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Work fluctuations for Bose particles in grand canonical initial states
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(Received 5 January 2012; published 7 May 2012)

We consider bosons in a harmonic trap and investigate the fluctuations of the work performed by an adiabatic
change of the trap curvature. Depending on the reservoir conditions such as temperature and chemical potential
that provide the initial equilibrium state, the exponentiated work average (EWA) defined in the context of the
Crooks relation and the Jarzynski equality may diverge if the trap becomes wider. We investigate how the
probability distribution function (PDF) of the work signals this divergence. It is shown that at low temperatures
the PDF is highly asymmetric with a steep fall-off at one side and an exponential tail at the other side. For high
temperatures it is closer to a symmetric distribution approaching a Gaussian form. These properties of the work
PDF are discussed in relation to the convergence of the EWA and to the existence of the hypothetical equilibrium
state to which those thermodynamic potential changes refer that enter both the Crooks relation and the Jarzynski
equality.
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I. INTRODUCTION

In recent years fluctuation theorems that allow us to
infer equilibrium properties of a system from nonequilibrium
processes have attracted considerable attention. The Jarzynski
equality (JE) [1] reading

〈e−βw〉 = e−β�F (1)

provides a prominent example of these relations. It relates
the free energy change, �F , to the statistics of work, w, that
is performed by a time-dependent force acting on a system
that initially is prepared in a canonical equilibrium state
at the temperature T = 1/kBβ. The weight with which the
average of the exponentiated work is performed is determined
by the probability density function (PDF) of work, p(w). It
represents the frequency of outcomes from independent runs
of the same force protocol starting in equilibrium at the same
temperature. The free energy change �F gives the difference
between free energies of the initial state and of a hypothetical
thermal equilibrium state of the considered system at the initial
temperature T with clamped forces at the values at the end of
the force protocol. First, the JE was found for classical systems
and later on confirmed for quantum mechanical systems [2–8].

A similar form of the JE holds for grand canonical initial
states (GCIs), which allow both energy and particle number
fluctuations. It then takes the form [9–11]

〈e−βweβμn〉gc = e−β��, (2)

where w and β are defined as above. Further, μ denotes the
chemical potential of the reservoir, and n the difference of the
particle numbers at the end and at the beginning of the force
protocol. Similarly as the work w, also the particle number
change n is a random quantity. These random outcomes are
described by a joint PDF p(w,n). Here, �� = �f − �i is
given by the difference of the grand canonical potentials �i and

�f , which, respectively, correspond to the initial equilibrium
state and to a hypothetical equilibrium state at the inverse
temperature β and chemical potential μ with clamped force
values at the end of the force protocol.

While temperature is universally confined to positive
values, the upper admissible bound of the chemical potential is
system dependent. To illustrate this fact we consider a system
of noninteracting identical particles, for which the average
particle number in a grand canonical potential at inverse
temperature β and chemical potential μ is determined by [12]

Nav =
∑

ε

1

eβ(ε−μ) ∓ 1
, (3)

where the sum is performed over the single particle energy
spectrum, and the + and − signs refer to Fermi-Dirac and
Bose-Einstein statistics, respectively. Considering the case of
a single particle spectrum, which is bounded from below by
the ground state, for fermions, the + sign guarantees the
convergence of the sum for any real value of the chemical
potential. However, for a system made of bosons, this sum
only converges if the chemical potential is smaller than the
ground state energy. With the divergence of the average particle
number, the grand canonical partition function diverges and
accordingly the grand canonical potential becomes negatively
divergent. In the context of the fluctuation theorem given by
Eq. (2), this implies that the averaged exponentiated linear
combination of work and number change, that is, the left-hand
side of Eq. (2), diverges for bosonic systems under the action
of protocols which lead to a lowering of the single particle
ground state energy below the level of the chemical potential
of the initial grand canonical equilibrium state.

The purpose of this work is to address this issue of
the fluctuation theorem for GCIs, Eq. (2). For a concrete
discussion, we consider noninteracting bosons residing in
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a three-dimensional harmonic potential. Such systems have
been treated as theoretical models of trapped atomic gases
undergoing Bose-Einstein condensation [13–15]. Section II is
devoted to a brief introduction to the considered model system
and the required procedure for obtaining the work statistics. In
Sec. III, we present a symmetry relation of the Crooks-Tasaki
type for GCIs and point out the condition of its existence.
Section IV specifies the work protocol to be considered in this
work. The analytic properties of the corresponding character-
istic function are discussed in Sec. V. The PDFs for extreme
temperature regimes are analytically obtained in Sec. VI. It is
shown that the PDF at very low temperatures has a long tail
being responsible for the divergence of the exponentiated work
average (EWA). In Sec. VII, the convergence of this average for
general temperatures is examined by a numerical evaluation
of the PDFs, and discussed in relation to the existence of the
hypothetical equilibrium state.

II. SYSTEM

We consider N identical Bose particles of mass m moving
in a three-dimensional symmetric harmonic trap with a
curvature changing in time t . The governing Hamiltonian at
an instantaneous time t reads

H(t) =
N∑

i=1

[
p2

i

2m
+ 1

2
mω2(t)x2

i

]
. (4)

This Hamiltonian is widely studied as a simple model of the
Bose-Einstein condensation [16–18]. However, the feature
of nonequilibrium work statistics to be drawn here is not
specifically related to the condensation transition. The single
particle energy spectrum at time t is given by

ε�(t) = (�x + �y + �z + 3/2)h̄ω(t) (5)

with a set of nonnegative integers � ≡ (�x,�y,�z).

A. Equilibrium properties

This many particle system is supposed to initially stay
in equilibrium with a reservoir having prescribed values of
the chemical potential μ and the inverse temperature β.
For this initial equilibrium state the initial grand canonical
partition function and the initial average number of particles
are determined by

Qi =
∏

�

[1 − zeβε�(0)]−1,

(6)

Nav =
∑

�

1

z−1eβε�(0) − 1
,

where z = eβμ denotes the fugacity. The condensation frac-
tion is given by N0/Nav with N0 denoting the particle
occupancy in the ground state, N0 = 1/(z−1eβε0(0) − 1). For
sufficiently large Nav , the condensation curve falls onto
the critical line, N0/Nav = 1 − (T/T (0)

c )3 if T � T (0)
c and

N0/Nav = 0, otherwise, with the critical temperature T (0)
c =

[Nav/ζ (3)]1/3(h̄ω/kB), where ζ (3) ≈ 1.202. When the num-
ber of particles is finite, the transition becomes smeared out
and the critical temperature is modified as [18]

Tc/T (0)
c = (

1 − 0.7275N−1/3
av

)
. (7)

In the sequel we shall use Tc as temperature unit.

βμ ,

(c)(a) (b)

βμ ,

FIG. 1. (Color online) (a) Grand canonical initial states of Bose
particles in a harmonic potential that are in equilibrium with a
reservoir of chemical potential μ and inverse temperature β. (b) The
system is decoupled from the reservoir and then work is performed
by changing the curvature of the potential (expansion of the potential
in the figure). At the end of the protocol indicated by the dashed
parabola, the particles will stay out of equilibrium. (c) Provided that
the hypothetical equilibrium of the system with the finally reached
potential curvature exists for the initial temperature and chemical
potential, this state can in principle be reached by weakly coupling
a grand canonical heat bath at the initial inverse temperature β and
chemical potential μ to the system. We emphasize that this last step
is not a part of the protocol but only serves as an illustration of the
resulting expression for the exponential work average.

B. Doing work

We here sketch a gedanken experiment that elucidates
the relevant steps implied by Eq. (2). Figure 1(a) depicts
the initial equilibrium state of the considered many particle
system in weak contact with a reservoir that may exchange
particles and energy with the system controlled by the chemical
potential μ and the inverse temperature β. The grand potential
�i = −kBT lnQi for this initial state is determined by the
reservoir parameters as well as by the microscopic details,
such as the initial curvature of the potential defining the
oscillation frequency ω. Once the system has approached
the grand canonical equilibrium state, it is decoupled from
the reservoir, its energy and particle number are determined,
and afterward the curvature of the trap is changed according
to a designed protocol. Finally energy and particle number are
again measured. The change of energy determines the work
w performed on the system in this particular realization. The
work w and the particle number change n are finally registered.
This procedure must be repeated many times, always starting
from the same equilibrium state and following the same
protocol such that the joint probability p(w,n), or directly
the exponential average 〈e−β(w−μn)〉, can be estimated.

Note that in general the state of the system reached at the
end of the protocol is out of equilibrium, even if the forcing
is adiabatically slow as in the present study. Since the system
is isolated from the heat bath during the protocol, transitions
between the instantaneous eigenstates of the Hamiltonian do
not occur for slow driving. Hence, the occupation probabilities
of these states remain constant while the corresponding
eigenvalues undergo changes. States with energy eigenvalues
ε�(t) are then populated with weights that are determined
by Boltzmann factors at the initial energies, exp[−βε�(0)],
rather than at the actual energies, exp[−βε�(t)]. Nevertheless,
according to Eq. (2) the exponential average of work coincides
with the ratio of two partition functions. The denominator is
given by the partition function of the initial system and hence
determined by the initial trap curvature as well as by β and μ.
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The numerator refers to a hypothetical grand canonical
equilibrium state of the system with the final trap curvature and
the initial temperature and chemical potential; see Fig. 1(c).

There is no restriction for the finally reached trap curvature.
In particular, the trap may be widened to such an extent that
the ground state energy falls below the chemical potential
of the initial state. Then the hypothetical equilibrium state is
not properly defined and formally leads to a divergent grand
canonical partition function and a negative, divergent grand
canonical potential. At the same time the exponential average
of −β(w − μn) also diverges.

III. CHARACTERISTIC FUNCTION

Along with the JE, the Tasaki-Crooks relation [2,19]
reading

e−βwp(w) = e−β�F pb(−w) (8)

provides a connection between the PDFs p(w) of the original
process and the PDF pb(w) of the backward process for
systems initially prepared in a canonical equilibrium state.
Here the backward process starts at the hypothetical equilib-
rium state retracing the force protocol from its final to the
initial value of the forward process. From the correspondence
between Eq. (1) and Eq. (2), one may expect the existence of
a Crooks-Tasaki relation for the GCI of the form

e−β(w−μn)p(w,n) = e−β��pb(−w, − n). (9)

Integrating over w and summing over all possible values of n,
we indeed obtain the generalized form of JE for the GCI, as
given in Eq. (2).

The proof of this relation may be obtained in an analogous
way as for the canonical case [2,5,8] based on the characteristic
function G(u,v). It is given as the Fourier transform of the joint
PDF p(w,n) with respect to both w and n and can be expressed
as a two-time correlation function:

G(u,v) =
∞∑

n=−∞

∫
dweiuw+ivnp(w,n)

= 〈eiuHH (τ )+ivNH (τ )e−iuH(0)−ivN (0)〉ρi
, (10)

where the average 〈X〉ρi
= TrXe−βH(0)eβμN (0)/Qi is per-

formed over the initial grand canonical state with Qi being
the grand canonical partition function of the initial state.
Here the index H indicates operators in the Heisenberg
picture given by OH (τ ) = U †(τ,0)O(τ )U (τ,0). Based on the
microreversibility of the time evolution, U (τ,t) = �†Ub(t −
τ,0)�, relating the time evolution U of the original process
to the time evolution Ub for the reversed protocol by means
of the antiunitary time-reversal operator � [8], one obtains
the following relation between characteristic functions of the
forward and the backward process:

QiG(u,v) = Gb(−u + iβ, − v − iβμ)Qf . (11)

Taking the inverse Fourier transform of this relation leads to
Eq. (9), where β�� = −(lnQf − lnQi).

IV. PROTOCOL

The protocol according to which the trap curvature is
changed specifies the time-dependent change of the frequency

ω(t) within a time interval [0,τ ]. In the present investigation
we assume that it consists in an adiabatically slow change
connecting the boundary values

ω(0) = ω, ω(τ ) = (1 + γ )ω. (12)

A positive (negative) value of γ indicates that the system is
compressed (expanded) during the protocol. With the adiabatic
variation of the frequency the occupation numbers n� of the
�’s single particle eigenstates remain unchanged such that the
time evolution operator takes the form

U (t,0) =
∑
{n�}

|{n�},t〉〈{n�},0|, (13)

where |{n�},t〉 = |n0,n1, . . . ; t〉 with
∑

� n� = N is an eigen-
function of the N -particle Hamiltonian (4), and hence a
solution of

H(t)|{n�},t〉 = E(t)|{n�},t〉,
(14)

E(t) =
∑

�

ε�(t)n�.

The corresponding N -particle eigenvalue E(t) is expressed
in terms of the single-particle energy eigenvalues ε�(t) given
by Eq. (5) and the occupation numbers n� of these states.
We consider this adiabatic protocol for the sake of simplicity.
Although the shape of the work PDF will depend on the details
of the specific protocol, their relevant qualitative features
leading to a diverging EWA are expected to be independent of
those details.

V. ANALYTIC PROPERTIES OF THE CHARACTERISTIC
FUNCTION

Using Eqs. (13) and (14), we obtain the Hamiltonian and
the number operator in the Heisenberg picture at the final time
τ of the protocol

HH (τ ) =
∑
{n�}

′
E(τ )|{n�},0〉〈{n�},0|,

(15)
NH (τ ) =

∑
{n�}

′
n�|{n�},0〉〈{n�},0| = N (0),

where
∑′

{n�} denotes the summation under the constraint∑
� n� = N . As a consequence of the number conservation for

the considered protocol, the characteristic function becomes
independent of the variable v which is conjugate to the
number change n. Hence, we get G(u,v) = G(u), implying
p(w,n) = p(w)δn,0 for the joint probability.

Since all operators entering the characteristic function (10)
under the trace are diagonal with respect to the eigenbasis of
the initial Hamiltonian, all of them commute with each other
and it therefore is straightforward to write

G(u) = Q−1
i

∞∑
N=0

∑
{n�}

′ ∏
�

eiuε�(τ )n�e−i(u−iβ)ε�(0)n�zn�

= Q−1
i

∞∏
l=0

[1 − ze(iuγ−β)h̄ω(l+3/2)]−g(l). (16)

Here the product on the right-hand side of the first line extends
over the triple index � = (�x,�y,�z). The restriction in the
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second sum on the right-hand side of the first line is lifted
by the first sum over N . Therefore all sums over the n�s
can be performed in closed form leading to the expression
in the second line. Because of the degeneracy of the single
particle energies ε�(t) having the same value for a given
l = �x + �y + �z, see Eq. (5), the product in the second line can
be taken for l = 0,1,2, . . .. The degree of the degeneracy of the
single particle energies (5) is given by g(l) = (l + 1)(l + 2)/2.

Since u and γ only enter in the combination uγ , the work
PDF, which is given by the inverse Fourier transform of the
characteristic function through Eq. (10), depends on w and γ

in terms of the ratio w/γ :

p(w) = 1

|γ |f (w/γ ), (17)

where f (x) = (2π )−1
∫ ∞
−∞ dξe−ixξG(ξ ) with ξ = uγ . This

leads to a symmetry relation between the work PDFs for
compression (γ > 0) and expansion (γ < 0):

p(w)|γ = p(−w)|−γ . (18)

In presenting numerical results of the PDFs, we only consider
the expansion case for a specific value of γ . However, thanks
to the relations Eqs. (17) and (18), PDFs for other cases not
shown here can be visualized.

It is worthwhile here to mention that the convergence of
〈e−βw〉gc is determined by the structure of the singularities of
the characteristic function. The poles of G(u) are located in
the complex u plane, where G(u)−1 = 0, yielding

ul,n = −iβ[εl(0) − μ] + 2πn

εl(0)γ
, l = 1,2, . . . ,

(19)
and n = 0, ± 1, ± 2, . . . .

If γ > 0, then all poles are located in the lower half plane
[Im(ul,n) < 0] for β > 0, because εl(0) > μ. Therefore a
divergence of G(ul,n) = 〈eiul,nw〉gc could only occur in the
unphysical regime of negative temperatures. On the other
hand, for γ < 0 all pole positions are at positive imaginary
values, Im(ul,n) > 0. If the inverse temperature lies below
the pole position Im(u0,0) = β[εl(0) − μ]/[εl(0)|γ |] the EWA
〈e−βw〉gc is finite. The opposite case, Im(u0,0) > β, leads to a
divergent EWA. Hence the condition for a finite EWA becomes

(1 + γ )ε0(0) > μ. (20)

Since (1 + γ )ε0(0) = ε0(τ ) is the single particle ground state
in the trap at the end of the protocol, this condition is
identical with the condition of the existence of the hypothetical
equilibrium state as explained at the end of Sec. II.

So far, we have considered the chemical potential and
the temperature as independent thermodynamic variables,
characterizing the initial state. In many practical applications
it is more convenient to consider the average particle number
as prescribed, instead of the chemical potential. As a con-
sequence, the chemical potential then becomes a function of
the average particle number and temperature, and also the
existence of a finite EWA then depends on temperature.

VI. ASYMPTOTIC RESULTS

In the extreme temperature limits, closed analytic forms of
the characteristic function of work can be obtained. Simple
analytic expressions for the work PDF follow if additionally
the change of the trap curvature is sufficiently small.

A. High temperatures

At high temperatures, the ground state energy is much
smaller than the thermal energy, ε0 	 kBT , and hence βε0

serves as an expansion parameter. The mean number of the
particles and the initial grand partition function then are
approximately given by

Nav ≈ z

∞∑
l=0

g(l)e−βεl (0) ≈ eβμ

(βε0)3
,

(21)

lnQi = −
∞∑
l=1

g(l) ln[1 − ze−βεl (0)] ≈ Nav.

The second line gives the equation of states of an ideal gas.
In the high temperature regime, positively or negatively large
values of the work have highest probability for widening or
narrowing, respectively, the trap. It is therefore sufficient to
consider the contributions of the small values of u to the
characteristic function yielding

ln Ght(u) = eβμ

(βh̄ω)3

[
−1 + 1

(1 − iγ u/β)3

]
. (22)

This asymptotic high temperature result agrees with the
characteristic function of work for a classical system of
noninteracting particles in a harmonic trap that initially stays in
equilibrium with a reservoir and then experiences an adiabatic
change of the trap curvature; see the Appendix. The PDF
corresponding to the high temperature limit characteristic
function is not known analytically. However, in the case of
small curvature changes, i.e., |γ | 	 1, one can perform an
expansion in powers of γ , leading to

ln Ght(u) ≈ eβμ

(βh̄ω)3
(3iγ u/β − 6γ 2u2/β2). (23)

Within this approximation the work average and its standard
deviation become

〈w〉 = 3Navγ /β, (24)

σ 2
w = 4γ 〈w〉/β.

The corresponding Gaussian distribution function of the work
is then given by

p(w) = 1√
2πσ 2

w

exp

[
− (w − 〈w〉)2

2σ 2
w

]
. (25)

As shown in Fig. 2(a), this PDF obtained for high temperatures
and small curvature deformations is in good agreement with
the numerical evaluation of the PDF to be detailed in the next
section. In the high temperature approximation, Eq. (25), the
EWA becomes

ln〈e−βw〉gc ≈ −3Navγ (1 − 2γ ). (26)
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FIG. 2. Probability density functions of the work (in units of w0 ≡
h̄ω) for γ = −0.1 and Nav = 100. (a) High temperature behavior at
T = 100Tc, where the line is given by the analytic form, Eq. (25).
The panel (b) displays the low temperature behavior at T = 0.1Tc.
The analytic result of Eq. (30) is depicted by the solid line. For
comparison, we present the numerical results (points) obtained by
using Eqs. (10) and (16), which are well consistent with the analytic
forms in the respective temperature limits.

On the other hand, the grand canonical partition function of
the hypothetical equilibrium state reads, up to the second order
in γ ,

lnQf = −
∑

l

g(l) ln[1 − ze−β(1+γ )(l+ε0)]

≈ Nav(1 − 3γ + 6γ 2).

This, together with Qi in Eq. (21), leads to ln[Qf /Qi] =
〈e−βw〉gc, validating the Jarzynski equality, Eq. (2), within the
Gaussian approximation. In passing we note that this need
not be expected since the Gaussian approximation often fails
to describe the wings of the work distribution with sufficient
accuracy to conform with the Jarzynski equality [20].

B. Low temperatures

At sufficiently low temperatures, the behavior of the system
is determined by the ground state energy level (l = 0). The
characteristic function, Eq. (16), can be written as

G(u) ≈ 1 − ze−βε0(0)

1 − ze−βε0(0)eiuγ ε0(0)
, (27)

which yields a distribution of work values wn = γ ε0(0)n with
probabilities pn given by

pn = (1 − ze−βε0(0))zne−βε0(0)n. (28)

For the EWA one obtains from this work distribution

〈e−βw〉 = (1 − e−β[ε0(0)−μ])/(1 − e−β[ε0(τ )−μ]). (29)

The right-hand side of this equation coincides with the ratio of
the grand canonical partition functions (6) at the end and the

beginning of the protocol, each of which being evaluated at
sufficiently low temperatures such that other than the ground
state contributions can be neglected. Hence, the Jarzynski
equality also holds for the approximate low temperature work
PDF (28). Note that any protocol ending with a ground state
ε0(τ ) which lies below the chemical potential μ formally
leads to the nonsensical result of a negative EWA, indicating
the actual divergence of the sum representing this average.
Finally we note that for small values of the deformation
parameter γ , the spacing between the allowed values of the
work becomes smaller, suggesting to approximate the discrete
work distribution by a continuous PDF which can be written
as a generalized exponential PDF

p(w) = 1

|〈w〉|e
−w/〈w〉�(γw), (30)

where �(x) denotes the Heaviside step function. The average
work 〈w〉 follows from Eq. (28) as

〈w〉 = γ ε0(0)
ze−βε0(0)

1 − ze−βε0(0)
. (31)

The sign of the average work is determined by that of γ :
Compressing the trap leads to positive, widening to negative
average work. In accordance with Eq. (20), there is no
restriction for the existence of the EWA in the compression
case. For widening though, the characteristic scale on which
the exponential distribution decays must be small enough that
the increase of the exponentiated work e−βw for negative w

is overcompensated and a finite EWA exists. The quantitative
condition β|〈w〉| < 1 following from Eq. (31) is identical with
the condition implied by the existence of the hypothetical
equilibrium state, ε0(0) > μ.

VII. NUMERICAL RESULTS

In order to investigate the behavior of the work PDFs in the
intermediate temperature regime, we numerically evaluated
the characteristic function in Eq. (16) and obtained the work
PDF by means of an inverse transformation of Eq. (10). For
that purpose, we used the fast Fourier transform algorithm pro-
posed by Danielson and Lanczos [21]. Figure 3(a) displays the
PDFs for γ = −0.1 and Nav = 100 at various temperatures. At
T = 1.7Tc (see the curve labeled by E), the work PDF exhibits
a decay that, on the logarithm scale, is faster than linear.
At lower temperatures, the PDF becomes negatively skewed,
developing a more pronounced tail in the region of large
negative work. At the extremely low temperature, T = 0.1Tc

(labeled by A in Fig. 3), the PDF approaches the generalized
exponential distribution, Eq. (30). The overall feature of this
temperature dependence is confirmed also for smaller average
particle numbers Nav = 10, the PDFs of which are shown in
the panel (b).

As mentioned, the divergence of the EWA sets in when the
ground state energy at the end of the work protocol is identical
to the chemical potential of the reservoir. Figure 4(a) displays
the critical line determined by γcε0 = μ − ε0 for a given
average number of particles. The hypothetical equilibrium
state exists only in the region II (γ > γc) of Fig. 4(a). This is
the case when the work is done by compressing the potential
(γ > 0) but also in the limit of high temperatures. On the other
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FIG. 3. Probability distribution functions of the work (in units
of w0 ≡ h̄ω) for the potential expansion γ = −0.1. The panels
(a) and (b) are for Nav = 100 and Nav = 10, respectively. The curves
in each panel are obtained for various temperatures T/Tc = 0.1 (A),
0.7 (B), 0.9 (C), 1.1 (D), and 1.7 (E), which correspond to the
crosses in Fig. 4(a) below. At the highest temperature, the PDF for
Nav = 100 is approximately Gaussian. With decreasing temperature,
the asymmetry of the PDF becomes more pronounced in the form
of a heavier tail in the negative work region, and finally converges
into an exponential PDF (see the curve A). For a system of smaller
number of particles, the PDF is more asymmetric already at higher
temperatures and becomes even more skewed at low temperatures.

hand, upon expanding the potential, the EWA diverges at low
temperatures. The key signature of this divergence is reflected
in the tail of the PDF at negative work values. This property
of the PDF can be conveniently quantified by the parameter

α = −β +
(

∂ ln p(w)

∂w

)
w=wc

, (32)

which determines the convergence rate of the integral∫ ∞
wc

dwe−βwp(w). In our numerical investigation we chose
wc as the negative work for which the probability reaches
the smallest possible value p(wc) = 10−13 within the nu-
merical precision of our calculations. Figure 4(b) displays
the temperature dependence of the convergence factor α. In
presenting the results, we show only the α values for PDFs
whose negative work tails approach an exponential behavior
such that a reliable value of α results. In the high temperature
region the α values are negative. Positive α values, which
occur in the low temperature regime, indicate the divergence
of 〈e−βw〉gc. The regions of positive α indeed coincide with
the instability regions given in Fig. 4(a).
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FIG. 4. (a) Phase diagram depicting the region of existence of the
hypothetical grand canonical state in the γ -T/Tc plane. The borders
separating the two regions of existence (II) and nonexistence (I) are
depicted by a solid line for Nav = 100 and by a dotted line for Nav =
10. Compression (γ > 0) belongs to the region II irrespective of the
temperature. If the potential is expanded the hypothetical equilibrium
ceases to exist and region I is entered provided the temperature is low
enough. At the expansion factor γ = −0.1 (dotted horizontal line),
the region I is entered at T ≈ 0.95Tc for Nav = 100 and at T ≈ 0.77Tc

for Nav = 10. The points A, B, C, D, and E (crosses) correspond to
the accordingly marked work PDFs that are displayed in Fig. 3.
The convergence measure α introduced in Eq. (32) is displayed in
panel (b) as a function of T/Tc for γ = −0.1 and for Nav = 100 (
)
and Nav = 10 (◦). The temperature values at which α changes sign
indicate the transition between finite and divergent EWA in agreement
with the corresponding temperature values read off from panel (a).
The vertical lines refer to the temperatures of the points B and C. For
Nav = 10, the crossing points with the lines corresponding to B and
C give positive and negative α values, respectively, in accordance
with panel (a). For Nav = 100 both points yield positive α values in
agreement with panel (a).

VIII. SUMMARY

We studied a subtlety of fluctuation theorems specific for
Bose particles which initially are prepared in a grand canonical
equilibrium state. When the considered protocol finally leads
to a Hamiltonian whose ground state energy per particle is less
than the chemical potential of the initial state, the hypothetical
equilibrium state is ill defined and its corresponding grand
canonical partition function and grand potential do not exist.
For the statistics of work fluctuations this means that the
exponential work average diverges, in spite of the fact that
the moments of the work of all orders are finite. In this
situation, the Jarzynski equality looses its meaning, and also
the Tasaki-Crooks relation becomes pointless because the
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initial equilibrium state for the backward process does not
exist, and therefore cannot be prepared.

In order to illustrate this issue, we considered Bose particles
in a three-dimensional harmonic trap, and investigated the
statistics of the work done by changing the trap curvature
adiabatically. The probability distribution of the work at low
temperatures follows a generalized exponential distribution,
which has a more pronounced tail than the Gaussian high-
temperature work distribution. We presented analytic forms
of the PDFs in the extreme temperature regimes, which are
in good agreement with numerical results. In the intermediate
regime, the numerical results illustrate the transition between
the extreme temperature cases. As a quantitative measure for
the decay of the PDFs we examined the decay rate α, the
sign of which governs the convergence of 〈e−βw〉. When
the work is done by compressing the trap, α is always
negative to guarantee the convergence. On the other hand,
when the trap is expanded, α undergoes a sign change upon
varying the temperature at constant average particle numbers.
Hence, in the low temperature regime the average 〈e−βw〉gc

diverges.
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APPENDIX: CLASSICAL LIMIT

If the Hamiltonian H(t) commutes with N for all times
during the protocol then the particle number is conserved, and
the characteristic function, Eq. (10), can be decomposed into
N -particle components:

G(u) = Q−1
i

∑
N

eβμNTrNeiuHH (τ )e−iuHe−βH

= Q−1
i

∑
N

eβμNZNgN (u), (A1)

where ZN is the canonical partition function of the N -particle
system, and gN (u) is the characteristic function of work for
the N -particle system with initial canonical equilibrium state.
In the particular case of noninteracting Boltzmann particles,
the canonical N -particle partition function can be expressed
by the single-particle partition function Zs as ZN = (Zs)N/N !
similarly the canonical N-particle generating function in terms
of the one-particle generating function gs(u) as gN (u) =
[gs(u)]N . Using Qi = ∑

N eβμNZN = exp[eβμZs] and sum-
ming up the series, one obtains the characteristic function for
the classical particles,

Gc(u) = exp{eβμZs[gs(u) − 1]}. (A2)

For the example of particles subject to a three-dimensional
isotropic harmonic potential undergoing a change of its

curvature, the single-particle characteristic function becomes

gs(u) =
{∫

dp dq

Zsh
eiu[H(p(τ ),q(τ ),τ)−H (p,q,0)]e−βH (p,q,0)

}3

,

where h is Planck’s constant. In the particular case of an
adiabatically slow change of the potential curvature the time-
dependent Hamiltonian can be expressed in terms of the action
I to yield

H (p(t),q(t),t) = 1

2m
p(t)2 + m

2
ω2(t)q(t)2 = ω(t)I. (A3)

With the invariance of the action under adiabatic changes
we get

H (p(τ ),q(τ ),τ ) − H (p,q,0) = [ω(τ ) − ω(0)]I = γωI.

Combined with
∫

dp dq = 2π
∫ ∞

0 dI , this gives

Zsgs(u) = h̄−3

[∫ ∞

0
dIe−(β−iγ u)ωI

]3

= 1

(β − iγ u)3(h̄ω)3
(A4)

and Zs = 1/(βh̄ω)3. Hence we find for the grand canonical
characteristic function

Gc(u) = exp

{
eβμ

(βh̄ω)3

[
1

(1 − iγ u/β)3
− 1

]}
, (A5)

which coincides with the quantum expression of characteristic
function at high temperatures, Eq. (22).
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