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We introduce antiferromagnetic quantum fluctuations into quantum annealing in addition to the conventional
transverse-field term. We apply this method to the infinite-range ferromagnetic p-spin model, for which the
conventional quantum annealing has been shown to have difficulties in finding the ground state efficiently due to
a first-order transition. We study the phase diagram of this system both analytically and numerically. Using the
static approximation, we find that there exists a quantum path to reach the final ground state from the trivial initial
state that avoids first-order transitions for intermediate values of p. We also study numerically the energy gap
between the ground state and the first excited state and find evidence for intermediate values of p for which the
time complexity scales polynomially with the system size at a second-order transition point along the quantum
path that avoids first-order transitions. These results suggest that quantum annealing would be able to solve
this problem with intermediate values of p efficiently, in contrast to the case with only simple transverse-field
fluctuations.
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I. INTRODUCTION

To find efficient algorithms for combinatorial optimization
problems is one of the important goals of computer science.
An algorithm is efficient if its running time is bounded by a
polynomial in the problem size. If an efficient algorithm for a
problem is known, the problem is considered as easy. However,
most interesting combinatorial optimization problems are
hard, i.e., even the best-known algorithms take running times
growing exponentially as the problem size increases [1,2].

Many combinatorial optimization problems can be trans-
lated into physics problems of finding the ground state (optimal
solution) of an Ising spin system [2–4]. The cost function
corresponds to the energy of the system. This transformation
enables us to study combinatorial optimization problems
by ideas and methods developed in physics. An interesting
example is quantum annealing.

Quantum annealing (QA) [5–7] (and its cousin, quantum
adiabatic computation [8]) is a quantum algorithm to obtain
an approximate solution for a combinatorial optimization
problem, which often outperforms simulated annealing [9,10],
another heuristic algorithm coming form physics. Unlike
simulated annealing, QA uses the tunneling effect caused by
quantum fluctuations to search for the optimal solution. By
controlling the strength of the fluctuations properly, we can
reach the solution with a high probability.

To be more explicit, let us consider the following time-
dependent Hamiltonian:

Ĥ (t) = s(t)Ĥ0 + [1 − s(t)]V̂ , (1)

where Ĥ0 is the target Hamiltonian, whose ground state is an
optimal solution, represented in terms of the z components of
the Pauli matrices σ̂ z

i (i = 1, . . . ,N). The symbol N denotes
the number of spins. The operator V̂ is arbitrary as long
as it does not commute with Ĥ0 and has a unique trivial
ground state. This noncommutativity introduces quantum
fluctuations into the system, causing state transitions. It is
thus called the driver Hamiltonian. A typical example of
the driver Hamiltonian is the transverse-field operator V̂TF ≡
−∑N

i=1 σ̂ x
i , where the σ̂ x

i (i = 1, . . . ,N) are the x components

of the Pauli matrix. The control parameter s(t) starts at zero
[s(0) = 0] and increases monotonically to unity. We assume
that s(τ ) = 1, i.e., the running time of QA is τ . For simplicity,
the linear function s(t) = t/τ is adopted in most studies.
We then calculate the time evolution starting from the trivial
ground state |�(0)〉 by solving the Schrödinger equation

i
d

dt
|�(t)〉 = Ĥ (t)|�(t)〉, 0 � t � τ. (2)

Note that Ĥ (0) = V̂ and Ĥ (τ ) = Ĥ0, and the initial state
|�(0)〉 is the ground state of Ĥ (0). If we change the control
parameter slowly (τ � 1), the state will stay very close to the
instantaneous ground state during the time evolution. We can
then achieve the ground state of Ĥ0 at t = τ , which is the
optimal solution.

The condition to stay close to the ground state is expressed
as τ � �−2

min according to the adiabatic theorem [10], where
�min is the minimum energy gap from the ground state.
Thus the minimum gap determines the efficiency of QA for
a given problem. In the case that the minimum gap decays
exponentially with the system size as �min ∝ exp(−αN ), the
running time increases exponentially. This means that QA
cannot solve the problem efficiently.

Jörg et al. have shown that QA with the conventional
transverse-field operator costs an exponentially long time to
reach the ground state of the ferromagnetic p-spin model for
p > 2 [11]. The (target) Hamiltonian of this model is given by

Ĥ0 = −N

(
1

N

N∑
i=1

σ̂ z
i

)p

. (3)

In the p → ∞ limit, this model reduces to the Grover problem
[11,12], which no known algorithms, even quantum algo-
rithms, can solve efficiently. Jörg et al. have also shown that
this system undergoes a quantum first-order phase transition
during the time evolution, which is a characteristic feature of
hard optimization problems [13–15].

Nevertheless, the above result does not necessarily suggest a
complete failure of QA for this simple problem (3). Note that
the above result has been derived using the transverse-field
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operator as a driver Hamiltonian. This implies that different
operators may lead to improved performance. We show in
this paper that an operator that induces antiferromagnetic
fluctuations significantly improves the efficiency of QA for
this model with intermediate values of p.

We organize the present paper as follows: In Sec. II,
we define a quantum driver operator V̂AFF and the total
Hamiltonian Ĥ (t). We then explain the idea of QA using
antiferromagnetic fluctuations. In Sec. III, we calculate the
partition function with the static approximation and derive
self-consistent equations. From these equations, we analyze
numerically phase diagrams for finite p in Sec. IV. Numerical
calculations show that first-order transitions can be avoided if
we change the control parameters ingeniously. In Sec. V, we
discuss the p → ∞ limit. Finally, Sec. VI is devoted to the
conclusion.

II. ANTIFERROMAGNETIC FLUCTUATIONS

The main proposition of this paper is that an introduction
of the following antiferromagnetic interaction:

V̂AFF ≡ +N

(
1

N

N∑
i=1

σ̂ x
i

)2

(4)

in addition to the conventional transverse-field term V̂TF,
greatly facilitates the process of quantum annealing as shown
in the following sections. The total Hamiltonian is therefore

Ĥ (s,λ) = s{λĤ0 + (1 − λ)V̂AFF} + (1 − s)V̂TF, (5)

where the parameters s and λ should be changed appropriately
as functions of time. The initial Hamiltonian has s = 0 and λ

arbitrary, and the final one has s = λ = 1. Intermediate values
(s,λ) should be chosen according to the prescription given
below.

This idea somewhat resembles that of a quantum adiabatic
algorithm with different paths [16]. This latter approach also
considers a total Hamiltonian which consists of three parts:
a target, a driver, and another Hamiltonian ĤE corresponding
to V̂AFF. Whereas V̂AFF is defined uniquely, the components of
ĤE are chosen randomly according to some prescription. For
this system, one calculates the time evolution repeatedly by
changing ĤE. Then, in some instances, one reaches the optimal
solution. In contrast, our approach involves no stochastic
processes and therefore only a single run achieves the goal.

III. ANALYSIS WITH THE STATIC APPROXIMATION

We now confine ourselves to the ferromagnetic p-spin
model with odd p of Eq. (3) as the target Hamiltonian and
analyze the properties of Ĥ (s,λ). This section is devoted to
analytical computations.

A. Partition function

We first calculate the partition function of the system of
Eq. (5) at finite temperatures. The partition function can
be written in the following form using the Suzuki-Trotter

formula [17]:

Z = lim
M→∞

ZM

≡ lim
M→∞

Tr(e−(β/M)sλĤ0e−(β/M){s(1−λ)V̂AFF+(1−s)V̂TF})M

= lim
M→∞

∑
{σ z

i }

〈{
σ z

i

}∣∣ {exp

[
βsλN

M

(
1

N

N∑
i=1

σ̂ z
i

)p]

× exp

⎡
⎣−βs(1 − λ)N

M

(
1

N

N∑
i=1

σ̂ x
i

)2

+ β(1 − s)

M

N∑
i=1

σ̂ x
i

]}M ∣∣{σ z
i

}〉
, (6)

where
∑

{σ z
i } denotes the summation over all spin configura-

tions in the z basis, and |{σ z
i }〉 ≡ ⊗N

i=1 |σ z
i 〉. The state |σ z

i 〉 is
the eigenstate of σ̂ z

i , having the eigenvalue σ z
i (=± 1). Similar

notations will be used for the x basis.
We then introduce the following M closure relations:

1̂(α) ≡
∑

{σ z
i (α)}

∣∣{σ z
i (α)

}〉〈{
σ z

i (α)
}∣∣

×
∑

{σx
i (α)}

∣∣{σx
i (α)

}〉〈{
σx

i (α)
}∣∣, (7)

where α = 1, . . . ,M . Inserting 1̂(α) just before the αth
exponential operator involving σ̂ x

i in Eq. (6), we have

ZM =
∑

{σ z
i (α)}

∑
{σx

i (α)}

M∏
α=1

exp

[
βsλN

M

(
1

N

N∑
i=1

σ z
i (α)

)p

− βs(1 − λ)N

M

(
1

N

N∑
i=1

σx
i (α)

)2

+ β(1 − s)

M

N∑
i=1

σx
i (α)

⎤
⎦

×
N∏

i=1

〈
σ z

i (α)
∣∣σx

i (α)
〉〈
σx

i (α)
∣∣σ z

i (α + 1)
〉

(8)

with periodic boundary conditions such that σ z
i (1) = σ z

i (M +
1) for i = 1, . . . ,N .

To simplify the spin product terms [
∑N

i=1 σ z
i (α)/N ]p

and [
∑N

i=1 σx
i (α)/N ]2, we introduce the following integral

representation of the δ function:

δ

(
Nm−

N∑
i=1

σi

)
=

∫
dm̃ exp

[
−m̃

(
Nm −

N∑
i=1

σi

)]
. (9)

Here, m denotes the magnetization (order parameter),
and its conjugate variable is m̃. Using Eq. (9), we can
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rewrite ZM as

ZM =
∑

{σ z
i (α)}

∑
{σx

i (α)}

M∏
α=1

∫
· · ·

∫
dmz(α) dm̃z(α) dmx(α) dm̃x(α) exp

[
N

(
sλ

β

M
[mz(α)]p − m̃z(α)mz(α)

)]

× exp

[
N

(
−s(1 − λ)

β

M
[mx(α)]2 + (1 − s)

β

M
mx(α) − m̃x(α)mx(α)

)]

×
N∏

i=1

exp
[
m̃z(α)σ z

i (α) + m̃x(α)σx
i (α)

]〈
σ z

i (α)
∣∣σx

i (α)
〉〈
σx

i (α)
∣∣σ z

i (α + 1)
〉
. (10)

We have neglected a few irrelevant constants. Since the spin product terms have disappeared, we can perform the summation
over all spin configurations independently at each site. Then we obtain

ZM =
∫

· · ·
∫ M∏

α=1

dmz(α) dm̃z(α) dmx(α) dm̃x(α) exp

[
N

M∑
α=1

(
sλ

β

M
[mz(α)]p − m̃z(α)mz(α)

)]

× exp

[
N

M∑
α=1

(
−s(1 − λ)

β

M
[mx(α)]2 + (1 − s)

β

M
mx(α) − m̃x(α)mx(α)

)]

× exp

[
N ln Tr

M∏
α=1

exp[m̃z(α)σ z(α) + m̃x(α)σx(α)]〈σ z(α)|σx(α)〉〈σx(α)|σ z(α + 1)〉
]

, (11)

where the trace means the summation over the spin variables
σ z(α),σ x(α) (α = 1, . . . ,M).

Note that the exponent in Eq. (11) is proportional to N .
Thus, the integrals over the variables are evaluated by the
saddle point method, which is to take the maximum value of the
integrand as the result of integration (see, e.g., Appendix A.1
of Ref. [18]). The saddle point conditions for mz(α) and mx(α)
lead to

m̃z(α) = β

M
psλ[mz(α)]p−1, (12)

m̃x(α) = β

M
{(1 − s) − 2s(1 − λ)mx(α)}. (13)

We now use the static approximation, which removes all the
α dependence of the parameters. We will check the validity of
this approximation in Sec. IV. After this approximation, we
can easily take trace in Eq. (11) by the converse operation of
the Trotter decomposition. Then, using Eqs. (12) and (13), we
finally obtain

Z =
∫∫

dmz dmx exp[−Nβf (β,s,λ; mz,mx)], (14)

where f (β,s,λ; mz,mx) is the pseudo free energy defined as
follows:

f (β,s,λ; mz,mx)

= (p − 1)sλ(mz)p − s(1 − λ)(mx)2 − 1

β
ln(2 cosh[β

×
√

{psλ(mz)p−1}2 + {1 − s − 2s(1 − λ)mx}2]). (15)

The saddle point equations are thus

mz = psλ(mz)p−1√
{psλ(mz)p−1}2 + {1 − s − 2s(1 − λ)mx}2

× tanh β
√

{psλ(mz)p−1}2 + {1 − s − 2s(1 − λ)mx}2,

(16)

mx = 1 − s − 2s(1 − λ)mx√
{psλ(mz)p−1}2 + {1 − s − 2s(1 − λ)mx}2

× tanh β
√

{psλ(mz)p−1}2 + {1 − s − 2s(1 − λ)mx}2.

(17)

B. Low-temperature limit

We next derive self-consistent equations in the low-
temperature limit to examine quantum phase transitions. Since
the start of the QA process belongs to the paramagnetic phase
and the goal is the ferromagnetic phase, a quantum phase
transition inevitably occurs in the course of time evolution.

It is useful to consider two possibilities separately depend-
ing on whether the argument of the square root in Eqs. (16) and
(17) vanishes or not. We start our discussion from the latter
case.

When the square root in Eqs. (16) and (17) assumes a finite
value, the hyperbolic tangent tends to unity in the β → ∞
limit. Then we have

mz = psλ(mz)p−1√
{psλ(mz)p−1}2 + {1 − s − 2s(1 − λ)mx}2

, (18)

mx = 1 − s − 2s(1 − λ)mx√
{psλ(mz)p−1}2 + {1 − s − 2s(1 − λ)mx}2

. (19)
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The pseudo free energy (15) becomes

f (s,λ; mz,mx)

= (p − 1)sλ(mz)p − s(1 − λ)(mx)2

−
√

{psλ(mz)p−1}2 + {1 − s − 2s(1 − λ)mx}2. (20)

Equations (18) and (19) have a ferromagnetic (F) solution
with mz > 0 and a quantum paramagnetic (QP) solution
satisfying mz = 0 and mx 	= 0. Substitution of mz = 0 into
Eq. (19) yields

mx = 1 − s − 2s(1 − λ)mx

|1 − s − 2s(1 − λ)mx | , (21)

i.e., mx can be ±1. However, mx = −1 is not a proper
solution since, with mx = −1, 1 − s − 2s(1 − λ)mx = 1 −
s + 2s(1 − λ) � 0 for 0 � s � 1, 0 � λ � 1, which leads to
mx = 1 according to Eq. (21). The other possibility mx = 1
satisfies Eq. (21) when s < 1/(3 − 2λ). Therefore the QP
phase can exist in the region 0 � s < 1/(3 − 2λ), and its free
energy is

fQP(s,λ) = −sλ + 2s − 1, (22)

which is independent of p.
The free energy of the F phase cannot be obtained

analytically for general p. However, we can evaluate it in the
p → ∞ limit as follows: In this limit, Eq. (18) reads mz = 0
or mz = 1. The latter solution corresponds to the F phase.
The magnetization in the x direction is zero since Eqs. (18)
and (19) satisfy (mz)2 + (mx)2 = 1. Substituting the values of
magnetization into Eq. (20) and taking the limit p → ∞, we
find

fF(s,λ)|p→∞ = −sλ. (23)

Let us next consider the case where the argument of the
square root in Eqs. (16) and (17) vanishes. We then assume
that mz and mx tend to the following values as β → ∞:

mz → 0, mx → 1 − s

2s(1 − λ)
(24)

such that the argument of the hyperbolic tangent approaches a
finite constant:

β
√

{psλ(mz)p−1}2 + {1 − s − 2s(1 − λ)mx}2 → c. (25)

In order to find a nontrivial solution, it is also necessary to
assume the following relation:

psλ(mz)p−1

1 − s − 2s(1 − λ)mx
→ 0. (26)

Under these assumptions, Eqs. (16) and (17) read mz = 0 and
mx = tanh c. These equations satisfy the condition (24) if we
choose c such that tanh c = (1 − s)/2s(1 − λ).

Unless s = 1, the magnetizations (24) satisfy the condition
for the QP solution. We then call this phase QP2 in order to
distinguish it from the QP phase described before. The free
energy of the QP2 phase is obtained in the limit (24) and

β → ∞ under the assumption (25):

fQP2(s,λ) = − (1 − s)2

4s(1 − λ)
. (27)

The domain of applicability of the free energy (27) is
restricted by 1/(3 − 2λ) � s < 1 since |(1 − s)/2s(1 − λ)| =
| tanh c| � 1 and s 	= 1. This region of s will be called the QP2
domain hereafter.

C. Phase transition on the line λ = 0

Although we cannot solve explicitly the self-consistent
equations for general values of the parameters, it is possible to
solve them in the case of λ = 0. In the following discussion, we
show that a second-order phase transition occurs at the point
(s,λ) = (1/3,0) for any value of p. This result is independent
of the target Hamiltonian.

We start from the analysis of the phase diagram on this
line. In this case, Eq. (18) reduces to mz = 0. It thus suffices
to consider the QP and QP2 phases. These phases do not have
a common domain of definition: The QP and QP2 phases
are defined on the regions 0 � s < 1/3 and 1/3 � s < 1,
respectively. Thus, the former (latter) range is the QP (QP2)
phase, and a phase transition exists at s = 1/3.

The magnetization in the x direction of the QP2 phase (24)
is identical to that of the QP phase at the transition point. This
means that the transition is of second order. The free energy
fQP(s,0), of course, smoothly connects to fQP2(s,0) at that
point [19].

Although the existence of a second-order transition does not
hamper the efficiency of QA [20], paths of QA must not follow
this line because quantum fluctuations completely disappear
on this line: The total Hamiltonian Ĥ (s,0) is diagonalized in
the x basis. Quantum state transitions do not occur, and the
system does not perform quantum annealing processes.

In the following section, we will show that paths exist to
avoid the first-order transition in the region λ > 0 at least for
5 � p � 21, and possibly for any large but finite p.

IV. NUMERICAL RESULTS

A. Phase diagram

Let us next analyze numerically the phase diagram on the
s-λ plane for finite values of p. We construct the phase diagram
as follows. We first solve numerically the self-consistent
equations (18) and (19) for a given value of p and at a point
(s,λ) in the phase diagram and then evaluate the corresponding
free energy. By comparing all possible solutions and their free
energies including fQP2, we identify the stable solution having
the smallest value of the free energy.

It is useful to show the dependence of the free energy on s

for some values of p and λ as in Fig. 1. We have confirmed
numerically that the free energy lies below fQP2 in the QP2
domain, and the QP2 phase is completely suppressed by the
other phases. This system thus undergoes a quantum phase
transition from the QP phase for small s to the F phase for
large s.

To determine whether the transition is first or second order,
we show the behavior of the magnetization mx in Fig. 2. The
parameters of the figure correspond to those in Fig. 1. When
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FIG. 1. (Color online) Free energy vs s for some values of p. The
parameter λ is 0.1 (top) and 0.3 (bottom). The dash-dotted line in light
green represents the free energy of the QP phase, Eq. (22), the thin
solid line in blue is for the F phase, Eq. (23), and the thick solid line
in red is for the QP2 phase, Eq. (27). The vertical dashed line denotes
the lower limit of the QP2 domain [s = 1/(3 − 2λ)]. Although it is
difficult to discern on the present scale, all the data for finite p that
we studied have lower values than that of fQP2 in the QP2 domain.

λ = 0.1, the magnetization mx for p = 3 has a small jump at
s = 0.3544(1), and mx for p � 5 decreases continuously from
unity to our numerical precision. This means that mz for p � 5
increases continuously from zero to a finite value. Therefore a
second-order transition occurs for p � 5 at λ = 0.1. The same
is true for λ = 0.3 in the sense that there exists a second-order
transition at the boundary of the QP2 phase for p � 5.
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FIG. 2. (Color online) Magnetization mx corresponding to Fig. 1.
The solid line represents the x component of magnetization of the QP2
phase (24), and the vertical dashed lines are the same as those in Fig. 1.
For λ = 0.1 (top panel) and p � 5, a second-order transition occurs
at the boundary of the QP2 domain; The magnetization decreases
continuously from unity to zero. In contrast, the magnetization for
λ = 0.3 (bottom panel) has a jump.

A remarkable fact is that the magnetization for some
parameters (e.g., λ = 0.3, p = 11) in Fig. 2 jumps within
the F phase. This discontinuity results in an exponential
decrease of the energy gap as N increases. There exists a
first-order transition within the F phase. However, this unusual
behavior disappears for smaller values of λ for any finite p,
excluding p = 3, that we checked. Thus for smaller λ, only a
second-order transition takes place as we increase s from zero
to a value close to unity.
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FIG. 3. (Color online) Phase diagrams on the s-λ plane for p = 3 (left), p = 5 (middle), and p = 11 (right). The dash-dotted line represents
the boundary of the QP2 domain [s = 1/(3 − 2λ)], where a transition takes place between the QP and F phases. For large λ, the QP and F
phases are separated by the horizontal phase boundary (QP-F boundary). The thick solid line in red represents the first-order transition, and
the thin solid line in light green is for the second-order transition. For p = 5 and 11, the magnetization jumps on the dashed line in blue (F-F
boundary) within the F phase [21].

051112-5



YUYA SEKI AND HIDETOSHI NISHIMORI PHYSICAL REVIEW E 85, 051112 (2012)

0

 0.5

1

 0.36  0.39  0.42  0.45  0.48

E
ne

rg
y 

ga
p

s

N=20
N=80

N=140

0

 0.02

 0.04

 0.43  0.44  0.45  0.46  0.47

FIG. 4. (Color online) Top panel: Energy gap vs s for p = 11
and λ = 0.3. The vertical dashed lines represent the boundary of the
QP2 domain at s 
 0.4167 and the F-F boundary at s 
 0.4701. The
bottom panel is an enlarged view of the top panel for N = 140.

The resulting phase diagrams are shown in Fig. 3 for p =
3, 5, and 11. We see that a boundary of second-order transitions
exists for small λ and p � 5. It is observed that one can reach
the F phase from the QP phase by choosing a path that avoids
a first-order transition as long as the first-order F-F boundary
does not reach the λ = 0 axis, which happens probably only
in the limit p → ∞, as we shall see below.

B. Energy gap

We next study the behavior of the energy gap across the
phase transitions found in the previous section. To calculate
the energy gap for large N , we adopt the method used in
[11]. The Hamiltonian under consideration is expressed by the
components of the total spin operator Ŝx,z, thus commuting
with the total spin Ŝ. Since the total angular momentum is
conserved during the time evolution, we have to pay attention
only to the subspace that has the maximum angular momentum
S = N/2. The dimension of this subspace is N + 1, which
greatly enhances the possible system size to N ∼ 100.

It is useful to first verify the validity of the static approx-
imation. Figure 4 shows a representative energy gap with a
second-order phase transition: As one sees in the enlarged view
shown in the bottom panel, the gap shows wiggly behavior for
a finite range. The wiggly behavior starts at s 
 0.4184 for
λ = 0.3, which corresponds to the left end of the QP2 domain
and also to the second-order transition point between the QP
and F phases. The same behavior terminates at s 
 0.4676
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FIG. 5. (Color online) The rightmost local minimum of the energy
gap as a function of N for p = 11 and λ = 0.3 on a semilogarithmic
scale. The gap closes exponentially with increasing N .

for λ = 0.3, corresponding to the first-order F-F boundary.
These two transition points evaluated analytically using the
static approximation, Eqs. (18) and (19), are shown in dashed
vertical lines in Fig. 4 and agree fairly satisfactorily with the
numerical results, as N increases, for the interval where the
gap is very small.

The rightmost local minimum of the energy gap in Fig. 4
behaves differently from other local minima and decays
exponentially as N increases, as shown in Fig. 5. This is
expected from the jump in the magnetization shown in Fig. 2,
because a jump implies a first-order transition although the
system is ferromagnetic on both sides of the transition point.
Although this is not the global minimum, it will affect the
efficiency of QA for much larger systems where the rightmost
one will become the global minimum since the other local
minima decay only polynomially, as shown below.

Figure 6 shows the size dependence of local minima of
the energy gap for p = 5 and λ = 0.1. All minima shown
here decay polynomially. In Fig. 7 the global minimum of the
energy gap for selected p is depicted as a function of N at
λ = 0.1. For any value of p, the gap closes polynomially at
least up to the largest system size we studied, N = 160.

The above results suggest that first-order transitions can be
avoided if we choose a path around λ = 0.1 when we reach the
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FIG. 6. (Color online) Energy gap vs N at local minima for p =
5,λ = 0.1 on a log-log scale. We number the minima from left to
right. No gaps vanish exponentially up to the size studied here.
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FIG. 7. (Color online) Minimum gap vs N for some values of p

on a log-log scale for λ = 0.1. Each data set scales polynomially.

F phase from the QP phase by increasing s as long as p is not
too small and not too large, 5 � p � 21. It is then interesting
to see what happens in the limit of large p.

V. PHASE DIAGRAM IN THE INFINITE- p LIMIT

The ferromagnetic p-spin model reduces to the Grover
problem in the p → ∞ limit [11,12]. The goal of the Grover
problem is to find the desired item in an unsorted database
containing 2N items. Whereas classical algorithms require a
time of O(2N ) to find the desired item, the quantum algorithm,
called the Grover algorithm, costs only a time of O(2N/2),
quadratic speedup although the time complexity still scales
exponentially.

Farhi et al. have proposed a QA version of the Grover
algorithm [22], which adopts the transverse field as a
driver Hamiltonian. Unfortunately, the time complexity is
the same as that of classical algorithms. However, Roland
and Cerf have improved the efficiency of QA by adjusting
the evolution rate s(t) and then reproducing the quadratic
speedup, and they have proved that their algorithm is op-
timal [23]. This result indicates that our approach cannot
avoid jumps of magnetization in the p → ∞ limit. It is
therefore interesting to study how this difficulty appears in our
method.

To this end, it is instructive to study the behavior of the
free energy and magnetization for large but finite values of p.
The free energy in Fig. 1 is seen to approach the asymptotic
values in Eqs. (23) and (27) from below. Hence, the QP2 phase
does not appear for any finite p. From Fig. 2, we observe that
the magnetization in the x direction is close to the QP2 phase
magnetization (24), shown in red solid lines, in the region
where the free energy approaches fQP2. The magnetization in
the z direction is

mz =
√

1 −
(

1 − s

2s(1 − λ)

)2

	≡ 0 (28)

since the QP2 phase does not appear.
We extrapolate these results to the case of p → ∞. That is,

while the free energies are described by Eqs. (22), (23), and

FIG. 8. (Color online) Phase diagram in the limit p → ∞. Three
lines represent the same phase boundary as those in Fig. 3. The QP
phase has the magnetization mz = 0. The F phase above the F-F
boundary, shown dashed in blue, has the magnetization mz = 1, and
the phase below the F-F boundary has 0 < mz < 1.

(27), the magnetization in the QP2 phase is given by Eq. (28).
To be precise, this is not the QP2 phase since the magnetization
in the z direction is nonzero. With a caution on the domain of
QP and QP2 in mind, we compare the values of the free energy
of the three phases and obtain the phase diagram as in Fig. 8.
The F phase and the QP phase are separated by a horizontal
phase boundary. The boundary of second-order transitions is
given by s = 1/(3 − 2λ) (λ � 1/2), and the first-order F-QP
transition boundary is s = 1/2 (λ > 1/2). Solving fF|p→∞ =
fQP2, we get the F-F boundary as

s = 1 − 2
√

λ − λ2

(2λ − 1)2
. (29)

The figure shows that an abrupt change of magnetization, a
first-order transition, is inevitable in the limit p → ∞.

VI. CONCLUSION

In the present paper, we have introduced an approach to
QA that uses antiferromagnetic quantum fluctuations. This
approach adopts two types of the driver Hamiltonian, the
transverse-field term V̂TF and the transverse antiferromagnetic
two-body interaction term V̂AFF in Eq. (4).

We have applied this method to the ferromagnetic p-spin
model, for which it was considered to be hard to find the ground
state for p > 2 with a simple QA [11]. We have evaluated the
efficiency from the phase diagram and the minimum values
of the energy gap. Numerical calculations have shown that
the phase boundary of second-order transitions appears for
p � 5. However, the magnetization in the F phase jumps for
large p. Although the boundary at which the magnetization
in the F phase jumps extends as p increases, we have
confirmed numerically that there remains a region where the
magnetization changes continuously at least for 5 � p � 21
when λ = 0.1. This indicates that QA can solve the problem
efficiently in this case. In fact, we have calculated the minimum
gap up to N = 160 and have confirmed that it vanishes
polynomially on the second-order phase boundary. Thus, QA
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with antiferromagnetic fluctuations is an efficient algorithm
at least for 5 � p � 21. We expect to be able to avoid the
difficulty of exponential complexity for larger values of p

as long as it is finite. It will be interesting to study whether
the present method improves the efficiency of QA for other
systems.
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