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Entropy production in full phase space for continuous stochastic dynamics
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Total entropy production and its three constituent components are described both as fluctuating trajectory-
dependent quantities and as averaged contributions in the context of the continuous Markovian dynamics,
described by stochastic differential equations with multiplicative noise, of systems with both odd and even
coordinates with respect to time reversal, such as dynamics in full phase space. Two of these constituent
quantities obey integral fluctuation theorems and are thus rigorously positive in the mean due to Jensen’s
inequality. The third, however, is not and furthermore cannot be uniquely associated with irreversibility arising
from relaxation, nor with the breakage of detailed balance brought about by nonequilibrium constraints. The
properties of the various contributions to total entropy production are explored through the consideration of two
examples: steady-state heat conduction due to a temperature gradient, and transitions between stationary states
of drift diffusion on a ring, both in the context of the full phase space dynamics of a single Brownian particle.
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I. INTRODUCTION

The concept of entropy was introduced over 150 years
ago to provide a measure of the evident irreversibility of
macroscopic thermodynamic phenomena. The conflict be-
tween its monotonic increase and the underlying time-reversal
symmetry of the microscopic dynamics, first pointed out by
Loschmidt, is but one of its apparent mysteries. Neverthe-
less, in recent years significant insights into the nature of
irreversibility and entropy production have emerged, partly
due to the need for a framework to interpret thermodynamic
processes for small systems. These developments had their
beginnings in the dissipation function and fluctuation theorem
in deterministic thermostatted systems considered by Evans
et al. [1–4], and they have continued with similar concepts
within the realms of chaos theory [5] and of stochastic dynam-
ical modeling [6,7]. Some powerful results, such as the Crooks
and Jarzynski relations, stand out [8–10] along with a unifying
framework for overdamped Langevin dynamics [11] based on
a stochastic description of the first law of thermodynamics
commonly referred to as stochastic energetics [12]. In short,
entropy production is a measure of the relative likelihoods of
forward and reversed behavior within the context of a model
dynamical framework that includes specific dissipative terms.
There are certain differences in viewpoint, but the central
insight is that a mechanical (or maybe dynamical) quantity
can be defined that matches the behavior of thermodynamic
entropy, in particular that on average it increases with time. Its
fluctuating nature provides additional insight into the behavior
of small systems.

More recently, it was proposed that the entropy production
associated with nonequilibrium states of small systems, arising
from an underlying stochastic model of the dynamics, could
be divided into two components, one related to relaxation
(sometimes restricted to transitions between stationary states),
and the other to any fundamental constraint that maintains
the system away from an equilibrium [13–21]. The two
components, termed adiabatic and nonadiabatic production
rates, respectively, were mapped onto earlier concepts known
as excess and housekeeping heat transfers [19,22]. In a

recent development [23], however, it was shown that a
third component of entropy production could be conceived,
arising from the nonequilibrium constraint, but associated with
relaxation toward the stationary state. It only arises when odd
dynamical variables play a role in the dynamics, and even
then only in specific cases. Only two of the three components
of entropy production satisfy an integral fluctuation theorem
(IFT), making them rigorously positive in the mean, properties
shared by the sum of all three; the third, however, does not
satisfy an IFT, and in the mean it can take either sign. In this
paper, we develop these ideas further, within a framework of
full phase-space continuous dynamics modeled by stochastic
differential equations, with the aim of pinning down the
specific form of the three contributions, both in the mean and
in fluctuations about the mean, and we go on to make use of
the formalism in some instructive example systems.

II. THREE CONTRIBUTIONS TO
ENTROPY PRODUCTION

We begin by considering the dynamics of a general
set of variables x = (x1,x2, . . . ,xn) that may be odd or
even under time reversal by considering the operation εx =
(ε1x1,ε2x2, . . . ,εnxn) where εi = ±1 for even and odd vari-
ables xi , respectively. Specifically, we consider continuous
Markovian dynamics described by a system of arbitrary
uncorrelated Ito stochastic differential equations (SDEs) such
that the evolution of the coordinates x is given as

dxi = Ai(x,t)dt + Bi(x,t)dWi, (1)

where dWi denotes the Wiener process. Since we allow xi

to be either odd or even under time reversal, we can divide
the deterministic dynamics into reversible and irreversible
components [24] such that

dxi = Arev
i (x,t)dt + Air

i (x,t)dt + Bi(x,t)dWi (2)

by defining

Air
i (x,t) = 1

2 [Ai(x,t) + εiAi(εx,t)] = εiA
ir
i (εx,t), (3)

Arev
i (x,t) = 1

2 [Ai(x,t) − εiAi(εx,t)] = −εiA
rev
i (εx,t). (4)
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We briefly note that we intend our notation, A(εx,t), to
imply a time reversal of all parameters that constitute A

whether they be dynamical variables included in x or not. For
example, a term proportional to a magnetic field appearing in
Ax , where x is an even spatial coordinate, would form part
of Arev

x since magnetic fields are odd with respect to time
reversal in contrast with, for example, a force F which would
appear in Air

x since force is even with respect to time reversal.
We have specified for simplicity that all our SDEs are driven

by uncorrelated noise such that we have no cross derivatives in
the corresponding Fokker-Planck equation. As such, we may
then represent the noise strengths as diffusion coefficients

Di(x,t) = 1
2Bi(x,t)2 (5)

that appear in a Fokker-Planck equation describing the joint
probability density function of the coordinates,

∂p(x,t)

∂t
= −

∑
i

∂

∂xi

[Ai(x,t)p(x,t)]

+
∑

i

∂2

∂x2
i

[Di(x,t)p(x,t)] . (6)

In order to proceed in the later development, we assume that the
diffusion coefficient is symmetric with respect to time reversal
such that Di(εx) = Di(x), which puts no restriction on the
dependence on even coordinates but requires that Di(x) is an
even function of any odd coordinates.

It is helpful to express the Fokker-Planck equation as a
continuity equation in terms of the probability density current
J(x,t),

∂p(x,t)

∂t
= −∇·J(x,t) = −∇ · [ J ir(x,t) + J rev(x,t)], (7)

which we separate into irreversible and reversible components.
These take vector form J = (J1,J2, . . . ,Jn) as do the drift
and diffusion coefficients A = (A1,A2, . . . ,An) and D =
(D1,D2, . . . ,Dn) such that

J ir(x,t) = Air(x,t)p(x,t) − ∇ · (D(x,t)p(x,t)),

J rev(x,t) = Arev(x,t)p(x,t). (8)

Having set out the dynamics we shall be using, we now
consider the general procedure for producing quantities which
obey IFTs. Given an interval of duration τ , such a quantity
consists of a difference between the logarithmic probability
density of a given trajectory under what we shall term
the forward dynamics, time dependence of the dynamics
(equivalent here to an external protocol), and initial distribution
of starting configurations, and that of another appropriately
chosen trajectory under suitable dynamics, protocol, and
initial distribution. We write P[�x] as the probability density
of the forward trajectory or path, �x = x(t) for 0 � t � τ ,
with a probability density function of starting configurations,
p(x(0),0), which acts as an initial condition for the Fokker-
Planck equation introduced earlier. A quantity that obeys an
IFT is then of the form

A[�x] = ln[P[�x]/P∗[�x∗]], (9)

where P∗[�x∗] is the probability density of a path, �x∗, under
chosen dynamics (with specified nature and time dependence)

and initial condition. Demonstrating the adherence of such a
quantity to an IFT with respect to the forward dynamics and
time dependence is straightforward by the reasoning

〈exp [−A[�x]]〉 =
∫

d �x P[�x] exp [−A[�x]]

=
∫

d �x P[�x]
P∗[�x∗]

P[�x]
=

∫
d �x∗ P∗[�x∗] = 1.

(10)

Such a result requires a Jacobian of unity for the path
transformation �x → �x∗ in order for the path integrals to be
equivalent (a result assured for any involutive transformation)
and the requirementP∗[�x∗] = 0 for allP[�x] = 0 ensuring that
for normalizedP andP∗ all possible paths under the dynamics
that produce P∗ are contained within the final integral. This
may be seen as a version of the so-called ergodic consistency
requirement [25]. Further, any quantity A[�x] based on a
transformation with a Jacobian of unity takes the same form
irrespective of whether probabilities or probability densities
are used in the construction due to the equivalence of measure.
Such a quantity is therefore constructed unambiguously and
is the direct analog of the same quantity defined in discrete
space [19,23]. The implication of the positivity in the mean,
〈A[�x]〉 � 0, of the quantity A[�x] is assured by Jensen’s
inequality. We point out that the path, �x∗, and the dynamics
must be carefully chosen in order to satisfy the requirements
and to produce a physically meaningful quantity. This is
particularly relevant in the presence of both odd and even
variables as for many physical systems the common choice of
reverse path x∗(t) = x(τ −t) cannot be generated under the
forward dynamics, and if used to define a quantity of the form
in Eq. (9), it would render the final integral in Eq. (10) equal to
zero. However, the choice x∗(t) = εx(τ −t) typically can be
generated and so leads to an IFT. However, this choice of the
second path, x∗(t) = εx(τ −t), is appropriate not just because
of the guarantee of an IFT, but because it means the constructed
quantity A[�x] serves as a measure of the irreversibility of the
process and thus characterizes the total entropy production.

By following the above rules, and making the definitions
x†(t) = εx(τ − t), xR(t) = x(τ − t), and xT(t) = εx(t), we
may construct path-dependent dimensionless entropy changes,
which are thermodynamically meaningful when multiplied by
kB , of the form in Eq. (9):

�Stot = lnP[�x] − lnPR[�x†]

= ln
p(x(0),0)
p(x(τ ),τ )

+ ln
P[x(τ )|x(0)]

PR[εx(0)|εx(τ )]
, (11)

�S1 = lnP[�x] − lnPad,R[�xR]

= ln
p(x(0),0)
p(x(τ ),τ )

+ ln
P[x(τ )|x(0)]

Pad,R[x(0)|x(τ )]
, (12)

�S2 = lnP[�x] − lnPad[�xT]

= ln
p(x(0),0)
p(x(0),0)

+ ln
P[x(τ )|x(0)]

Pad[εx(τ )|εx(0)]
, (13)

such that the total path probability densities are divided into
initial probability density distributions [which also appear as
initial conditions and solutions to the Fokker-Planck equation
in Eq. (6)] and conditional probability densities. Here �Stot
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amounts to the total entropy production of the universe with
notation deriving from [11] while the other two consider the
origins of that total entropy production. In the above, the
label R designates a reversed protocol, equivalent here to
reversed time dependence in the dynamics, and “ad” designates
that the dynamics are so-called adjoint with respect to the
forward dynamics, defined as the dynamics which reach the
same stationary state but with the opposite stationary current
[15,19,25]. Physically, the time-reversed dynamics would be
achieved by applying a time-dependent protocol in reverse
(with appropriate sign change should that protocol be odd,
e.g., a magnetic field). The adjoint dynamics, however, would
be achieved by alteration of the functional dependence of
the Ai(x) terms. For an overdamped particle in a potential
subject to stationary flux in one direction, the adjoint dynamics
would be such an alteration which produced the opposite flux
with appropriate change to the potential so as to preserve the
stationary distribution.

All three entropy productions above are expected to obey
IFTs by the nature of their form. Then, by the construction
�Stot = �S1 + �S2 + �S3, we define

�S3 = lnPad[�xT] + lnPad,R[�xR] − lnP[�x] − lnPR[�x†]

= ln
Pad,R[x(0)|x(τ )]Pad[εx(τ )|εx(0)]

P[x(τ )|x(0)]PR[εx(0)|εx(τ )]
, (14)

which cannot be expressed in the form of Eq. (9) and so does
not obey an IFT. By following the formalism of Seifert [11,26],
we identify

�Stot = ln
p(x(0),0)
p(x(τ ),τ )

+ �Smed = �Ssys + �Smed, (15)

where �Ssys is known as the change in dimensionless system
entropy and �Smed is a generalization of the dimensionless
entropy production in the environment, or medium. We
consider it to include the effect of any external agent acting
on the system such that, for example, it contains both the heat
flow and “pumped” entropy discussed for velocity-dependent
forcing in [27,28]. If one can consider a defined environmental
temperature, Tenv, which we allow to be phase-space or
time-dependent (a property we employ in example I), we may
write this in terms of a heat flow,

�Stot = ln
p(x(0),0)
p(x(τ ),τ )

+
∫ t=τ

t=0
d

(
�Q

kBTenv(x(t),t)

)
. (16)

The integral should be interpreted as a total medium entropy
change, considered as the sum of all the incremental heat
transfers to separate fixed temperature heat baths to which the
particle is exposed over the course of its trajectory, divided
by the appropriate temperature. Of course, this reproduces
the usual �Smed = �Q/kBTenv of stochastic thermodynamics
[11] when the temperature is constant. Similarly, when such
a temperature can be defined, we may connect the three
entropy contributions with a key concept in nonequilibrium
thermodynamics by dividing the heat transfer to the envi-
ronment (considering here a single, constant temperature for
clarity without loss of generality) into the so-called excess and
housekeeping heats according to the formalism of Oono and
Paniconi [22]. The housekeeping heat is usually defined as
the heat transfer required to maintain a nonequilibrium steady

state and the excess heat forms the remainder of the total
heat flow such that for a given environmental temperature,
�Q = �Qex + �Qhk. To align our quantities with such a
formalism in such cases, we associate �S1 with the excess
heat,

�Qex = (�S1−�Ssys)kBTenv, (17)

�S2 with a so called “generalized housekeeping heat” [23],

�Qhk,G = �S2kBTenv, (18)

and �S3 with the “transient housekeeping heat,”

�Qhk,T = �S3kBTenv, (19)

named to reflect its mean behavior, such that �Qhk =
�Qhk,G + �Qhk,T. Here, and throughout, the association with
heat flows necessarily requires a well-defined environmen-
tal temperature; however, we stress that the three entropy
contributions do not require such a specification and so
can be applied more generally. Like previous formalisms
[19,21] where the entropy production was divided into two
contributions associated with relaxation, and an absence of
detailed balance, respectively, both in the mean and in detail
[19–21], we have a contribution �S1 which is nonzero only
in the presence of relaxation and �S2 which is nonzero only
in the absence of detailed balance both in the mean and in
detail. However, we also have a quantity �S3 which is nonzero
in detail only in the absence of detailed balance, but only
contributes in the mean during the course of relaxation. Such
a formalism asserts that the two origins of entropy production
may often be more closely related, with such a circumstance
arising under the inclusion of odd variables and when the
stationary distribution is asymmetric in any of those odd
variables. The aim of this paper is to derive the equations of
motion for each of these quantities for continuous stochastic
systems and to illustrate their behavior through some simple
examples.

III. REPRESENTING ENTROPY PRODUCTION
FOR CONTINUOUS BEHAVIOR

A. Entropy production as an SDE

Since we are describing the dynamics using SDEs, it is
sensible to seek a description of a small increment in each
entropy production given an increment in the underlying
variables x′ − x = x(t + dt) − x(t) in a time dt so that we
identify from Eqs. (11)–(14)

d�Stot = −d(ln p) + ln
P(x′,t + dt |x,t)

P(εx,t + dt |εx′,t)
, (20)

d�S1 = −d(ln p) + ln
P(x′,t + dt |x,t)

Pad(x,t + dt |x′,t)
, (21)

d�S2 = ln
P(x′,t + dt |x,t)

Pad(εx′,t + dt |εx,t)
, (22)

d�S3 = ln
Pad(x,t + dt |x′,t)Pad(εx′,t + dt |εx,t)

P(x′,t + dt |x,t)P(εx,t + dt |εx′,t)
, (23)
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thereby establishing the SDEs that describe entropy
production and noting the abbreviation d[ln(p)] =
ln [p(x(t + dt),t + dt)/p(x(t),t)].

To proceed, we require a representation of the path
probabilities in these expressions that is valid over the small

time interval dt . This may be achieved by considered the
short time Green’s function or “short time propagator” [29]
which is given generally as the conditional probability of a
displacement dx = x ′ − x in a time dt subject to a δ function
initial condition and is of the form

P(x′,t+dt |x,t) =
∏

i

√
1

4πDi(r,t)dt
exp

[
−{dxi −Ai(r,t)dt+2a[∂Di(r,t)/∂ri]dt}2

4Di(r)dt
−adt

∂Ai(r,t)
∂ri

+a2dt
∂2Di(r,t)

∂r2
i

]
, (24)

where dxi = x ′
i −xi and where a is a free parameter ranging from 0 to 1, which defines the evaluation point of certain terms

in the propagator r = ax′+(1−a)x and ri = axi
′+(1−a)xi , and which reflects the ambiguity of a discretized interpretation of

continuous stochastic behavior. We note, however, that as dt → 0, all forms for the propagator are correct: they are all accurate
to first order in dt and result in the same Fokker-Planck equation.

We wish to construct the increment in entropy production in the medium by a consideration of

d�Smed = ln
P(x′,t+dt |x,t)

P(εx,t+dt |εx′,t)
(25)

by employing the appropriate reverse short time propagator

P(εx,t + dt |εx′,t)

=
∏

i

√
1

4πDi(εr ′,t)dt
exp

[
−{−εidxi − Ai(εr ′,t)dt + 2b[∂Di(εr ′,t)/∂(εir

′
i )]dt}2

4Di(εr ′)dt
− bdt

∂Ai(εr ′,t)
∂(εir

′
i )

+ b2dt
∂2Di(εr ′,t)

∂(εir
′
i )

2

]
,

(26)

where b is a corresponding free parameter ranging from 0 to 1 such that r ′ = bx+(1−b)x ′ and r ′
i = bxi +(1−b)x ′

i . Using
Eqs. (3) and (4) along with the assumption Di(εx) = Di(x) such that any diffusion constants are symmetric in odd variables, we
may write

P(εx,t + dt |εx′,t) =
∏

i

√
1

4πDi(r ′,t)dt
exp

[
−

{−εidxi − εi

[−Arev
i (r ′,t) + Air

i (r ′,t)
]
dt + 2b[∂Di(r ′,t)/∂(εir

′
i )]dt

}2

4Di(r ′)dt

−bdt

(
∂εiA

ir
i (r ′,t)

∂(εir
′
i )

− ∂εiA
rev
i (r ′,t)

∂(εir
′
i )

)
+ b2dt

∂2Di(r ′,t)
∂(εir

′
i )

2

]
, (27)

which is the same as

P(εx,t + dt |εx′,t) =
∏

i

√
1

4πDi(r ′,t)dt
exp

[
− {−dxi − [−Arev

i (r ′,t) + Air
i (r ′,t)

]
dt + 2b[∂Di(r ′,t)/∂r ′

i ]dt}2

4Di(r ′)dt

−b dt

(
∂Air

i (r ′,t)
∂r ′

i

− ∂Arev
i (r ′,t)
∂r ′

i

)
+ b2dt

∂2Di(r ′,t)
∂r ′2

i

]
. (28)

The mathematical details necessary for the development of
Eq. (25), which due to their somewhat cumbersome nature
we leave to Appendix A, reveal that for multiplicative noise
one obtains a result which is dependent on the choice a

and b. The resolution of this apparent arbitrariness is not
related to the nature of the underlying SDEs, but rather
on consistently using the equivalent evaluation point for
forward and time-reversed paths on an infinitesimal scale.
The normal rules of calculus would dictate no dependence,
but different rules apply to SDEs and stochastic calculus
(for which we direct the reader again to Appendix A). Such
a consideration reveals the correct choice in Eq. (28) to
be b = 1 − a with a remaining as a free parameter. This
yields the unambiguous Ito SDE for the medium entropy

change,

d�Smed =
∑

i

Air
i (x)

Di(x)
dxi − Arev

i (x)Air
i (x)

Di(x)
dt

+ ∂Air
i (x)

∂xi

dt − ∂Arev
i (x)

∂xi

dt − 1

Di(x)

∂Di(x)

∂xi

dxi

+ [Arev(x) − Air(x)]

Di(x)

∂Di(x)

∂xi

dt

− ∂2Di(x)

∂x2
i

dt + 1

Di(x)

(
∂Di(x)

∂xi

)2

dt, (29)

where for brevity we use the notation f (x) ≡ f (x,t). To
clarify, in such an approach choices may include Stratonovich

051113-4



ENTROPY PRODUCTION IN FULL PHASE SPACE FOR . . . PHYSICAL REVIEW E 85, 051113 (2012)

(a = b = 1/2) evaluation for both propagators in Eq. (25),
a choice which is implicitly used by many authors [15,26]
within integrated Onsager-Machlup approaches, but does not
preclude others in the construction of SDEs, such as, for exam-
ple, an Ito prescription (a = 0) in the forward propagator and
a Hanggi-Klimontovich (b = 1) in the backward propagator.
We point out that all evaluation points lead to the correct path
probability when supplemented with the correct multiplication
scheme, but that if one has multiplicative noise, the correct
representation of the entropy production requires the more
exact relation between the evaluation points.

Proceeding, we may now construct an SDE for the total
entropy production by first considering an increment in the

system entropy, which under Ito rules is

d�Ssys = −d[ln p(x)]

= − 1

p(x)

∂p(x)

∂t
dt − 1

p(x)

∑
i

∂p(x)

∂xi

dxi

−
∑

i

Di(x)

p(x)

[
∂2p(x)

∂x2
i

− 1

p(x)

(
∂p(x)

∂xi

)2
]

dt,

(30)

which together with Eq. (29), and after insertion of the Fokker-
Planck equation, leads to

d�Stot =
∑

i

− 1

p(x)

∂p(x)

∂xi

dxi + 1

p(x)

∂[Ai(x)p(x)]

∂xi

dt − 1

p(x)

[
∂2[Di(x)p(x)]

∂x2
i

+ Di(x)
∂2p(x)

∂x2
i

− Di(x)

p(x)

(
∂p(x)

∂xi

)2
]

dt

+Air
i (x)

Di(x)
dxi − Arev

i (x)Air
i (x)

Di(x)
dt + ∂Air

i (x)

∂xi

dt − ∂Arev
i (x)

∂xi

dt − 1

Di(x)

∂Di(x)

∂xi

dxi + [Arev(x) − Air(x)]

Di(x)

∂Di(x)

∂xi

dt

−∂2Di(x)

∂x2
i

dt + 1

Di(x)

(
∂Di(x)

∂xi

)2

dt. (31)

If Stratonovich rules, for example, are preferred, we can write (by definition of the Stratonovich integral, indicated by the ◦
notation)

d�Stot =
∑

i

− 1

p(x)

∂p(x)

∂xi

◦ dxi + 1

p(x)

∂[Ai(x)p(x)]

∂xi

dt − 1

p(x)

(
∂2[Di(x)p(x)]

∂x2
i

)
dt + Air

i (x)

Di(x)
◦ dxi − Arev

i (x)Air
i (x)

Di(x)
dt

−Di(x)
∂

∂xi

(
Arev

i (x)

Di(x)

)
dt − 1

Di(x)

∂Di(x)

∂xi

◦ dxi. (32)

This is a very general and robust definition of the entropy
production for continuous stochastic behavior and can be
thought of as a generalization of the pioneering approach
in [11] wherein the equation of motion for entropy essentially
describes d�Stot for a specific system with additive noise, even
variables (εx = x), and implicitly using Stratonovich rules.

We point out that such a construction allows us to consider
purely deterministic coordinates [Di(x) = 0] as would apply,
for example, to the case of spatial coordinates within a full
phase-space Langevin description. In such coordinates, Di(x)
is assumed constant and taken to zero. The remaining terms
then clearly diverge unless we demand Air

i (x) = 0 since in
these instances, for the reverse path to be a solution to the
forward dynamics, the motion must be purely reversible. This
condition simply amounts to the requirement that the reverse
path exists. There is, however, a contribution to the medium
entropy production, due to the dynamics of these coordinates,
technically since path probability densities, not probabilities,
are being considered in the formulation. The contribution to the
medium entropy production due to the deterministic behavior
of these coordinates is

�Smed,det = −∂Arev
i (x)

∂xi

dt, (33)

a result that provides an insight into the similarities and
differences between stochastic and deterministic measures of

irreversibility: it is demonstrably equal to the phase-space
contraction found in nonlinear dynamical systems, which is
associated with the heat transfer to the environment brought
about by thermostatting terms in such approaches. This leads
to a quantity that is positive in the mean for deterministic
systems: the dissipation function [2]. We point out, however,
that total entropy production, as defined here for stochastic
systems, is zero for deterministic dynamics. This is because
the change in the system entropy would be equal and opposite
to the change in medium entropy, technically since it involves
probability densities at the start and end of the process. In
contrast, the dissipation function can provide a measure of
irreversibility because it involves a comparison of trajectories
originating from the same starting distribution. This contrast
is to be expected as the total entropy production, as defined
for the systems we consider, arises from explicit irreversibility
in the dynamics, which deterministic, reversible equations do
not provide.

B. The mean entropy production rate

Frequently, the average entropy production rate is argued
to be proportional to the mean probability flux squared, as
derived, for example, by taking the time derivative of the
Gibbs entropy of a system, and identifying an evidently
positive contribution as the total entropy production rate
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and the remainder as the (negative of) the medium entropy
production rate [21,30]. We prefer, however, to derive the
average contributions directly from the SDEs so that we can
avoid arbitrarily identifying a positive contribution with a
quantity expected to obey an IFT: strictly speaking, there is
no guarantee such a division is unique, as another description
shows [31]. To do so is straightforward and requires us to find
the average increment in �Stot by means of the integral

〈d�Stot〉 =
∫

dx
∫

dx′ p(x,t)P(x′,t + dt |x,t)d�Stot.

(34)

The benefit of such a formulation is that we may characterize
d�Stot using an Ito SDE based on the underlying relations
dxi = Aidt + BidWi and then use the martingale property of
the Ito stochastic integral 〈BidWi〉 = 0 since Bi is nonantic-
ipating, such that we can simplify the integral in Eq. (34) by
writing

〈d�Stot〉 =
∫

dx p(x)〈d�Stot|x〉 (35)

and evaluating the conditional average 〈d�Stot|x〉 by replacing
all occurrences of dxi with (Air

i + Arev
i )dt in d�Stot. We thus

get

〈d�Stot〉 =
∑

i

[ ∫
dx

p(x)[Air(x)]2

Di(x)
+ 2p(x)

∂Air
i (x)

∂xi

−2p(x)
Air(x)

Di(x)

∂Di(x)

∂xi

− p(x)
∂2Di(x)

∂x2
i

+ p(x)

Di(x)

(
∂Di(x)

∂xi

)2

− ∂2[Di(x)p(x)]

∂x2
i

−Di(x)
∂2p(x)

∂x2
i

+ Di(x)

p(x)

(
∂p(x)

∂xi

)2
]

dt. (36)

By applying the product rule, integrating by parts, and
assuming p(x) and ∂p(x)/∂xi either vanish or cancel at
the boundaries, we may simplify to find the total entropy
production rate

d〈�Stot〉
dt

=
∑

i

∫
dx

[
p(x)Air

i (x) − Di(x) ∂p(x)
∂xi

− p(x) ∂Di (x)
∂xi

]2

p(x)Di(x)

(37)

or more concisely

d〈�Stot〉
dt

=
∑

i

∫
dx

[
J ir

i (x)
]2

p(x)Di(x)
, (38)

providing an expression for the mean instantaneous entropy
production rate which is rigorously positive, as it must be
because of the adherence of �Stot to an IFT, and is dependent
on the irreversible flux.

IV. EXPRESSIONS FOR �S1, �S2, AND �S3

In order to consider a division of the entropy production
into the thermodynamically meaningful quantities outlined
above, we are required to construct path probabilities using
the so-called adjoint dynamics. These dynamics may not be
physically realizable: for example, they may require negative
positional steps to result from positive velocities [as indicated
by the paths xR(t) and xT(t)], but this is of no concern since
they are only introduced for the mathematical construction of
the entropy contributions. We consider an arbitrary stationary
distribution of a given system which may be written in terms
of a nonequilibrium potential, φ(x), such that

pst(x) = exp[−φ(x)] (39)

and assert that the adjoint dynamics are those that result in
the same stationary distribution, but have an opposite flux. As
such, we require

∂pst(x)

∂t
= −∇ · J st(x) = ∇ · J st,ad(x) = 0 (40)

with

J st,ad(x) = −J st(x). (41)

In order to characterize the adjoint dynamics, we follow
Chernyak et al. [15] and construct the adjoint flux according
to

J
st,ad
i (x) = Aad

i (x)pst(x) − ∂

∂xi

[Di(x)pst(x)]

= Aad
i (x)e−φ(x) − ∂

∂xi

[Di(x)e−φ(x)]

=
(

Aad
i (x) − ∂Di(x)

∂xi

+ Di(x)
∂φ(x)

∂xi

)
e−φ(x)

= −
(

Ai(x) − ∂Di(x)

∂xi

+ Di(x)
∂φ(x)

∂xi

)
e−φ(x).

(42)

Consequently, we have the requirement

Aad
i (x) = −Ai(x) + 2

∂Di(x)

∂xi

− 2Di(x)
∂φ(x)

∂xi

. (43)

A. Expressions for �S1

Let us now consider the quantity

d�Sex = ln
P(x′,t + dt |x,t)

Pad(x,t + dt |x′,t)
, (44)

where �Sex = �Qex/kBTenv, which we have previously
asserted constitutes part of the incremental contribution to
the quantity �S1 based on relations in Eq. (12) and its
short time representation. We evaluate Eq. (44), taking the
transition probability density in the numerator from Eq. (24)
and, for convenience, choosing a = 1/2. We can represent the
transition probability density appearing in the denominator
through a similar construction, but using a substitution for
the adjoint drift term from Eq. (43), together with the
complementary evaluation point choice b = 1 − a = 1/2 such
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that

Pad(x,t + dt |x′,t) =
∏

i

√
1

4πDi(r)dt
exp

[
− (−dxi + {Ai(r) − 2[∂Di(r)/∂ri] + 2Di(r)[∂φ(r)/∂ri]}dt + [∂Di(r)/∂ri]dt)2

4Di(r)dt

+dt

2

∂

∂ri

(
Ai(r) − 2

∂Di(r)

∂ri

+ 2Di(r)
∂φ(r)

∂ri

)
+ dt

4

∂2Di(r)

∂r2
i

]
. (45)

Since we have in both cases chosen evaluation at a = b = 1/2, we note that multiplication follows Stratonovich rules so that
we have f (r)dxi = f (x) ◦ dxi . Considering the ratio of these two propagators, we find

d�Sex = ln
P(x′,t + dt |x,t)

Pad(x,t + dt |x′,t)
=

∑
i

Di(x)

(
∂φ(x)

∂xi

)2

dt + Ai(x)
∂φ(x)

∂xi

dt − ∂φ(x)

∂xi

◦ dxi − ∂Ai(x)

∂xi

dt + ∂2Di(x)

∂x2
i

dt

−Di(x)
∂2φ(x)

∂x2
i

dt − 2
∂Di(x)

∂xi

∂φ(x)

∂xi

dt. (46)

However, we also have the condition

∇ · J st(x) = 0 =
∑

i

∂

∂xi

[
e−φ(x)

(
Ai(x) − ∂Di(x)

∂xi

+ Di(x)
∂φ(x)

∂xi

)]

=
[
−Ai(x)

∂φ(x)

∂xi

− Di(x)

(
∂φ(x)

∂xi

)2

+ ∂Ai(x)

∂xi

− ∂2Di(x)

∂x2
i

+ Di(x)
∂2φ(x)

∂x2
i

+ 2
∂Di(x)

∂xi

∂φ(x)

∂xi

]
e−φ(x) (47)

and so by insertion we arrive at

ln
P(x′,t + dt |x,t)

Pad(x,t + dt |x′,t)
=

∑
i

−∂φ(x)

∂xi

◦ dxi, (48)

which justifies the usual characterization of the adjoint dynamics [15,19,25] for use in continuous dynamics when written as

P(x′,t + dt |x,t)

Pad(x,t + dt |x′,t)
= pst(x′)

pst(x)
(49)

through consideration of Eq. (39) and the Stratonovich rules which mimic normal calculus.
We construct an increment in �S1, using the above result with the inclusion of a change in system entropy such that

d�S1 = d�Ssys + d (�Qex/kBTenv) = −d(ln p) −
∑

i

∂φ(x)

∂xi

◦ dxi = − 1

p(x)

∂p(x)

∂t
dt −

∑
i

1

p(x)

∂p(x)

∂xi

dxi

−Di(x)

[
1

p(x)

∂2p(x)

∂x2
i

− 1

(p(x))2

(
∂p(x)

∂xi

)2
]

dt − ∂φ(x)

∂xi

dxi − Di(x)
∂2φ(x)

∂x2
i

dt. (50)

Applying the same averaging procedure used to calculate 〈d�Stot〉, we find

〈d�S1〉 =
∑

i

∫
dx p(x)

∂Ai(x)

∂xi

dt − ∂2[Di(x)p(x)]

∂x2
i

dt + Di(x)

p(x)

(
∂p(x)

∂xi

)2

dt

−Di(x)
∂2p(x)

∂x2
i

dt − p(x)A(x)
∂φ(x)

∂xi

dt − p(x)D(x)
∂2φ(x)

∂x2
i

dt. (51)

However, using Eq. (47), we may represent this as

〈d�S1〉 =
∑

i

∫
dx

Di(x)

p(x)

(
∂p(x)

∂x2
i

)2

dt + p(x)Di(x)

(
∂φ(x)

∂x2
i

)2

dt − 2p(x)
∂Di(x)

∂xi

∂φ(x)

∂xi

− 2p(x)Di(x)
∂2φ(x)

∂x2
i

dt

+p(x)
∂2Di(x)

∂x2
i

dt − ∂2[Di(x)p(x)]

∂x2
i

dt − Di(x)
∂2p(x)

∂x2
i

dt. (52)

By further integration by parts, dropping boundary terms, and rearranging, this becomes

〈d�S1〉 =
∑

i

∫
dx

Di(x)

p(x)

(
∂p(x)

∂x2
i

)2

dt + p(x)Di(x)

(
∂φ(x)

∂x2
i

)2

dt + 2Di(x)
∂p(x)

∂xi

∂φ(x)

∂xi

dt, (53)
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which can be written

d〈�S1〉
dt

= d〈�Ssys + (�Qex/kBTenv)〉
dt

=
∑

i

∫
dx

p(x)

Di(x)

(
Ji(x)

p(x)
− J st

i (x)

pst(x)

)2

=
∑

i

∫
dx

p(x)

Di(x)

(
J ir

i (x)

p(x)
− J

st,ir
i (x)

pst(x)

)2

(54)

assuring the positivity of such a contribution. Since it can be
written in terms of the total current Ji in this way, it maps
precisely onto the nonadiabatic entropy production appearing
in [21] and thus can be expressed as

d〈�S1〉
dt

= −
∫

dx
∂p(x)

∂t
ln

p(x)

pst(x)
(55)

as highlighted by the authors of [21]. We emphasize, however,
that Eq. (55) is to be considered alongside the accompanying
SDE in Eq. (50), from which it has been derived directly, rather
than by a division of an observed positive contribution to the

mean rate of change of Gibbs entropy into presumed unique
transient and stationary terms.

B. Expressions for �S2

We may now by similar means consider an increment in
�S2 as follows:

d�S2 = ln
P(x′,t+dt |x,t)

Pad(εx′,t+dt |εx,t)
. (56)

In this case, the construction of the denominator follows
slightly different rules since, unlike �Stot and �S1, the alter-
native path, �xT, is based on a time reversal of the coordinates,
but otherwise follows the sequence of the forward path. As
such, b behaves in the same manner as a rendering r ′

i =
bx ′

i + (1 − b)xi , f (r ′)dxi = f (x)dxi + 2bD(x)∂f (x)/∂xidt ,
as detailed in Appendix A. In this case, the appropriate choice
for the equivalence of evaluation points r ′ = r is a = b.
For continuity, we may once again choose a = b = 1/2 with
Stratonovich multiplication rules: we represent the transition
probability appearing in the numerator through Eq. (24) and
the denominator by a similar means using the drift term given
in Eq. (43) and the path choice xT(t) = εx(t), such that

Pad(εx′,t + dt |εx,t)

=
∏

i

√
1

4πDi(εr)dt
exp

[
− (εidxi+{Ai(εr) − 2[∂Di(εr)/∂(εiri)]+2Di(εr)[∂φ(εr)/∂(εiri)]}dt+[∂Di(εr)/∂(εiri)]dt)2

4Di(εr)dt

+ dt

2

∂

∂(εiri)

(
Ai(εr) − 2

∂Di(εr)

∂(εiri)
+ 2Di(εr)

∂φ(εr)

∂(εiri)

)
+ dt

4

∂2Di(εr)

∂(εiri)2

]
. (57)

We can utilize the usual transformation rules and assumptions for Air, Arev, and Di and express ∂φ(εr)/∂(εiri) =
εi∂φ(εr)/∂ri = φ′

i(εr) [along with ∂2φ(εr)/∂(εiri)2 = φ′′
i (εx)] such that we can write the propagator as

Pad(εx′,t + dt |εx,t)

=
∏

i

√
1

4πDi(r)dt
exp

[
−

(
dxi + {

Air
i (r) − Arev

i (r) − 2[∂Di(r)/∂ri] + 2εiDi(r)φ′
i(εr)

}
dt + [∂Di(r)/∂ri]dt

)2

4Di(r)dt

+dt

2

∂

∂ri

(
Air

i (r) − Arev
i (r) − 2

∂Di(r)

∂ri

+ 2εiDi(r)φ′
i(εr)

)
+ dt

4

∂2Di(r)

∂r2
i

]
. (58)

Constructing the ratio in Eq. (56), we find

d�S2 =
∑

i

−Air
i (x)Arev

i (x)

Di(x)
dt + Air

i (x)

Di(x)
◦ dxi − ∂Air

i (x)

∂xi

dt + Di(x)[φ′
i(εx)]2dt − 2εi

∂Di(x)

∂xi

φ′
i(εx)dt

+ εi

[
Air

i (x) − Arev
i (x)

]
φ′

i(εx)dt + Arev
i (x)

Di(x)

∂Di(x)

∂xi

dt + εiφ
′
i(εx) ◦ dxi − 1

Di(x)

∂Di(x)

∂x
◦ dxi

+ ∂2Di(x)

∂x2
i

dt − Di(x)φ′′
i (εx)dt, (59)

which is the same as

d�S2 = d(�Qhk,G/kBTenv) =
∑

i

−Air
i (x)Arev

i (x)

Di(x)
dt + Air

i (x)

Di(x)
dxi + εiφ

′
i(εx)dxi − 1

Di(x)

∂Di(x)

∂x
dxi+ 1

Di(x)

(
∂Di(x)

∂xi

)2

dt

+Di(x)[φ′
i(εx)]2dt − 2εiφ

′
i(εx)

∂Di(x)

∂x
dt + εi

[
Air

i (x) − Arev
i (x)

]
φ′

i(εx)dt −
[
Air

i (x) − Arev
i (x)

]
Di(x)

∂Di(x)

∂xi

dt. (60)
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By employing the averaging procedure, we find

d〈�S2〉
dt

=
∑

i

∫
dx

p(x)

Di(x)

(
Air

i (x) − ∂Di(x)

∂xi

+ εiDi(x)φ′
i(εx)

)2

, (61)

which may be written

d〈�S2〉
dt

= d〈�Qhk,G/kBTenv〉
dt

=
∑

i

∫
dx

p(x)

Di(εx)

(
J

ir,st
i (εx)

pst(εx)

)2

. (62)

Such a form illustrates the positivity requirement of �S2 in
the mean, resulting from its adherence to an IFT, and again
Eq. (62) is to be considered alongside the complementary SDE
in Eq. (60). Since it is based on an integral over the stationary ir-
reversible flux, d〈�S2〉/dt describes a contribution to entropy
production which arises from an absence of detailed balance
and is nonzero both in and out of stationarity. This quantity is
to be contrasted with the adiabatic entropy production in [21],
which we may now consider to be a special case when there
are only even variables in the dynamics. We point out again the
importance of the direct derivation of this result from the SDE
in this formalism, as opposed to a division of the irreversible
flux into terms with structure based solely on pst(x), which
would not obviously have led to the above expression.

We note that the integral in Eq. (62) must reduce to
the total entropy production, and thus an integral over the

stationary irreversible flux (i.e., without the ε factors inside
the squared term in the integrand), in the stationary state,
but there are other circumstances when this correspondence
applies more generally. A first case is when the irreversible
stationary flux is proportional to the stationary distribution,
which would be the case for a nonequilibrium constraint that
is independent of the phase-space variables, as illustrated later
in example II, and a second case is when the total flux in
each coordinate is everywhere zero [Ji(x) = 0], such as for
independent variables, xi , defined on regions with natural or
reflecting boundaries.

C. Expressions for �S3

To complete the description of all three contributions to
entropy production, we now consider an increment in �S3.
By using the definition in Eq. (14),

d�S3 = ln
Pad(εx′,t + dt |εx,t)Pad(x,t + dt |x′,t)
P(x′,t + dt |x,t)P(εx,t + dt |εx′,t)

, (63)

together with the previously used propagators, and employing
the stationarity condition evaluated at εx,

∇ · J st(εx) = 0 =
∑

i

(
−[

Air
i (εx) + Arev

i (εx)
]
φ′

i(εx) + ∂Air
i (εx)

∂(εixi)
+ ∂Arev

i (εx)

∂(εixi)
− Di(εx)[φ′

i(εx)]2

− ∂2Di(εx)

∂(εixi)2
+ Di(εx)φ′′

i (εx) + 2
∂Di(εx)

∂(εixi)
φ′

i(εx)

)
e−φ(εx), (64)

we find

d�S3 = d(�Qhk,T/kBTenv) =
∑

i

φ′
i(x) ◦ dxi − εiφ

′
i(εx) ◦ dxi =

∑
i

ln
exp [−φ(x)]

exp [−φ(x′)]
exp [−φ(εx′)]
exp [−φ(εx)]

, (65)

which maps onto the same quantity derived from a master equation approach [23]. We can then construct the average contribution
by converting to Ito form and performing the path integral such that

〈d�S3〉 =
∑

i

∫
dx p(x)Ai(x)[φ′

i(x) − εiφ
′
i(εx)]dt + p(x)Di(x)[φ′′

i (x) − φ′′
i (εx)]dt (66)

and proceed to manipulate by integrating by parts, assuming the probability density and current vanish or cancel at boundaries,
such that

〈d�S3〉 =
∑

i

∫
dx p(x)Ai(x)[φ′

i(x) − εiφ
′
i(εx)]dt −

∫
dx

∂

∂xi

[p(x)Di(x)] [φ′
i(x) − εiφ

′
i(εx)]dt

=
∑

i

∫
dx [φ′

i(x) − εiφ
′
i(εx)]

(
Ai(x)p(x) − ∂

∂xi

[p(x)Di(x)]

)
dt

=
∑

i

∫
dx [φ′

i(x) − εiφ
′
i(εx)]Ji(x)dt =

∑
i

−
∫

dx [φ(x) − φ(εx)]
∂Ji(x)

∂xi

dt

= −
∫

dx [φ(x) − φ(εx)]

(∑
i

∂Ji(x)

∂xi

)
dt = −

∫
dx [φ(x) − φ(εx)] [∇ · J(x)] dt. (67)
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By substituting the original Fokker-Planck equation, we may
also write this as

d〈�S3〉
dt

= d〈�Qhk,T/kBTenv〉
dt

=
∫

dx
∂p(x)

∂t
[φ(x) − φ(εx)]

= −
∫

dx
∂p(x)

∂t
ln

pst(x)

pst(εx)
. (68)

This has a form similar to Eq. (55) and is clearly a contribution
to the mean total entropy production rate that behaves
transiently in a manner similar to �S1, but explicitly vanishes
when there are no odd variables in the dynamics. The quantity
�S1 appears in the Hatano-Sasa relation which describes
the entropy production associated with a transition between
different stationary states. However, in light of Eq. (68)
we suggest that �S1, and thus the Hatano-Sasa relation
and nonadiabatic entropy production, do not represent the
entire entropy production associated with transitions between
stationary states (or more generally relaxation) since, in the
mean, we can construct a new quantity that comprises all
contributions which are nonzero only during relaxation, by
combining Eqs. (55) and (68) giving

d〈�S1 + �S3〉
dt

= d〈�Ssys + (�Qex + �Qhk,T)/kBTenv〉
dt

= −
∫

dx
∂p(x)

∂t
ln

p(x)

pst(εx)
. (69)

This describes a contribution to the mean entropy production
rate which occurs when the system is out of stationarity, but it
does not obey an IFT and thus has no guarantee of positivity.

Our central results, therefore, are expressions for three
contributions to entropy production for arbitrary systems
with odd and even dynamical variables evolving according
to Ito SDEs with multiplicative noise. These expressions
apply to individual trajectories Eqs. (32), (50), (60), and
(65) and in the mean Eqs. (38), (54), (62), and (68). Such
a demonstration shows the additional complexity introduced
by the inclusion of odd variables if one insists on considering
entropy production to be due to relaxation or to nonequilibrium
constraints with particular reference to Eq. (69). One may
think of 〈�S1 + �S3〉 as describing a transient contribution
to entropy production in the same manner as 〈�S1〉, but with
the further specification of the nature of the coordinates: the
entropy production depends on whether the variables being
described are odd or even. The additional complexity of
�S3 arises because Eq. (69) can only differ from Eq. (55)
when the stationary state is out of equilibrium, such that
pst(x) 
= pst(εx).

We of course expect and require that the contributions
detailed here are related such that

d〈�Stot〉
dt

= d〈�S1〉
dt

+ d〈�S2〉
dt

+ d〈�S3〉
dt

(70)

yet their forms derived above do not obviously lend themselves
to such a demonstration immediately. For completeness, this
is shown in Appendix B.

V. EXAMPLE I: STATIONARY HEAT TRANSPORT

We provide as a first example of usage of the above
formalism a physical situation which necessitates the use
of odd variables in order to describe entropy production
adequately: heat transport due to diffusion in one spatial
dimension in the presence of a spatially dependent temperature
field. Mathematically this system may be modeled without odd
(velocity) variables by employing the overdamped limit and
constructing a multiplicative SDE and Fokker-Planck equation
of the form

dx = F (x)

mγ
dt +

√
2kBT (x)

mγ
dW (71)

and

∂p(x,t)

∂t
= − ∂

∂x

(
F (x)p(x,t)

mγ

)
+ ∂2

∂x2

(
kBT (x)p(x,t)

mγ

)
,

(72)

where m is the particle mass, γ is the damping coefficient,
and F (x) is the force operating on the particle. We note the
Ito form of both (for a discussion of the resolution of the Ito-
Stratonovich dilemma in this case, see, for example, [32–34]).
This Fokker-Planck equation has a stationary distribution

pst(x) = Nm

kBT (x)
exp

[∫ x

0
dx ′ F (x ′)

kBT (x ′)

]
, (73)

where N is a normalization constant. We can quite readily
identify the terms Air

x = F (x)/mγ , Arev
x = 0, and Dx(x) =

kBT (x)/mγ . However, when we come to construct the
dimensionless entropy production in the stationary state from
Eq. (32) as

d�Stot

= Air
x (x)

Dx(x)
◦ dx − 1

Dx(x)

∂Dx(x)

∂x
◦ dx − 1

pst(x)

∂pst(x)

∂x
◦dx

=
[

F (x)

kBT (x)
− 1

T (x)

∂T (x)

∂x
− 1

pst(x)

(
− 1

T (x)

∂T (x)

∂x
pst(x)

+ F (x)

kBT (x)
pst(x)

)]
◦ dx

= 0, (74)

we find that there is zero entropy production for all trajectories.
This may be understood either physically by recognizing that
in the overdamped limit one demands that the velocity dis-
tribution relaxes instantaneously, thereby preventing any heat
transfer due to temperature inhomogeneities, or geometrically
by recognizing the impossibility of having stationary flow, and
thus entropy production, for a system in one dimension with
natural boundaries.

To provide a satisfactory representation and to understand
the entropy production in such a system, we need to consider
the more realistic underdamped dynamics in full phase space
where we retain both position and velocity coordinates, x and
v, which are even and odd under time reversal, respectively.
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The SDEs and Fokker-Planck equation are now given as

dx = v dt,
(75)

dv = −γ v dt + F (x)

m
dt +

√
2kBT (x)γ

m
dW,

and

∂p(x,v,t)

∂t
= −v

∂p(x,v,t)

∂x
− ∂

∂v

[(
F (x)

m
− γ v

)
p(x,v,t)

]

+ kBT (x)γ

m

∂2p(x,v,t)

∂v2
. (76)

We may then identify the terms Air
x = 0, Arev

x = v, Air
v = −γ v,

Arev
v = F (x)/m, Dx = 0, and Dv = kBT (x)γ /m. By Eq. (32),

the dimensionless entropy production is

d�Stot

= −d[ln p(x,v,t)] − mv

kBT (x)
◦ dv + Fv

kBT (x)
dt

= −d[ln p(x,v,t)] − 1

kBT (x)
d

(
mv2

2

)
+ F

kBT (x)
dx

(77)

using v ◦ dv = (1/2)(v′ + v)(v′ − v) and v dt = dx, and not-
ing that x is now deterministic, meaning the integration rules
are irrelevant. The second and third terms correctly reproduce
the form of the change in medium entropy as heat transfer to the
environment, equal to negative heat transfer to the particle (in
agreement with the result found in stochastic energetics [35]),
divided by the instantaneous temperature, and do so only by
virtue of the consideration of odd and even variables. We can
use this SDE to produce distributions of entropy production
and verify relevant fluctuation theorems. To do so, however,
requires knowledge of the solution to the Fokker-Planck
equation, for which there is no simple analytical form. To
proceed, we restrict ourselves to the stationary state and utilize
the expansion found in [34] and [36], which expresses the
stationary solution as a series expansion about the overdamped
distribution:

pst,over(x,v) = Nm

kBT (x)
exp

[∫ x

0
dx ′ F (x ′)

kBT (x ′)

]

×
√

m

2πkBT (x)
exp

[
− mv2

2kBT (x)

]
, (78)

where N is determined by normalization, such that

pst(x,v) = pst,over(x,v) +
∞∑
i=1

(1/γ )ipi(x,v), (79)

pi(x,v) has a general form

pi(x,v)

=
k=bi∑
k=ai

ci,k(x)Hk[v
√

m/kBT (x)]√
2πkBT (x)/m

exp

[
− mv2

2kBT (x)

]
, (80)

where constants ai ,bi and functions ci,k(x) are found by
an iterative procedure, and Hk(y) are Hermite polynomials
defined as

Hk(y) = (−1)ke
y2

2
dk

dyk
e

−y2

2 . (81)

While the expansion has the formal deficiency that the
expansion parameter is not unitless, it suffices for a theoretical
illustration in which we can consider it in a limit where it is
appropriate. We consider units kB = T = m = 1, a harmonic
confining potential such that F (x) = −x, a temperature profile

T (x) = 1 + 1
2 tanh(x), (82)

and we approximate the stationary distribution by considering
the expansion in Eq. (79) to fourth order in γ −1, applying the
formalism numerically.

We first demonstrate that this approach yields a result
which maps onto the expected phenomenological expression
for dimensionless internal entropy generation [37],

d〈�Stot〉
dt

=
∫ +∞

−∞
dx JQ(x)

∂

∂x

(
1

kBT (x)

)
, (83)

where JQ(x) is the stationary heat current defined as

JQ(x) =
∫ +∞

−∞
dv

1

2
mv3pst(x,v). (84)

Figure 1 shows the dimensionless entropy production
obtained by performing the integral in Eq. (83) using a
numerically calculated pst(x,v), compared with that obtained
by averaging the SDE in Eq. (77) by Monte Carlo simulation
of the underlying particle dynamics, for a range of damping
coefficients, alongside a demonstrably positive first-order
approximation based on the first correction term in Eq. (79)

d
Δ
S t

o
t

/
d
t

γ−1

1storder approx.
heat flow

d ΔStot /dt

FIG. 1. (Color online) Mean dimensionless entropy production
for example I for a range of damping coefficients as predicted by
a first-order approximation in Eq. (85) (solid line), an integral over
the heat current, Eq. (83) (dashed line), and a Monte Carlo average
based on the SDE in Eq. (77) (crosses). Simulations were performed
by initialization of particles into the stationary distribution using a
simple reject/accept algorithm along with a burn-in time of t = 10.
We performed 3 × 107 Monte Carlo runs utilizing a forward Euler
discretization method with time step dt = 1.0 × 10−3 to solve the
SDE in Eq. (77). The same method was utilized for all subsequent
figures in example I.
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given by [34]

d〈�Stot〉
dt



∫ +∞

−∞
dx

kBpst(x)

2mγT (x)

(
∂T (x)

∂x

)2

, (85)

where

pst(x) =
∫ +∞

−∞
dv pst(x,v). (86)

Our formalism for the rate of change of 〈�Stot〉 agrees with
Eq. (83) and both are consistent with Eq. (85) in the γ → ∞
limit where the system’s proximity to local equilibrium brings
it within the scope of linear irreversible thermodynamics as
evidenced by the dependence on the square of the temperature
gradient.

We point out that total entropy production decreases as
coupling to the environment increases, which may seem coun-
terintuitive, but we emphasize that with increased coupling,
despite greater heat transfer to and from the environment, there
is highly diminished spatial heat transport (the latter being the
cause of entropy production) as the system is brought closer
to a local equilibrium.

We can use the SDE for entropy production Eq. (77)
to move beyond a classical description of mean entropy
production to one described by Jarzynski, Seifert, Sekimoto,
and others [8,26,38], where we can identify entropy generating
and destroying trajectories. We can explicitly calculate the
distribution of total entropy production which is shown
for γ = 10 in Fig. 2 for various process intervals, along
with a demonstration that it adheres to an IFT throughout.
Additionally, since we consider the stationary state, we
can demonstrate a detailed fluctuation theorem of the form
p(�Stot)/p(−�Stot) = exp(�Stot) [11] as shown in Fig. 3.

Finally we point out that, being in the stationary state,
d〈�S3〉/dt = 0, but since it is a nonequilibrium stationary
state that is asymmetric in the odd velocity variable, we have

p
(Δ

S t
o
t
)

ΔStot

e
x
p

[ −
Δ

S t
o
t
]

t

FIG. 2. (Color online) Distributions of dimensionless total en-
tropy production �Stot for example I for γ = 10 together with a
demonstration of adherence to an IFT. Distributions shown are for
process intervals from t = 2 (narrowest) to t = 44 (widest) in steps
of six units.

ΔStot

ln [p(ΔStot)/p(−ΔStot)]

ΔStot

FIG. 3. (Color online) Verification of a detailed fluctuation
theorem for example I using data from simulation for γ = 10 at
time t = 8.

�S3 
= 0 in detail, as is clear in Eq. (65). We can demonstrate
the increasing range of values of �S3 as γ is reduced and the
system is taken further away from local equilibrium, with its
symmetric velocity distribution, by generating the distribution
of �S3 using Eq. (65) for a given time interval, as shown in
Fig. 4. Such a result highlights the fact that although a nonzero
d〈�S3〉/dt is only possible during relaxation, as shown by
Eq. (68), the specific evolution of �S3 for each trajectory is
brought about by nonequilibrium constraints that cause the
stationary solution to depart from equilibrium.

p
(Δ

S 3
)

ΔS3

FIG. 4. (Color online) Distributions of �S3 for example I
evaluated at t = 8 for a range of γ from γ −1 = 0.1 (narrowest) to
γ −1 = 0.4 (widest).
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VI. EXAMPLE II: PARTICLE DRIVEN
BY A NONCONSERVATIVE FORCE

Once again utilizing the full phase-space Langevin descrip-
tion of the dynamics, we consider diffusion of a particle on a
ring driven by a spatially independent nonconservative force
and spatially independent (additive) noise such that

dx = v dt,

dv = −γ v dt + F (t)

m
dt +

√
2kBT γ

m
dW, (87)

thus giving Air
x = 0, Arev

x = v, Air
v = −γ v, Arev

v = F (t)/m,
Dx = 0, and Dv = kBT γ /m. For any nonzero value of F (t),
there will exist a stationary solution with an asymmetric
Gaussian distribution in v and a uniform distribution in x

due to the symmetry of the problem. Any relaxation from a
given stationary state caused by changes to the nonconservative
force will then also result in a uniform distribution in x for all
time by the translational symmetry. As such, we may proceed
by considering the marginalized velocity distribution when
starting from a stationary state. Exploiting the fact that the
initial Gaussian solution will remain Gaussian for any F (t),
we can parametrize a transient solution to the Fokker-Planck
equation

p(x,v,t) ∝
√

m

2πkBT
exp

[
−m(v − 〈v〉)2

2kBT

]
(88)

with

d〈v〉
dt

=
(

F

m
− γ 〈v〉

)
(89)

such that

〈v〉st = F

mγ
. (90)

A scenario in which closed-form solutions exist for all
contributions to entropy production is that of an instantaneous
step change in the driving force F (t), so that we have

F (t) =
{

F0, t < t0,

F1, t � t0
(91)

and

〈v〉(t) =
{

F0/mγ , t < t0,

[F1 + e−γ (t−t0)(F0 − F1)]/mγ , t � t0.
(92)

Performing the relevant integrals in Eqs. (38), (54), (62), and
(68), we then obtain

d〈�Stot〉
dt

=

⎧⎪⎨
⎪⎩

F 2
0 /mγ kBT , t < t0,

[F0 + F1(eγ (t−t0) − 1)]2

×e−2γ (t−t0)/mγ kBT , t � t0,

(93)

d〈�S1〉
dt

=
{

0, t < t0,

e−2γ (t−t0)(F0 − F1)2/mγ kBT , t � t0,
(94)

d〈�S2〉
dt

=
{

F 2
0 /mγ kBT , t < t0,

F 2
1 /mγ kBT , t � t0,

(95)

d
Δ

/
d
t

t

d ΔStot
dt

=
d ΔSsys+ΔQ/Tenv

dt
d ΔS1

dt
=

d ΔSsys+ΔQex/Tenv
dt

d ΔS2
dt

=
d ΔQhk,G/Tenv

dt

FIG. 5. (Color online) Positive mean rates of dimensionless
entropy change against time for example II, where we consider the
transition between stationary states of a driven particle on a ring with
F0 = 1, F1 = −1, t0 = 1, and kB = m = γ = T = 1.

and

d〈�S3〉
dt

=
{

0, t < t0,

−2e−γ (t−t0)F1(F1 − F0)/mγ kBT , t � t0.

(96)

Choosing the specific case of a reversal of the driving force
such that it changes from F0 = 1 to F1 = −1 at time t0 = 1
and employing units kB = m = γ = T = 1, we can generate
the results shown in Figs. 5 and 6.

We note first that the mean rates of change of all three
contributions �Stot, �S1, and �S2 are positive, reflecting
their adherence to an IFT. All three mean rates of change
are constant for t < t0 = 1, are perturbed by the change in
direction of the force, and relax back to constant values

d
Δ

/
d
t

t

d ΔS1+ΔS3
dt

d ΔS2+ΔS3
dt

=
d ΔQhk/Tenv

dt

d ΔS3
dt

=
d ΔQhk,T/Tenv

dt

FIG. 6. (Color online) Unbounded mean rates of dimensionless
entropy change for example II, the driven system on a ring with
F0 = 1, F1 = −1, t0 = 1, and kB = m = γ = T = 1.
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consistent with the transition between the stationary states.
A key feature of this behavior is that upon perturbation,
the total entropy production rate decreases, which would not
emerge using an overdamped description of the dynamics. This
feature can be explained by the existence of the d〈�S3〉/dt

contribution to the mean entropy production rate, which may
take negative values depending on the relationship between
the instantaneous distribution and the stationary distribution.
In this specific case, the large negative value for d〈�S3〉/dt

indicates that upon reversal of the force, the instantaneous
distribution corresponds to particle motion, on average, in a
direction counter to that expected to result from the new value
of the force. The velocity distribution does relax, of course,
to the distribution that corresponds to the new value of the
force and so the mean rate of change of �S3 decays away. An
important point to draw from Fig. 6 is that �S3, �S1 + �S3,
and �S2 + �S3 cannot be expected, in general, to be positive,
reflecting that they cannot be expressed in the form of Eq. (9)
and thus do not obey IFTs. This means previous approaches
in which the entropy production can always be divided into
two positive quantities [19–21] and where the housekeeping
heat can be expected to obey an IFT [14] do not extend to the
systems considered here.

We consider this example to be a helpful illustration of
how entropy production cannot always be divided into two
contributions which derive from relaxation and an absence of
detailed balance due to a nonequilibrium constraint, respec-
tively. Explicitly, the nonequilibrium constraint here is the
constant force which produces entropy in the stationary state
by inducing a constant flux around the ring. The mean rate of
entropy production in the stationary state is characterized by
d〈�S2〉/dt , which remains constant throughout the process
due to the constant magnitude of the force that is applied.
However, both �S2 and �S3 are nonzero only in the presence
of a nonequilibrium constraint which breaks detailed balance.
At the same time, the mean rate of change of �S3 is nonzero
only when the distribution is relaxing to a new stationary
solution, in the same manner as �S1. While �S1 describes
the entropy production that arises from an evolution of the
probability distribution of a general set of variables, �S3

expresses what �S1 explicitly leaves out: the additional impact
of relaxation on entropy production that relates to the a
priori physical specification of the variables as odd or even.
Clearly, given that the nonequilibrium constraint is a force
of constant magnitude, reflected by the constant d〈�S2〉/dt ,
it is reasonable to consider the sum of �S1 and �S3 as the
contribution that arises due to relaxation to a new stationary
state, particularly when the form of its mean rate of change in
Fig. 6 is contrasted with that of �Stot, �S1, and �S2 in Fig. 5.
We may make the analysis complete by considering the SDEs
for all contributions. The explicit Ito forms of Eqs. (32), (50),
(60), and (65) are given as

d�Stot= − m

kBT
〈v〉dv − m

kBT
(v − 〈v〉) d〈v〉

dt
dt+F (t)

kBT
dx,

(97)

d�S1 = 1

kBT

(
F (t)

γ
− m〈v〉

)
dv − m

kBT
(v − 〈v〉) d〈v〉

dt
dt,

(98)

d�S2 = F (t)

γ kBT
dv + F (t)

kBT
dx, (99)

d�S3 = − 2F (t)

γ kBT
dv (100)

and illustrate the behavior of all the contributions. d�Stot is
only zero when 〈v〉 = 0, F = 0, and d〈v〉/dt = 0, meaning
the system is in the equilibrium state. d�S1 is zero whenever
〈v〉 = F/mγ and d〈v〉/dt = 0 corresponding to any station-
ary state, equilibrium or otherwise, while d�S2 and d�S3

contribute independently of properties of the distribution
(namely 〈v〉), but only when the nonequilibrium constraint
is present such that F (t) 
= 0. d�S3, however, has a mean
contribution of zero at stationarity since 〈dv〉 = 0 for any
stationary state. We can calculate distributions of all the
contributions, as measured from the force reversal, numerically
using the above SDEs, and we demonstrate the validity of
IFTs, where appropriate, in Figs. 7 and 8. We observe that all
distributions take Gaussian form, to be expected, as the model
is essentially a recasting of the overdamped dragged oscillator
found in [39] where the further, but nongeneral, detailed fluc-
tuation theorem symmetry p(�Stot)/p(−�Stot) = exp (�Stot)
has been noted to hold over finite times [39], but is stressed
elsewhere [40] to be coincidental. Further insight into this
coincidence can be derived from the form of the SDEs which
yield Gaussian distributions (for the given initial conditions)
since they comprise only drift and additive noise terms [that is,
no terms of the form f (v)dv]. Such properties, however, do not
distract attention from the nature of the contributions which
can be readily observed: the distributions in �S1 and �S3

develop fastest at first, reflecting the initially fast response of
the distribution to the change in force. However, distributions
for both �S2 and �Stot develop steadily, owing to their

p
(Δ

S)

ΔS

Δt = 1

p
(Δ

S)

ΔS

Δt = 2

p
(Δ

S)

ΔS

Δt = 3

p
(Δ

S )

ΔS

Δt = 4

FIG. 7. (Color online) Distributions of entropy productions �Stot

(solid line), �S1 (wide dashed line), �S2 (narrow dashed line), and
�S3 (dotted line) measured at times �t = t − t0 = 1, �t = 2, �t =
3, and �t = 4 after the reversal of the force for F0 = 1, F1 = −1,
t0 = 1, and kB = m = γ = T = 1. We performed 7.5 × 106 Monte
Carlo runs with time step dt = 1 × 10−3 to generate the contents of
all results in example II.
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FIG. 8. (Color online) Illustration of adherence to IFTs by
consideration of the average 〈exp[−�S]〉 against time �t = t − t0
after the force reversal, for �Stot, �S1, and �S2 (indicated) and
the failure to adhere to an IFT of �S3 (solid line, fourth subplot),
�S1 + �S3 (wide dashed line, fourth subplot), and �S2 + �S3

(narrow dashed line, fourth subplot) for F0 = 1, F1 = −1, t0 = 1,
and kB = m = γ = T = 1.

contributions being characterized by steady heat dissipation.
As such, as time progresses, the distribution of �S1 ceases
to develop as the system reaches the new stationary state
and the distributions of �S2 and �Stot continue to shift to
the right until they eventually dominate. Similarly for �S3,
we observe here that the distribution stops evolving despite
receiving nonzero contributions.

For completeness, we investigate the same model with a less
trivial time dependence in the nonconservative force, along
with its approach to the overdamped limit where such systems
have been considered previously [21,41]. We employ the force
protocol

F (t) = 1.5 − 0.5 tanh[−5(t − 1)] (101)

and perform the calculations numerically for two values of
damping coefficient, γ = 1 and 5. We point out again that
the meaning of d〈�S2〉/dt for this system is easily elucidated
since the nonequilibrium constraint, F (t), being phase-space-
independent, leads to J ir,st

v ∝ pst so that

d〈�S2〉
dt

= d〈�Stot〉st

dt
= F (t)2

mγkBT
. (102)

The mean contributions for such a protocol for two values
of the damping coefficient, again starting from the stationary
state, are shown in Fig. 9. Note that in this case, the contribution
d〈�S3〉/dt is positive, reflecting that as the nonconservative
force decreases, the instantaneous distribution corresponds to
a greater average particle flux than would be expected from
the instantaneous value of the force, thus producing more
entropy in the process of relaxation from one stationary state
to the other than would be expected if the relaxation were
instantaneous. As γ increases, the asymmetry of the stationary

d
Δ

/
d
t

t

γ = 1

d
Δ

/
d
t

t

γ = 5

t

F (t)

FIG. 9. (Color online) Mean rates of change of �S1 (wide dashed
line), �S2 (narrow dashed line), �S3 (dotted line), and their sum
�Stot (solid line) for example II with a time-dependent force given
by Eq. (101) with units kB = m = T = 1, and for γ = 1 (top) and
γ = 5 (bottom).

state (in velocity) decreases and the contribution from �S3

diminishes. Consequently, the two stationary distributions
become increasingly similar, meaning the contribution �S1

also diminishes rendering the total entropy production almost
entirely comprised of the contribution from �S2. When the
full overdamped limit is taken, �S2 is the only contribution
and the results map onto those found in [21].

VII. DISCUSSION AND CONCLUSIONS

We have derived SDEs describing the fluctuating evolution
of three contributions to entropy production, along with
expressions for their mean behavior, and we demonstrated that
two of these contributions obey IFTs and thus are rigorously
positive in the mean. Furthermore we have demonstrated
that while these two naturally align themselves with the
irreversibility associated with relaxation and nonequilibrium
constraints, respectively, the inclusion of odd dynamical
variables can give rise to a third term, which has no bounds
on its sign and which cannot be so readily associated with one
origin of entropy production or the other. We have sought to
make these expressions as general as possible, within reason,
with the intention that they may be applied to any system
(physical or otherwise) described by stochastic differential
equations, providing a framework for the discussion of entropy
production, as defined here, within as wide a range of appli-
cations as may be relevant. To this end, we have considered a
simple heat conduction problem, and after demonstrating that
a full phase-space representation of the dynamics is crucial
to the treatment of its entropy production, we have examined
specifically how it may be evaluated. The second example, that
of a transition between stationary states of drift and diffusion
on a ring, demonstrates the need for a third contribution to
entropy production in the analysis, and provides some intuitive
understanding of its nature.
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We suggest that the division of the total entropy production
into �S1, �S2, and �S3, as we propose, is always helpful
for three main reasons. The first is the ability to identify
the physical origins of irreversibility in a process (relaxation
and nonequilibrium constraints) and the interplay between
them. The second is related to the identification of IFTs
with the subsequent positivity requirements and restrictions
on the statistics for the two contributions, �S1 and �S2,
which unambiguously align themselves with the two causes
of irreversibility. And thirdly, the more delicate reason is
that all three contributions are constructed from total path
probability densities with equivalent measures such that they
align themselves unambiguously with the same contributions
found in master equation approaches which are necessarily
formed from path probabilities [23]. This third point may be
contrasted with an alternative division of the total entropy
production into a system and medium contribution, neither of
which can be expressed as ratios of total path probabilities.
Being formed from a probability density, the system entropy,
as defined in [11] and employed here [Eq. (16) implies
Ssys = − ln p(x(t),t)], is strictly not dimensionally correct
(even if one argues that the relative entropy change is well
defined [26]), but moreover it does not share the same form as
the system entropy that appears in master equation approaches,
which if followed would imply Ssys = − ln p(x(t),t)dx(t).
Such ambiguity then also enters into the definition of the
medium entropy, but can be avoided altogether by considering
the total entropy production in terms of explicit measures of
irreversibility such that �Stot is comprised of �S1, �S2, and
�S3, all four of which do not suffer from such issues.

We note that despite restricting ourselves to uncorrelated
processes for the sake of clarity, the method utilized extends
naturally to multidimensional Ito processes of the form
dx = A(x,t)dt + B(x,t)dW in vector form and where dW
is a vector of independent uncorrelated Wiener processes
and B(x) ≡ B(x,t) is a matrix such that the generalized
Fokker-Planck equation is governed by the diffusion matrix
D(x) = (1/2)B(x)B(x)T with inverse D−1(x). This can be
achieved by utilizing the full form of the propagator found
in [29] and recognizing that the conversion from Stratonovich
to Ito form for the averaging introduces an additional term for
every independent Wiener process with which the increment
is correlated. The condition Di(εx) = Di(x) is extended to
be Dij (εx) = εiεjDij (x) (which in some instances, where an

odd and even variable are entirely correlated, is necessary for
the reverse path to exist) and renders the mean contribution
d〈�S3〉/dt unchanged and the remainder of the form

d〈�Stot〉
dt

=
∫

dx p(x)

[
J ir(x)

p(x)

]T

D−1(x)

[
J ir(x)

p(x)

]
, (103)

d〈�S1〉
dt

=
∫

dx p(x)

×
[

J ir(x)

p(x)
− J ir,st(x)

pst(x)

]T

D−1(x)

[
J ir(x)

p(x)
− J ir,st(x)

pst(x)

]
,

(104)

and

d〈�S2〉
dt

=
∫

dx p(x)

[
J ir,st(εx)

pst(εx)

]T

D−1(εx)

[
J ir,st(εx)

pst(εx)

]
,

(105)

all three of which are non-negative since D−1(x) is positive
semidefinite. We must acknowledge the restriction Dij (εx) =
εiεjDij (x) [and the equivalent Di(εx) = Di(x)] used in this
work, but we note that its relaxation, in general, may not be
straightforward. However, we point out that systems without
such a symmetry are unlikely to be physically meaningful. It
would be natural, however, to explore examples involving odd
dynamical variables such as angular momentum and magnetic
dipole moments, and to include driving by external forces
that are themselves odd under time reversal, such as torques
and magnetic fields. We expect to find further richness in
the phenomenology of entropy production associated with
stochastic dynamical behavior.
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APPENDIX A: THE USE OF SHORT TIME PROPAGATORS
WITH MULTIPLICATIVE NOISE

Here we consider one of the terms in Eq. (25) and derive
Eq. (29). By utilizing Eqs. (24) and (28), we can describe an
increment in the medium entropy production according to the
formalism of Seifert [11] as

d�Smed =
∑

i

1

2
ln Di(r ′)− 1

2
ln Di(r)+ dx2

i

4Di(r ′)dt
− dx2

i

4Di(r)dt
+ dxi

2

(
Arev

i (r)

Di(r)
+ Air

i (r)

Di(r)
+ Air

i (r ′)
Di(r ′)

− Arev
i (r ′)

Di(r ′)

− 2a
1

Di(r)

∂Di(r)

∂ri

−2b
1

Di(r ′)
∂Di(r ′)

∂r ′
i

)
− dt

4

([
Arev

i (r) + Air
i (r)

]2

Di(r)
−

[
Arev

i (r ′) − Air
i (r ′)

]2

Di(r ′)

)

− adt

[
Di(r)

∂

∂ri

(
Air

i (r)

Di(r)

)
+ Di(r)

∂

∂ri

(
Arev

i (r)

Di(r)

) ]
−bdt

[
− Di(r ′)

∂

∂r ′
i

(
Air

i (r ′)
Di(r ′)

)
+ Di(r ′)

∂

∂r ′
i

(
Arev

i (r ′)
Di(r ′)

) ]

+ a2dt

[
∂2Di(r)

∂r2
i

− 1

Di(r)

(
∂Di(r)

∂r2
i

)2
]

−b2dt

[
∂2Di(r ′)

∂r ′2
i

− 1

Di(r ′)

(
∂Di(r ′)

∂r ′2
i

)2
]

, (A1)

where time dependence in variables Air, Arev, and Di is assumed but not explicitly written for brevity. We may proceed by
understanding that the quantity dxi is an increment in an underlying SDE, meaning that we must consider all multiplications of
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the form f (r)dx as infinitesimal stochastic integrals with a summation rule defined by the evaluation point r . For example, r = x

would imply an Ito integration, r = (1/2)(x + x ′) would imply Stratonovich, and so on. To consolidate the above, it is sensible
to convert all multiplications into one type, for which we choose Ito in order to apply the Ito stochastic calculus transparently
using the heuristic rules (dWi)2 = dt and dWidWj = 0, and to drop all terms of order dt3/2 and higher. To do so, we apply the
following reasoning. For a suitably smooth function, f (r), and for infinitesimal dt , with r constructed from x and x′ using a
parameter a, and for the case of a diagonal diffusion matrix, we may write

f (r) = f [(1 − a)x + ax′] 
 (1 − a)f (x) + af (x′) = f (x) + a[f (x′) − f (x)] = f (x) + adf (x)

= f (x) + a

(
∂f (x)

∂t
dt+∇f (x) · dx +

∑
i

Bi(x)2

2
∇2f (x)dt

)

= f (x) + a

(
∂f (x)

∂t
dt +

∑
i

1

2
[Bi(x)]2∇2f (x)dt +

∑
i

∂f (x)

∂xi

[Ai(x)dt + Bi(x)dWi]

)
. (A2)

Considering all instances of multiplication along with the
definitions of r , r ′, a, and b, we find the following heuristic
rules:

f (r)dt = f (x)dt + O(dt3/2), (A3)

f (r ′)dt = f (x)dt + O(dt3/2), (A4)

f (r)dxi = f (x)dxi + 2aDi(x)
∂f (x)

∂xi

dt + O(dt3/2), (A5)

f (r ′)dxi = f (x)dxi + 2(1 − b)Di(x)
∂f (x)

∂xi

dt + O(dt3/2),

(A6)

giving us a method for converting all multiplications into Ito
form. We use a similar reasoning to approximate

Di(r) 
 Di(x) + ad[Di(x)] (A7)

Di(r ′) 
 Di(x) + (1 − b)d[Di(x)] (A8)

which along with the approximations to second order in dxi ,
and therefore d[Di(x)], of the form

{1 + d[Di(x)]}−1 
 1 − d[Di(x)] + d[Di(x)]2, (A9)

ln{1 + d[Di(x)]} 
 d[Di(x)] − d[Di(x)]2

2
, (A10)

and an Ito definition of d[Di(x)], allow us to write the first
four terms in Eq. (A1) to first order in dt as

1

2
ln Di(r ′)− 1

2
ln Di(r)+ dx2

i

4Di(r ′)dt
− dx2

i

4Di(r)dt


 [(1 − b)2 − a2]

2Di(x)

(
∂Di(x)

∂xi

)2

dt. (A11)

Using the above, and the heuristic rules in Eqs. (A3)–(A6), we
obtain

d�Smed =
∑

i

Air
i (x)

Di(x)
dxi − Arev

i (x)Air
i (x)

Di(x)
dt

+ ∂Air
i (x)

∂xi

dt − ∂Arev
i (x)

∂xi

dt

+ Arev
i (x)

Di(x)

∂Di(x)

∂xi

dt− Air
i (x)

Di(x)

∂Di(x)

∂xi

dt

− (a +b)
1

Di(x)

∂Di(x)

∂xi

dxi

+ (b2− 2b−a2)

[
∂2Di(x)

∂x2
i

− 1

Di(x)

(
∂Di(x)

∂xi

)2]
dt

+ [(1−b)2−a2]

2Di(x)

(
∂Di(x)

∂xi

)2

dt, (A12)

which depends on the choice of a and b. We note, however,
that without multiplicative noise [i.e., for (∂/∂xi)Di(x) = 0],
where the inherent mathematical ambiguity in stochastic
integrals is absent, the dependence on evaluation points (a
and b) disappears. So this dependence is evidently related to
the ambiguity of the evaluation point in a stochastic integral.
However, the underlying SDEs and entropy are not, and should
not be, ambiguous since we have specified Ito SDEs and
have used the short time propagator appropriate for their
corresponding Fokker-Planck equation. Since all evaluation
points lead to the correct path probability density, we are not
obliged to consider, for example, only Ito-type multiplication
(a = b = 0) simply because the underlying SDEs are of Ito
form. Rather, to proceed we recognize that with multiplicative
noise, we must ensure that we evaluate the two transition
probability densities at precisely the same coordinates and
not just at the same time (which would suffice for additive
noise), for the same reasons that make stochastic integration
sensitive to the specific integration scheme when the integrand
has a dependence on the integrating variable. Alternatively,
it may be reasoned that as dt → 0, we require the short
time propagators to approach jump transition probabilities
of a master equation. Under such a description, the entropy
production can be unambiguously described by the ratios of
probabilities appearing in a master equation approach [19,23].
Therefore, if we represent such a quantity using the short time
propagators, we require the transition rates in both numerator
and denominator to be evaluated equivalently. Since these are
characterized by our system variables Ai , Bi , etc., to effect such
a condition we require r ′ = r , which is equivalent to making
the choice b = 1 − a, noting that a is still a free parameter.
One may think of this as insisting that the path transformation
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�x†(t) = ε�x(τ − t) persists on a (sub) infinitesimal scale, which
would not matter in normal calculus, so that the noise is
experienced in precisely the right way. Inserting b = 1 − a

into the above yields Eq. (29), which has no dependence on
the choice a, an indication that it is defined in a sound fashion.

APPENDIX B: CONSISTENCY OF
ENTROPY CONTRIBUTIONS

By construction, we have �Stot = �S1 + �S2 + �S3,
which according to the expressions in Eqs. (38), (54), (62),
and (68) means we require

d〈�Stot〉
dt

=
∑

i

∫
dx

[
J ir

i (x)
]2

p(x)Di(x)

=
∑

i

∫
dx

p(x)

Di(x)

(
J ir

i (x)

p(x)
− J

st,ir
i (x)

pst(x)

)2

+
∫

dx
p(x)

Di(εx)

(
J

ir,st
i (εx)

pst(εx)

)2

+
∫

dx Ji(x)[φ′
i(x) − εiφ

′
i(εx)]. (B1)

Thus in order that everything is consistent, we require

0 =
∑

i

∫
dx

[
− 2

J ir
i (x)

Di(x)

J
ir,st
i (x)

pst(x)
+ p(x)

Di(x)

(
J

ir,st
i (x)

pst(x)

)2

+ p(x)

Di(εx)

(
J

ir,st
i (εx)

pst(εx)

)2

+ Ji(x)[φ′
i(x) − εiφ

′
i(εx)]

]
.

(B2)
By substitution of the definitions of the fluxes, this reduces to

0 =
∑

i

∫
dx

[
2Air

i (x)
∂p(x)

∂xi

− 2
∂Di(x)

∂xi

∂p(x)

∂xi

+ ∂[Di(x)p(x)]

∂xi

[φ′
i(x) + εiφ

′
i(εx)]

+p(x)Di(x){[φ′
i(x)]2 + [φ′

i(εx)]2}

− 2p(x)
∂Di(x)

∂xi

[φ′
i(x) + εiφ

′
i(εx)]

+p(x)
[
Air

i (x) + Arev
i (x)

]
φ′

i(x)

+ εip(x)
[
Air

i (x) − Arev
i (x)

]
φ′

i(εx)

]
. (B3)

Integrating by parts, dropping or canceling boundary terms,
and using the definition of the irreversible and reversible drift
terms yield the condition

0 =
∑

i

∫
dx p(x)

[
− 2

∂Air
i (x)

∂xi

+ 2
∂2Di(x)

∂x2
i

−Di(x)[φ′′
i (x)+φ′′

i (εx)]+Di(x){[φ′
i(x)]2 + [φ′

i(εx)]2}
− 2

∂Di(x)

∂xi

[φ′
i(x) + εiφ

′
i(εx)] + [

Air
i (x) + Arev

i (x)
]
φ′

i(x)

+ [
Air

i (εx) + Arev
i (εx)

]
φ′

i(εx)

]
. (B4)

The divergenceless stationary distribution condition, however,
yields

0 =
(

− [
Air

i (x) + Arev
i (x)

]
φ′

i(x) − Di(x)[φ′
i(x)]2

+ ∂Air
i (x)

∂xi

+ ∂Arev
i (x)

∂xi

− ∂2Di(x)

∂x2
i

+Di(x)φ′′
i (x) + 2

∂Di(x)

∂xi

φ′
i(x)

)
e−φ(x), (B5)

but also

0 =
(

− [
Air

i (εx) + Arev
i (εx)

]
φ′

i(εx) − Di(εx)[φ′
i(εx)]2

+ ∂Air
i (εx)

∂(εixi)
+ ∂Arev

i (εx)

∂(εixi)
− ∂2Di(εx)

∂(εixi)2

+Di(εx)φ′′
i (εx) + 2

∂Di(εx)

∂(εixi)
φ′

i(εx)

)
e−φ(εx). (B6)

Combining the two conditions in Eqs. (B5) and (B6) yields
the contents of the large square brackets in Eq. (B4), and so
the result is proved.
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