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Flaw strength distributions and statistical parameters for ceramic fibers: The normal distribution
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The present paper investigates large sets of ceramic fibre failure strengths (500 to 1000 data) produced using
tensile tests on tows that contained either 500 or 1000 filaments. The probability density function was determined
through acoustic emission monitoring which allowed detection and counting of filament fractures. The statistical
distribution of filament strengths was described using the normal distribution. The Weibull equation was then
fitted to this normal distribution for estimation of statistical parameters. A perfect agreement between both
distributions was obtained, and a quite negligible scatter in statistical parameters was observed, as opposed to the
wide variability that is reported in the literature. Thus it was concluded that flaw strengths are distributed normally
and that the statistical parameters that were derived are the true ones. In a second step, the conventional method
of estimation of Weibull parameters was applied to these sets of data and, then, to subsets selected randomly.
The influence of other factors involved in the conventional method of determination of statistical parameters is
discussed. It is demonstrated that selection of specimens, sample size, and method of construction of so-called
Weibull plots are responsible for statistical parameters variability.
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I. INTRODUCTION

The fracture of many materials including ceramics is caused
by microstructural flaws that act as stress concentrators. The
flaws are generally distributed randomly, and they exhibit
wide variability in severity, as a result of variability in shape,
nature, size, and location with respect to the stress state. As
a consequence, stress-induced fracture is a stochastic event,
and fracture stresses measured on specimens with identical
dimensions have a statistical distribution.

There are various approaches to fracture statistics for
brittle materials, and a particular effort was devoted to brittle
materials or ceramics [1–10]. The fundamental ones recognize
the flaws as physical entities, as well as the contribution of
flaw severity [4–10]. Severity of fracture-inducing flaws is
measured either using flaw size or flaw strength. In particular,
in the so-called elemental strength approach, flaw strength is
defined using an elemental strength that is the local stress that
causes extension of a flaw. The elemental strength concerns
microscopic length scale. By contrast, the Weibull approach
to brittle fracture considers the failure stress of component
(macroscopic length scale). The distribution of elemental
strengths is a key issue for failure statistics.

In the elemental strength model, brittle failure is described
by the following failure probability equation [5,7–10]:

P = 1 − exp

[
−

∫
V

dV

∫ S

0
g(S)dS

]
, (1)

where g(S) is the flaw density function and S is the elemental
strength.

The power law was found to be satisfactory for flaw strength
distribution g(S). It allowed sound failure predictions using
Eq. (1) for ceramics under various loading conditions (see
[10] and references therein). However, the estimated constants
generally exhibit some variation. This issue has not been solved
properly, despite much effort by many researchers [11–17].
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There are two possible solutions that are proposed in the
present paper: either solve the constant variability issue or
identify an alternative flaw strength distribution.

The normal distribution should be a natural solution. It
is considered the most prominent probability distribution
in statistics. It indicates the probability of occurrence of a
characteristic in a population of infinite size. Then, certain
distributions can be approximated by the normal distribution
when the sample size is large (for example, the binomial dis-
tribution, the Poisson distribution, the χ -squared distribution,
and the student’s t-distribution). It is reported that this trend
is also observed with the Weibull distribution when the shape
parameter 3 � m � 4 [18].

Normal distribution is not used in fracture statistics. It has
been assumed by a few researchers for the distribution of
strengths in the locality of flaws [19–21]. But, no satisfactory
demonstration was proposed up to now. Furthermore, the sets
of failure data in [21] were not statistically relevant (nine data)
so that it cannot be considered that normal distributions were
obtained [22].

The objective of the present paper is to examine the validity
of the normal distribution for the distribution of flaw strengths.
Then, approximation of the flaw density function using the
power law was evaluated with a view to estimate the true
constants. For this purpose, the present paper investigates
large sets of flaw strengths measured on ceramic fibres.
Under uniaxial uniform tension, failure stress of a filament
is the strength of the flaw that caused filament fracture
(flaw strength or elemental strength). For this reason, failure
tests on fibres are of great interest to determine the flaw
strength distributions. Tests were performed on tows made of
several hundreds of parallel ceramic filaments. As discussed
in previous papers [23–25], a tensile test on a tow provides
the strengths of the single filaments it is made of. So, this
technique is powerful to generate very large sample sizes: in
this work about 500 or 1000 data per test. This is the only
possible way to generate large databases within a reasonable
amount of time and in a repeatable manner. Moreover, accurate
flaw strength distributions for fibres are required for sound
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failure predictions and proper modeling of multiple cracking
in fibre-reinforced ceramic matrix composites.

II. STATISTICAL ANALYSIS OF FAILURE DATA

A. Fracture statistics

The fundamental equations of failure probability are
recalled first with a view to highlight the significance of
underlying flaw strength distribution. It is demonstrated that
Eq. (1) reduces to the following equation, when the distribution
of elemental strengths is described using a power law [7–10]
with constants m and λ0 (connection between brittle failure
and distribution of extreme values):

P = 1 − exp

[
− V

V0
K

(
σref

λ0

)m]
, (2)

where λ0 is a scale factor and m is a shape parameter. K is
obtained by integrating the stress state over stressed volume
V . K depends on the probabilistic model that is considered
[7–10]. σref is a reference stress (peak stress) in the stressed
volume V . V0 is the reference volume (V0 = 1 m3 when
International Units are used).

Using Eq. (2), it is demonstrated that the Weibull equation
of failure probability is a particular solution of Eq. (1) [5,10].
Under a uniform uniaxial tension, K = 1, σref is the specimen
tensile strength, so that Eq. (2) reduces to

PW = 1 − exp

[
−

(
V

V0

)(
σ

σ0

)m]
, (3)

where σ0 is the scale factor. In this particular case, σ0 = λ0.
Equation (1) can be used to predict failure in several loading

cases including multiaxial stress-states [7–10], for various
formulas of flaw density function.

The power law distribution of extreme values (often referred
to as the Weibull distribution) is a widely used distribution
in fracture statistics, and reliability engineering, owing to its
simple form. It is a versatile distribution that is very sensitive to
the statistical parameters. Thus the estimation of true statistical
parameters is an important issue for failure prediction purposes
when dealing with power law distributions. There has been a
great deal of papers on the variability in Weibull statistical pa-
rameters. In quite all the cases, the authors looked for methods
of correction of estimates that have been obtained on limited
sample sizes. For this purpose, they used more or less complex
analyses and computations to define appropriate estimators of
experimental failure probability or they introduced additional
parameters into the Weibull equation in order to improve the
fit to experimental distribution of strength data [11–17]. The
estimation of Weibull statistical parameters from experimental
failure data may be skewed as a result of the following critical
steps.

(i) The construction of a so-called Weibull plot of strength
data that requires an estimator for the determination of the
failure probabilities associated to experimental data.

(ii) The selection of a sample which may be undersized
[26], especially for highly heterogeneous materials, i.e.,
containing large amounts of flaws with broad size range.

(iii) The derivation of strength data from applied load, which
may not be easy for certain geometries (like small diameter
fibres) or loading conditions.

B. Normal distribution-based analysis

Strain instead of stress-based fibre strength was used, which
allowed elimination of source of variability associated to fibre
diameter. Equations of Gaussian probability density function
f (ε) and normal distribution PN (E < ε) are

f (ε) = 1

S
√

2π
exp

[
− (ε − μ)2

2S2

]
, (4)

PN (E � ε) =
∫ ε

0
f (ε)dε, (5)

where ε is the strain to failure, μ is the mean, and S is the
standard deviation.

S and μ were obtained by fitting Eq. (4) to the histogram of
fibre failure data Ni vs εi , where Ni is the number of failures
during a deformation increment (�ε = 0.1%).

For a single gauge length and uniform tensile stresses, the
following strain-based Weibull equation of failure probability
PW is derived from Eq. (3):

PW = 1 − exp

[
−

(
V

V0

) (
ε

ε0

)m]
= 1 − exp

[
−

(
ε

εl

)]
,

(6)

with ε0 = σ0/Ef and εl = ε0(V0
V

)1/m.
The statistical parameters were estimated by fitting Eq. (6)

to the normal distribution of strains to failure.

C. Conventional estimator-based approach

A so-called Weibull plot is constructed, using an estimator
for estimation of failure probabilities associated to strain
data ranked in ascending order. Various estimators have been
devised in the literature [11–17]. The estimator Pj = j/N

can be used on large sample sizes, as in the present paper.
The estimator Pj = (j − 0.5)/N is recommended for limited
sample sizes (j is the rank of filament strain to failure).

Statistical parameters are then obtained by fitting Eq. (6) to
the Weibull plot of Pj vs εj . When a linear regression analysis
method is used, Weibull modulus m is determined as the slope
of the Weibull plot of ln[ − ln(1 − P )] vs lnε:

ln[− ln(1 − P )] = m ln ε + ln k, (7)

where k is a constant: k = V/V0ε
m
0 .

In the second step, subsets of 20 and 30 strain-to-failure
data were selected randomly (five draws per sample size) from
a set of 1000 failure strains (obtained on specimen 2) in order
to simulate the effects of sample size and of sampling. Such
sample sizes are generally used for the estimation of statistical
parameters. The conventional method of estimation of Weibull
parameters with Pj = (j − 0.5)/N as estimator was used.

In the third step, the subset corresponded only to the failures
prior to maximum load.
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III. EXPERIMENT

A. Bundle test specimens

The bundle test specimens contained either 500 or 1000
SiC-based Nicalon filaments. The main filament character-
istics are nominal diameter 10–15 micrometers, Young’s
modulus (Ef ) 200 GPa [24,27,28]. The exact number of
filaments was determined from the initial slope of the force-
strain curve [25,27]. Test specimens were prepared according
to the protocol described in a previous paper [23].

B. Tensile tests on bundles

The tensile tests were carried out at room temperature
under monotonous loading (displacement rate = 2 μm/s) on
a servopneumatic testing machine equipped with a 500 N load
cell. Test specimen elongation was measured using a contact
extensometer (with a ± 2.5 mm elongation displacement
transducer) that was clamped to the specimen using two
4-mm-long thermoretractable rings. The rings were located
close to the grips in order to avoid possible bending introduced
by the extensometer. The inner distance between the rings
defined the gauge length (115 mm). Thus strain measurement
was direct and unpolluted by load train deformations. The
samples were first loaded up to 5% of the ultimate load, and
then the extensometer was placed and adjusted. Lubricant oil
was used to avoid friction between the fibres.

Acoustic emission monitoring was aimed at detecting and
counting fibre fractures [25], in order to determine the strain-
to-failure data histograms. It is worth emphasizing that, unlike
acoustic emission monitoring, the load decrease curve does
not permit determining the numbers of failure events during
any strain steps. Two resonant PZT transducers (Acoustic
Emission type μ 80) were placed at specimen ends, in order to
locate fracture origins. Only those events located in the gauge
length with amplitude > 60 dB (corresponding to fibre failure)
were kept. The transducers were acoustically connected to the
samples by vacuum grease. A two channel Mistras 2001 data
acquisition system of Physical Acoustics Corporation (PAC)
was used for the recording of AE data. A fixed threshold of
32 dB was selected for minimizing interference noise from
outside.

IV. RESULTS

A typical force-strain curve together with locations of
acoustic emission events in the gauge length is shown in Fig. 1.
The curve displays the conventional features of bundle tensile
behavior, i.e., initial elastic deformations for strains <0.5%,
and then nonlinear deformations as a result of individual fibre
breaks as indicated by acoustic emission events. Note that the
load decreases progressively and regularly to 0, and that the
density of AE event sources is homogeneous, which suggests
that fibre interactions probably did not operate.

Figure 2 shows the probability density function derived
from acoustic emission monitoring. It is a bell curve de-
scribed by a Gaussian function, symmetric about its mean.
Quite identical parameters μ and S were estimated for the
three bundles that were tested (Table I). Figure 3(a) shows
the corresponding normal distribution. It also shows that the
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FIG. 1. (Color online) Load-strain curve and location of AE
events along specimen axis for a Nicalon fibre bundle (test
specimen 2). The dotted lines delineate the gauge length.

Weibull distribution function Eq. (6) fits quite well the normal
distribution for the statistical parameters reported in Table I.
It is worth pointing out that the scatter in the scale factors
is quite negligible. The shape parameter values (5.23–5.43;
Table I) show a very small variation when comparing to the
data reported in the literature: 2.3–7.1 [28–30]. Referring to
the limited scatter in Weibull parameters that was obtained,
and to the large size of the data samples that were analyzed, it
can be considered that these are the true statistical parameters.
It is worth pointing out that the Weibull distribution fits a
normal distribution when the sample size is large. This result
is at variance with those in the literature that indicate that this
is obtained only when m � 3.6 (3 � m � 4).

A. Comparison with the estimator-based estimation approach

Figure 3(b) shows that the Weibull plot obtained for Pj =
j/N fits quite well the normal distribution, which confirms
that Pj = j/N is a satisfactory estimator with large sample
sizes. Estimates quite close to the true statistical parameters
were obtained (Table II). However, the m estimates are smaller
and they exhibit a wider variation, whereas the scale factors
agree quite well (Table II). Figure 4 compares the log-log
graph of normal distribution with the linearized Weibull
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FIG. 2. (Color online) Typical histogram of strain-to-failure data
obtained on test specimen 2.
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TABLE I. Statistical parameters of normal and Weibull distributions of flaw strengths for Nicalon filaments. V0 = 1 m3.

Normal distribution Weibull distribution

Test specimen Number of filaments μ(%) S(%) m εl(%) ε0(%) σ0(MPa)

1 487 1.16 0.25 5.30 1.25 0.01 23.4
2 986 1.11 0.24 5.23 1.20 0.01 21.1
3 924 1.15 0.24 5.43 1.23 0.01 25.7

plot. A discrepancy can be observed on Fig. 4 at the low
extreme for probabilities <4%. It can be attributed to a slight
underestimation of the number of first failures, as it can be
noted on Fig. 2. It is related to the detection of low energy
events near the filtering threshold of 60 dB (Fig. 2). The log-log
scale magnifies this discrepancy. It may not be considered
that the apparent presence of two domains reflects a bimodal
population of fracture inducing flaws, since the probability
density function has shown the presence of a single population
(Fig. 2). Furthermore, previous papers on Nicalon SiC fibres
did not clearly identify the presence of a bimodal population
of flaws [28,30], although certain linearized Weibull plots
revealed a discrepancy at the low strength extreme. Fractures
from pores located in the surface or in the interior of filaments
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FIG. 3. (Color online) Cumulative distribution functions of fail-
ure strains for Nicalon filaments obtained for test specimen 2:
(a) normal distribution vs Weibull distribution Eq. (6); (b) normal
distribution vs Weibull plot (Pj = j/N ).

were essentially evidenced by fractography. This effect is
interesting to point out an error that may result from the shape
of the linearized Weibull plot at the low strength extreme.

B. Influences of selection and number of data

The well-known effect of increasing sample size on
variability is observed here (Table III): the scatter in Weibull
modulus estimates was found to decrease with increasing
sample size. The m values obtained on small sample sizes
show a wide variation (Table III). Note that the scale factor
was also affected.

This effect is well documented in the literature. Several
authors have investigated the influence of the number of data
on Weibull modulus estimates. For this purpose, data sets were
generated using a Monte Carlo method for given m values:
in [31], 1 < m < 50 and 10 < N < 50, and the procedure
was repeated 107 times, giving a large amount of data sets.
Correction factors have been proposed and the diagrams that
have been produced are expected to allow the number of
specimens for the estimation of Weibull modulus to be refined
with respect to desired accuracy.

However, it is worth pointing out that, in the present paper,
only 5 samples of 20 or 30 data were selected among 1000
experimental data. Therefore, it can be anticipated that the
bounds of the m intervals are not correct. The reason for this
is that these sample sizes are too small when compared to the
amount of data sets that can be extracted from the original
one. The number of possible subsets is given by the binomial
coefficient:

CN
n = N !

(N − n)!n!
. (8)

For n = 20 and n = 30 it is quite huge: C1000
20 = 3.4 × 1041

and C1000
30 = 3.1 × 1027.

The huge number of possible subsets given by Eq. (8)
indicates how high the probability is that the samples of
Nicalon filaments that have been used by authors for the
estimation of Weibull parameters were different (see [29] and
references therein). It also indicates that sets of 107 data may

TABLE II. Statistical parameters estimated using the estimator-
based conventional method (Weibull plot for Pj = j/N ).

Weibull plot

Test specimen m εl(%)

1 5.23 1.26
2 4.86 1.20
3 5.12 1.23
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FIG. 4. (Color online) Comparison between Weibull plot (empir-
ical distribution function “j/N”) and normal distribution of strain to
failure for Nicalon filaments (test specimen 2) (log-log plots).

be too small, which may lead to underestimation of the scatter
in m.

The exact values of m range can be determined. But, this
requires a computerized method of selecting a very huge
amount of data sets among the 1000 experimental failure data.
Development of an efficient method is out of the scope of the
present paper, although the approach would be more accurate
than that using Monte Carlo generated data sets, since the data
sets would be selected among an experimental one.

The above comments about m range are confirmed by the
analysis of the data set for failures prior to maximum load,
from which m as large as 11 was estimated (Table III). This
subset is an extreme one for the size of 168 data since it
comprises all the lowest strengths in the total distribution. It
shows that m � 11.2 is the upper bound for this sample size.
This value is much larger than the ones obtained on smaller
sample sizes (Table III), and than those predicted by Davies
in [31] for ceramics with comparable m = 5. These results
demonstrate that the selection of samples is responsible for a
wide scatter in statistical parameters.

Figure 5 compares the corresponding linearized Weibull
plots to the normal distribution. It visualizes the above-
mentioned discrepancy in m. It indicates that the selection
of the small sets of 20 or 30 data was not too bad. But, this
selection was obtained by chance. And, in the absence of ref-
erence distribution there was no means to evaluate the validity
of this selection. In the present paper, the reference distribution
was established, which highlights the importance of getting the

TABLE III. Weibull parameters estimated using subsets (20, 30,
and failure data prior to maximum load) selected from failure data
obtained on test specimen 2. Asterisk indicates number of events prior
to maximum load.

Weibull plot

Population size M εl(%)

20 4.75–7.18 1.20–1.31
30 4.55–6.05 1.23–1.24
168∗ 11.20 0.79
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FIG. 5. (Color online) Weibull plots of strain-to-failure data
obtained on subsets (20, 30, and data prior to maximum load) derived
from the set of data for test specimen 2.

normal distribution or the true statistical parameters. In [22]
it is demonstrated that sets of at least 30 data are required to
obtain normal distributions.

V. DISCUSSION

There are several objective reasons why it can be considered
that the true flaw strengths parameters have been determined:
m = 5.2 and εl = 1.20%, ε0 = 0.01%, and σ0 = 22 MPa.

First, statistically significant sample sizes were used,
and the shape parameter estimates showed quite negligible
variation.

Second, those parameters that affect the analysis have been
eliminated: sampling, sample size, and use of an empirical
estimator.

However, the question may arise on the pertinence of the
failure data that have been generated experimentally. Fibre
interactions can influence the results, since they can cause
either overestimation of the force on fibres (owing to the effect
of a frictional force Ftot = Ftrue + Ffric) or fracture of several
fibres (leading to a steep force decrease beyond maximum).
The effect of fibre interactions during the tests was investigated
by comparing the experimental force-strain curve with that
predicted using the bundle model considering that fibres are
parallel and independent. The force-strain relation during a
tensile test is given by [32]

F (ε) = NSf Ef ε [1 − P (ε)], (9)

where P (ε) is the probability of failure at strain ε; Sf is the
average filament cross sectional area. Figure 6 shows that there
is an excellent agreement between experiment and theory.
It can be noticed that the force decrease beyond maximum
compares fairly well with that obtained experimentally. It
cannot be concluded that it is steeper, as it is obtained when
groups of filaments fail [24]. All these results converge on
the conclusion that there was not significant pollution by fiber
friction.
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FIG. 6. (Color online) Comparison of experimental and predicted
load-strain curves for a Nicalon fibre bundle (test specimen 2).

VI. CONCLUSIONS

One of the major results of the present paper is that flaw
strengths in brittle fibres follow normal distribution. More
generally, this result applies to brittle materials. Using the
appropriate equation for flaw density function is of great
interest for sound failure predictions using the elemental
strength approach based equation of probability. Unlike with
conventional Weibull analysis of data, with normal distribution

there is no need for an estimator for the estimation of statistical
parameters, which eliminates a source of variability.

Then, it was shown that power law (Weibull type) is a satis-
factory approximation of normal distribution, which assesses
the validity of power law for the flaw strength distribution.
This leads to simpler equations of failure probability.

The values of statistical parameters that were derived from
the comparison of Normal and Weibull distributions of failure
data can be considered as the true ones for the tested SiC
fiber. In particular, the true value of m is about 5.2, and the
scale factors are ε0 = 0.01% and σ0 = 22 MPa. It should be
noted that m = 5.5 and σ0 = 19 MPa had been estimated a
few years ago for this fibre in a previous work on single
filaments [28]. Then, it was shown that variability in statistical
parameters results from the construction of Weibull plots
using an estimator, from sample size and from selection of
test specimens (sampling). Sampling exerts a major influence
when small data sets are considered. Variability cannot
be corrected using various estimators or modified Weibull
equations. Instead, statistically relevant database and normal
distribution should be used for failure analysis.

It is important to note that the analysis used large sets of
failure data (500 to 1000) determined experimentally. The data
produced in the present paper can be regarded as reference data
for further analysis on the commercial fibres examined in this
work. Performing new analysis of a limited sample size would
provide results that would not be correct, as demonstrated in
this paper.
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