directions
(i.e., σi,j,k = σi+L‖,j,k = σi,j+L⊥,k). In order to simulate a
finite velocity v using Monte Carlo simulations the upper
subsystem is moved v times by one lattice constant during
each random sequential Monte Carlo sweep (MCS). Since one
MCS corresponds to the typical time t0 ≈ 10−8 s a spin needs
to relax into the direction of its local Weiss field, and as the
lattice constant is of the order a0 ≈ 10−10 m, the velocity v is
given in natural units a0/t0 ≈ 1 cm/s.

Instead of moving the two layers against each other, we
reorder the couplings between the subsystems with time to
simplify the implementation [6]. Introducing a time-dependent
displacement

�(t) = vt, (1)

which is increased by one after each 2L‖L⊥/v random
sequential spin flip attempts, the Hamiltonian can be expressed
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FIG. 1. (Color online) The systems considered in this work. The
gray regions represent the magnetic systems, while the green (dark)
regions are the moving boundaries. The arrows indicate the motion
of the subsystems.

as

βH(t) = −K

L‖∑
i=1

L⊥∑
j=1

1∑
k=0

σi,j,k(σi+1,j,k + σi,j+1,k)

−Kb

L‖∑
i=1

L⊥∑
j=1

σi,j,0σi+�(t),j,1, (2)

with the reduced nearest neighbor coupling K = βJ , the
reduced boundary coupling Kb = βJb, and β = 1/kBT . In
the following we assume J = Jb = 1.

The critical temperature Tc(v) of the regarded systems
increases with v and saturates for high velocities. In the limit
v → ∞ an analytical calculation of the critical temperature
for the 2d geometry yield

T 2d
c (∞) = 4.058782423 . . . (3)

for J = Jb = 1 [6]. The basic idea of the analytic solution
provides the approach for the implementation of infinite
velocity, which works as follows: The interaction partner for
a spin in the lower layer is chosen randomly from the same
row in the upper layer. Thus we can use Eq. (2) with a random
value 1 � �(t) � L‖.

The 1 + 1d system consists of a two-dimensional Ising
model, where all rows are moved relative to each other. The
displacement �(t) = vt as well as the coupling K⊥ is equal
for all adjacent rows, leading to the Hamiltonian

βH(t) = −
L‖∑
i=1

L⊥∑
j=1

K‖σi,j σi+1,j + K⊥σi,j σi+�(t),j+1. (4)

Again, periodic boundary conditions are applied in both
directions, where discontinuities in ⊥ direction are avoided
through the homogeneous displacement �(t) [6]. The analyt-
ical treatment at v → ∞ gave the critical temperature

T 1+1d
c (∞) = 1/ ln

(
1
2

√
3 + √

17
) = 3.46591 . . . (5)

for J‖ = J⊥ = 1 in this case [6]. Within the scope of the 1 + 1d
model the velocity v corresponds to a shear rate, which is often
denoted as γ̇ [18,19]. However, we will use the term velocity
for both driving mechanisms throughout this work.

In the following we argue that both systems show the
same underlying critical behavior. In order to emphasize the

L

a b

c d

L

FIG. 2. (Color online) Cross sections of the 1 + 1d (a) and the 2d
model (c), and slight modifications of both models [(b) and (d)]. The
gray circles represent spin chains and the connecting lines substitute
for the coupling, where green wiggled lines stand for moving and
black lines for stationary couplings. Black crosses and dots indicate
a motion into and out of the plane, respectively.

similarity, Fig. 2 illustrates slight variations of both models.
First of all we start with the 1 + 1d model [Fig. 2(a)] and
change every second bond perpendicular to the motion into
a stationary bond. Additionally, we perform a transformation
that changes the homogeneous shear �(t) into an alternating
shift ±�(t) of the double chains and reverses (i → −i) every
second double chain, leading to the configuration in Fig. 2(b).
These modifications do not change the critical behavior of
the 1 + 1d system, since still one-dimensional chains (now
consisting of two rows) are moved relative to each other. On the
other hand, the cross section of the 2d model can be visualized
in a slightly different way [see Fig. 2(d)] without altering
the corresponding Hamiltonian, Eq. (2). Since the next nearest
double chains in Fig. 2(b) are not moving relative to each other,
the only difference between Figs. 2(b) and 2(d) are the third
nearest neighbor bonds in Fig. 2(d), which are irrelevant at the
critical point where long-range correlations dominate. Hence
we conclude that both systems belong to the same universality
class.

Finally we mention that we must use the multiplicative rate

pflip(�E) = e− β

2 (�E−�Emin), (6)

with �Emin = min({�E}) to reproduce the critical tempera-
tures, Eqs. (3) and (5), in simulations (for a discussion see
Ref. [6]).

III. RESULTS

In order to illustrate symptomatic features of both systems,
Fig. 3 shows a sequence of spin configurations of one layer of
the 2d system (note that the same characteristics are observed
in the 1 + 1d system). On the left-hand side an equilibrated
system at T = 3.5 well above the critical temperature of the
nonmoving system, T 2d

c (0) = 3.20755(5) [20], is presented.
Shortly after starting the motion stripelike domains arise, span-
ning the whole system parallel to the motion. The stripes are
rather stable, but are nonetheless transient, since they grow in
time until the system ends up in a homogeneously magnetized
state. The evolution in Fig. 3 is an example for a velocity-driven
phase transition already described in Refs. [5,6], which is
triggered by the onset of the motion and the associated increase
of the critical temperature. The circumstances are comparable
to a quench, which is characterized by a temperature decrease
below Tc. After a quench a coarsening of domains is observed,
whereas the growth of the domains can be described by a
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v

FIG. 3. Snapshots of one layer of the 2d model with L‖ = L⊥ = 512 and J‖ = J⊥ = 1 at temperature T = 3.5, which fulfills T 2d
c (0) <

T < T 2d
c (∞). We start with an equilibrium system at v = 0 (left), set v = ∞, and show the evolution at t = 42 MCS (center) and t = 360

MCS (right).

power law (e.g., Refs. [21,22]). Domain growth in systems
exhibiting a strongly anisotropic phase transition, e.g., the
DLG model, is also a well-investigated subject [10,23,24].
The corresponding time evolution of spin configurations are
similar to those shown in Fig. 3, leading to the assumption
that the 2d and the 1 + 1d geometries are also characterized
by strongly anisotropic correlations, which is shown in the
following section.

A. Determination of θ in the limit v → ∞
A strongly anisotropic phase transition is characterized by a

correlation length ξμ which diverges with direction dependent
critical exponents νμ at the critical point [25],

ξμ(t)
t>0∼ ξ̂μt−νμ, (7)

with direction μ = {⊥ , ‖} and reduced critical temperature
t = T/Tc − 1. Defining the anisotropy exponent [26–28]

θ = ν‖
ν⊥

, (8)

we find

ξ‖(t)/ξθ
⊥(t) ∼ ξ̂‖/ξ̂ θ

⊥ (9)

independent of t . Isotropic scaling takes place for θ = 1
and strongly anisotropic scaling is implied by θ 	= 1. Several
models with strongly anisotropic behavior where studied in the
past. Examples are Lifshitz points as present in the anisotropic
next nearest neighbor Ising (ANNNI) model [29,30], the
nonequilibrium phase transition in the DLG [10], the two-
dimensional dipolar in-plane Ising-model [28]. Furthermore,
strongly anisotropic behavior usually occurs in dynamical
systems, where the parallel direction can be identified with
time and the perpendicular direction(s) with space [27,31]. In
the latter case the anisotropy exponent θ corresponds to the
dynamical exponent z.

The knowledge of the anisotropy exponent is essential and
necessary for appropriate simulations of strongly anisotropic
systems. To avoid complicated shape effects it is required to
keep the generalized aspect ratio [26–28]

ρ = L‖/ξ̂‖
(L⊥/ξ̂⊥)θ

(10)

fixed, which requires the knowledge of θ . We will show in
the following that the limit ρ → 0 simplifies the analysis for
infinite velocity v and turns out to be essential at finite v.

We first discuss the case v → ∞ and always assume
criticality, t = 0. In order to determine the anisotropy ex-
ponent θ we calculate the perpendicular correlation function
G⊥(L‖,L⊥; r⊥) = 〈σi,j σi,j+r⊥〉 between spins at distance r⊥ in
cylinder geometry L⊥ → ∞ (leading to ρ → 0), and thereby
gain the correlation length ξ⊥(L‖) through

G⊥(L‖,∞; r⊥) ∼ Ĝ⊥(L‖) e−r⊥/ξ⊥(L‖), (11)

where the prefactor Ĝ⊥(L‖) is shown to be proportional to
L

−2/3
‖ in the Appendix. Approaching the critical point within

the given geometry, the correlation length ξ‖(t) is limited by
L‖, and using Eq. (9) this leads to the relation

ξ⊥(L‖) ∼ A⊥L
1/θ

‖ (12)

with nonuniversal amplitude A⊥ [28,32]. Measuring the
correlation length ξ⊥ in dependency of the parallel extension
L‖ allows us to determine the anisotropy exponent θ .

In the simulations, the limit L⊥ → ∞ is implemented
by the condition L⊥/ξ⊥ � 10. This is sufficient to keep the
systematic errors in G⊥ smaller than the statistical error ε =
10−3 adequate to calculate ξ⊥. From ε we can determine the
required system sizes via L⊥/ξ⊥ = −2 ln[ε/Ĝ⊥(L‖)], where
the factor 2 accounts for the periodic boundary conditions.
As Ĝ⊥ ≈ 0.1 for L‖ = 40 and Ĝ⊥ ≈ 0.02 for L‖ = 104 for
the 1 + 1d model [see Fig. 4 (left)] we yield L⊥/ξ⊥ ≈ 10
for L‖ = 40 and L⊥/ξ⊥ ≈ 0.7 for L‖ = 104, meaning that
for large systems a much smaller value of L⊥/ξ⊥ would be
sufficient.

Figure 4 displays the correlation functions for both models.
For the 1 + 1d case these correlations are purely exponential
also at short distances, since the coupling in ⊥ direction is
mediated through fluctuating fields [6], leading to dimensional
reduction to an effectively one-dimensional system. The
resulting correlation length ξ⊥ is shown in the inset of Fig. 4
(left). The growth of ξ⊥(L‖) follows a power law with exponent
θ−1 = 1/3 and with prefactor

A1+1d
⊥ = lim

L‖→∞
L

−1/3
‖ ξ 1+1d

⊥ (L‖) = 0.68(2), (13)

indicated as a black line.
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FIG. 4. (Color online) Rescaled correlation function G⊥(L‖,∞; r⊥) at criticality for both models for varying system extensions, L‖ =
{40,80,160,320,625,1250,2500,5000,10000} (1 + 1d) and L‖ = {16,32,64,128,256,512} (2d), respectively. The insets show ξ⊥(L‖) whereby
we yield ξ⊥ by fitting an exponential function to the long-range part of G⊥(L‖,∞; r⊥). The solid line is a power law with exponent θ−1 = 1/3
as predicted by the field theoretical analysis (see text).

In the case of the 2d model (right figure in Fig. 4) we
find two regions with different characteristics. The short-
distance correlations are affected by the ⊥ nearest-neighbor
interactions within the planes, which are not present in the
1 + 1d model. These correlations decay with a correlation
length of the order ξ

eq
⊥ [T 2d

c (∞)] ≈ 1. For large distances
the correlations crossover to an exponential behavior. The
exponential correlations are propagated by the fluctuations of
stripelike domains. The analysis yields

A2d
⊥ = lim

L‖→∞
L

−1/3
‖ ξ 2d

⊥ (L‖) = 0.94(3) (14)

in this case.
From the anisotropy exponent θ = 3 we can derive the

correlation length exponents ν‖ = 3/2 and ν⊥ = 1/2 using
the generalized hyperscaling relation

2 − α = 2β + γ = ν‖ + (d − 1)ν⊥, (15)

with d = 2 and mean field exponents α = 0, β = 1/2, and
γ = 1, whose validity has been demonstrated in Ref. [6] by a
mapping onto a mean field equilibrium model.

The calculation of θ in the limit v → ∞ is done within a
one-dimensional Ginzburg-Landau-Wilson (GLW) field the-
ory [33]. For v → ∞ it was shown in Ref. [6] that the 1 + 1d
model can be mapped onto an equilibrium system consisting
of one-dimensional chains that only couple via fluctuating
magnetic fields. Due to the stripe geometry with short length
L‖ and the periodic boundary conditions in ‖ direction the
magnetization is homogeneous in ‖ direction, and parallel
correlations are irrelevant. Hence we can use the zero mode
approximation in this direction. However, it is necessary to
include a term representing the interaction between adjacent
spin chains. This can be expressed by the square of the spatial
derivative of the magnetization in the direction ⊥ to the motion.
Hence the minimal GLW model to describe this strongly
anisotropic mean field system is given by

βH = L‖
∫ L⊥

0
dx

(
t

2
m(x)2 + 1

2
m′(x)2 + u

4!
m(x)4

)
(16)

with phenomenological parameters t and u, where m(x)
represents the magnetization of the spin chain at ⊥ coordinate
x. Equation (16) corresponds to the Hamiltonian used for

the description of a cylinderlike spin system, which is
infinite along one dimension, and finite and periodic in d − 1
dimensions [33]. The partition function of Eq. (16) can be
mapped onto a one-dimensional Schrödinger equation in a
quartic anharmonic oscillator potential using a rescalation,
which yields the critical exponents ν‖ = 3/2 and θ = 3. The
detailed derivation is given in the Appendix.

B. Crossover scaling at finite velocities

We now turn to finite velocities. The following analysis is
exemplarily done for the 1 + 1d model, but as stated above,
both models belong to the same universality class and similar
results are expected for the 2d model. As we expect a crossover
from an isotropic Ising model with θ = 1 to a strongly
anisotropic system with θ = 3, we must be careful with the
system geometry: We cannot use a fixed finite generalized
aspect ratio ρ, Eq. (10), in the simulations, as θ is not constant.
The only possible choice is ρ → 0 (or ρ → ∞), where the θ

dependency drops out.
We consider the correlation length ξ⊥(tc(v),v,L‖) at re-

duced critical temperature

tc(v) = Tc(v)

Tc(0)
− 1, (17)

where Tc(0) = 2/ ln(
√

2 + 1). tc(v) is calculated via a finite-
size scaling analysis of the perpendicular correlation length
(not shown). As this procedure becomes inaccurate for small
velocities v < 2−8, we calculate the critical temperature
according to

tc(v)
v→0∼ ĉ vφ (18)

with ĉ = 0.29(1) in these cases, where we assume φ = 1/2 in
agreement with the literature [10,18,19]. The results are shown
in the inset of Fig. 5(a).

Figure 5(a) shows the unscaled data, which gives evidence
that the correlation length of systems moved at high velocities v

are well described by the exponent θ = 3 (dotted line), whereas
for low velocities v � 2−12 effectively the Ising exponent
θ = 1 (dashed line) holds for the simulated system sizes L‖.
The curvature of the data of intermediate velocities suggest
the crossover. As a data collapse on the analytical known [34]
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FIG. 5. (Color online) Velocity-dependent crossover behavior in the 1 + 1d case. Both pictures show log-log plots of the correlation length
ξ⊥(tc(v),v,L‖) as function of the system size L‖ at reduced critical temperature tc(v) for a broad range of different velocities v. The dashed
line is the analytically known Ising limit ξ⊥(0,0,L‖)/L‖ ∼ 4/π valid for v → 0 [34], while the dotted line has slope θ−1 = 1/3. The left
figure shows the unscaled data and the inset displays the rescaling factor L×(v) for different velocities v (black dots, see text) and a function
approximating the data given in Eq. (19), (red solid line) as well as the reduced critical temperature tc(v) (blue squares) together with its
asymptotes, Eqs. (5) and (18). The right figure displays the same data rescaled with the crossover length L×(v), leading to an excellent data
collapse. The inset shows the crossover of the effective anisotropy exponent θeff from θeff = 1 (Ising, dashed line) to θeff = 3 (MF, dotted line).

relation ξ⊥(0,0,L‖)/L‖ ∼ Aeq = 4/π (dashed line in Fig. 5)
has to be obtained in the limit v → 0, both axes must be
rescaled by the same factor L×(v). This crossover length
can be determined by applying the following method: We
start with plotting the correlation length in the mean field
limit ξ⊥[tc(∞),∞,L‖]. Then we subsequently add the data for
smaller v by rescaling ξ⊥ and L‖ with L−1

× (v), which shifts
the points parallel to the dashed line, until a data collapse is
obtained [see Fig. 5(b)]. This procedure works quite accurate
for velocities v � 2−3, only at very small v � 2−12 the errors in
L×(v) grow due to the fact that we just shift the data along the
dashed line. The resulting crossover length L×(v) is pictured
as black dots in the inset of Fig. 5(a). The behavior of L×(v) is
analogous to the velocity dependency of other quantities like
the critical temperature or the energy dissipation, which are
characterized by a power law for v 
 1 and a saturation for
v � 1.

We conclude that for all finite velocities v > 0 the critical
behavior changes from Ising type to mean field type at a
velocity dependent crossover length L×(v) approximately
given by

L×(v) ≈
(

A1+1d
⊥
Aeq

)3/2 √
1 + v×

v
(19)

[solid red curve in the inset of Fig. 5(a)], where the velocity
is measured in units 10−8 m/s and the size in 10−10 m. The
velocity-independent prefactor was added to shift the crossover
point (i.e., the intersection of the asymptotes) to z = 1. The
saturation of L× at v× = 18(2) results from the lattice cutoff,
as L×(v×) ≈ 1. The inset in Fig. 5(b) shows the effective

exponent θeff , obtained from the logarithmic derivative

θ−1
eff = ∂ ln ξ⊥

∂ ln L‖
, (20)

whose value changes from θeff = 1 (Ising, isotropic) to θeff = 3
(MF, strongly anisotropic). Note that we verified the mean
field exponents for v � 1/8 with finite-size scaling methods
and also found good agreement of the scaling function with
the universal finite-size scaling function [35] (not shown). In
order to illustrate the change of the critical behavior, Fig. 6
shows typical critical spin configurations for different values
of the crossover scaling variable z = L‖/L×(v).

We are now able to compare our results with the literature.
If the crossover scaling variable z 
 1 Ising-like behavior
occurs, whereas for z � 1 mean field exponents and strongly
anisotropic correlations are expected. In experiments [13],
even slow shear rates of the order of 10−4 (in natural units
t−1
0 , where now t0 is the time scale of the fluid dynamics),

lead to a crossover length L× � 100 and, as the typical system
size is large with respect to the atomic distances, give z � 1,
indicating that experimental data are always obtained in the
mean field limit.

In relation to the results of Winter et al. [19] we find that the
correlation length exponent has been measured in the regime
29 � z � 239, leading to the anisotropy exponent θ ≈ 3 in
agreement with our results. In Ref. [18] the correlation length
exponents have also been determined in the mean field limit.
Looking at the lowest velocity v = 1/32 we find 53 � z �
1066, where a surprisingly small anisotropy exponent θ ≈
0.73 has been estimated. The highest velocity v = 50 leads
to θ ≈ 1.2 and 1100 � z � 22000. These discrepancies might
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z = 0.10 z = 0.20 z = 0.46 z = 0.68 z = 1.4 z = 2.5 z = 5.1 z = 10 z = 20 z = 36

v = 2−18 v = 2−16 v = 2−14 v = 2−12 v = 2−10 v = 2−8 v = 2−6 v = 2−4 v = 2−2 v = 20

v →

FIG. 6. Typical spin configurations of the critical 1 + 1d system for L‖ = 64 and different velocities v = 2−18, . . . ,1. z = L‖/L×(v) denotes
the crossover scaling variable (see text). The critical domains are isotropic and Ising-like for z 
 1 and become anisotropic for z � 1.

be attributed to the fact that an integral quantity, the order
parameter, has been measured, as well as to strong surface
effects induced by the open boundary conditions used in the
⊥ direction.

IV. CONCLUSION

In this work we investigated two recently proposed driven
Ising models with friction due to magnetic interactions, namely
the 1 + 1d and 2d model, using MC simulations as well
as analytical methods. At first we focused on the strongly
anisotropic critical behavior and calculated the anisotropy
exponent θ in the limit of high driving velocity v → ∞.
Therefore the perpendicular correlation function of a cylin-
derlike geometry was calculated at criticality for different
system sizes. Evaluating the connection between system size
and correlation length, Eq. (12), we were able to find the critical
exponents θ = 3 as well as ν‖ = 3/2 and ν⊥ = 1/2. The
analytic deviation of these exponents within the framework
of a Ginzburg-Landau-Wilson Hamiltonian led to the same
values. Comparing the results to the driven lattice gas [9,10] we
note that it also shows a strongly anisotropic phase transition
at a critical temperature, which grows with the velocity.
Remarkably this phase transition is characterized by the same
critical exponents at large fields.

Finally we focused on the critical behavior for finite
velocities v and performed extensive MC simulations in order
to calculate the crossover scaling function describing the
crossover from the Ising universality class at v = 0 to the
nonequilibrium critical behavior at v → ∞. The analysis has
exemplarily been done for the 1 + 1d model, but as shown,
both models belong to the same universality class and similar
results are expected for the 2d model. In the analysis an
additional complexity arose due to the strongly anisotropic
characteristics of the correlations. Therefore we calculated
the correlation length in a cylindrical system, circumventing
intricate shape effects. We were able to identify a crossover

length L×(v) using a simple method based on the rescaling of
data for each velocity such that a data collapse occurs. This
procedure leads to an excellent data collapse of all simulation
results for different velocities v and system sizes L‖.

It turns out that for all finite velocities v > 0 the models
undergo a crossover, at crossover length L×(v), from an
quasi-equilibrium isotropic Ising-like phase transition to a
nonequilibrium mean-field behavior with strongly anisotropic
correlations.
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APPENDIX: SCALING EXPONENTS OF THE
GINZBURG-LANDAU-WILSON MODEL

The following calculation is similar to Ref. [33]. Discretiz-
ing the integral

βH̄ = L‖
∫ L⊥

0
dx

(
t

2
m(x)2 + 1

2
m′(x)2 + u

4!
m(x)4

)
(A1)

with step size δx, Nδx = L⊥, mi = m(i δx), and δmi =
mi+1 − mi gives

βH̄ = L‖
N∑

i=1

δx

(
t

2
m2

i + 1

2

δm2
i

δx2
+ u

4!
m4

i

)
. (A2)

In order to evaluate the partition function

Z =
∫ ∞

−∞
D[m(x)] e−βH̄, (A3)
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we use abbreviations in analogy to transfer matrices,

T (m,m+) = e
−L‖δx

(
t
2 m2+ u

4! m4
)

︸ ︷︷ ︸
V (m)

√
L‖

2πδx
e− L‖δm2

2δx︸ ︷︷ ︸
U (δm)

, (A4)

with m+ = m + δm to get

Z =
∫ ∞

−∞
dm1

∫ ∞

−∞
dm2T (m1,m2)

∫ ∞

−∞
dm3T (m2,m3) × · · ·

×
∫ ∞

−∞
dmNT (mN−1,mN )T (mN,m1) (A5)

for the assumed periodic boundary conditions.
Let x+ = x + δx and ψ(m+) be the result of the integra-

tions for the interval ]x+,L⊥]. Since T (m,m+) is near-diagonal
for L‖ → ∞, we can write ψ(m+) as

λψ(m+) ≈ ψ(m) + ψ ′(m)δm + 1
2ψ ′′(m)δm2, (A6)

where λ denotes the growth factor of the integrations cor-
responding to the leading eigenvalue of the transfer matrix
T (m,m+). The integral over m+ in the partition function
becomes

ψ(m) =
∫ ∞

−∞
dm+V (m)U (m+ − m)ψ(m+)

= V (m)

√
L‖

2πδx

∫ ∞

−∞
dm+e

− L‖δm2

2δx ψ(m+)

= V (m)

λ

(
ψ(m) + δx

2L‖
ψ ′′(m)

)
, (A7)

and yields the solution of the integrations for the interval
[x+,L⊥]. Hence we get a differential equation for ψ(m),

V (m)

(
ψ(m) + δx

2L‖
ψ ′′(m)

)
= λψ(m). (A8)

We now substitute
ψ(m) → �(m̃) (A9a)

m → m̃ u−1/6L
−1/3
‖ (A9b)

λ → 1 − �δx u1/3L
−1/3
‖ (A9c)

t → x u2/3L
−2/3
‖ (A9d)

and expand to lowest order around L‖ = ∞ to yield the
Schrödinger equation in a quartic potential,(

−1

2
∂2
m̃ + x

2
m̃2 + 1

4!
m̃4 − �

)
�(m̃) = 0, (A10)

valid in the scaling limit L‖ → ∞, t → 0 with x =
t(L‖/u)1/ν‖ kept fixed.

The correlation length ξ⊥(L‖) is determined from the lowest
eigenvalues �0,1 of this equation, as

ξ⊥ = δx

(
ln

λ0

λ1

)−1

∼ 1

�1 − �0

(
L‖
u

)1/3

. (A11)

From the substitution, Eqs. (A9), we directly read off the
exponents ν‖ = 3/2, and θ = 3.

The correlation function amplitude Ĝ⊥(L‖) from Eq. (11)
is proportional to m2 and thus scales as L

−2/3
‖ as can be seen

from Eq. (A9b).
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