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We continue our study of the statistical properties of particles in equilibrium obeying Smoluchowski dynamics.
We show that the system is governed by a kinetic equation of the memory function form and that the memory
function is given by one of the self-energies available via perturbation theory as introduced in previous work. We
determine the memory function explicitly to second order in an expansion in a pseudopotential. The method we
use allows for a straightforward computation of corrections via a formal expansion and we therefore view it as an
improvement over the conventional mode-coupling theory (MCT) formalism where it is not clear how to make
systematic corrections. In addition, the formalism we have introduced is flexible enough to allow for a wide array
of different approximation schemes, including density expansions. The convergence criteria for our formal series
are not worked out here, but the second-order equation that we derive is promising in the sense that it leads to
analytic and numerical results consistent with expectations from computer simulations of the hard-sphere system
in addition to replicating the desired features from conventional MCT (e.g., a two-step decay). These particular

solutions will be discussed in forthcoming work.
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I. INTRODUCTION

A powerful approach for studying the dynamics of systems
of classical particles was presented in Ref. [1] (referred to
here as FTSPD). In Ref. [2] (referred to here as SDENE) this
method was developed to study fluctuations in equilibrium for
systems obeying Smoluchowski dynamics (SD) [3]. A parallel
development is carried out in Ref. [4] for systems obeying
Newtonian dynamics. The treatment of SD is extended here to
include a full self-consistent [5] treatment of the separation of
statics and dynamics and a derivation of a kinetic equation—
valid to second order in perturbation theory—governing the
density fluctuations over the entire time range.

In SDENE, the fluctuation kinetics are described in terms
of a self-energy structure. These self-energies can be con-
veniently obtained in a perturbation theory expansion in a
pseudopotential. Furthermore, the self-energies are divided
into single-particle and collective contributions. In SDENE,
we focused on the collective contribution which governs the
long-time slow kinetics in the problem, and showed that one
can find a simple self-consistent relationship between the
static structure factor and the zero-frequency component of
the collective part of the self-energies.

In this paper, we fully analyze the single-particle contribu-
tions to the self-energies. We show the following:

(1) The single-particle contribution to the self-energy can
be associated with the equation of state governing the system.

(2) While the collective degrees of freedom dominate the
long-time dynamics in this system, the single-particle degrees
of freedom govern the early-time kinetics and the approach to
the slow-regime.

(3) We derive here the kinetic equation of the memory-
function type valid at second-order in perturbation theory and
including both single-particle and collective contributions.

It is our intention to solve this kinetic equation numerically
in future work [6], and to show that the analysis of the collective
contribution in SDENE can be extended analytically to obtain
a two-step kinetic process similar to that obtained from mode-
coupling theory (MCT) [7].
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MCT represents the current de facto theoretic description
of dense fluids and the transition from fluid to glassy state
[8-11]. However, MCT is limited by its ad hoc construction
and lacks a mechanism to institute systematic corrections. We
derive here, on the other hand, a form of the kinetic equation
of the memory-function type used in MCT, and our theory
provides the crucial advantage of well-defined, perturbative
corrections. Thus one can use our methods to study vertex
corrections, three- and higher-mode corrections to the standard
MCT two-mode form, and high-frequency effects.

We begin with a brief review of the previous work to
establish context and notation. We next develop the equation
of state described above and then complete the second-order
vertex function. In the final section, we derive the kinetic
equation and discuss the memory function at its heart.

II. REVIEW OF PREVIOUS WORK

The key components of the field theory approach are
the two-point matrix cumulant functions, G;;(¢g,w), and the
two-point irreducible vertex functions, I';;(¢q,w), with i and j
running over the fields p and B where p is the particle density
and B is a response field. The kinetic equation of interest
results from an analysis of Dyson’s equation which takes the
form

Zrikaj = &ij. (1)
k

In SDENE it was shown that the two-point irreducible
vertex can be separated into two contributions,

Iy =vyij + Kij, ()
where y;; is the single-particle contribution and K;; is the
collective contribution. The second-order contribution, Ki(jz),
was derived and partially analyzed. It was shown that K i(jz) itself
satisfies a fluctuation-dissipation relation while remaining
a quadratic functional of the two-point matrix correlation
function, G;;. The single-particle contribution to the two-point
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vertex, y;;, is defined as the inverse of the quantity
Gij = Trypje 72V 3)
such that
Z YikGkj = 0ij 4
k

where the fields ® = (p, B) are one-particle additive,

N
D =) ¢f, (5)
a=1

H = (Hy4,Hp) is a conjugate external coupling field, and the
term AW contains the pseudopotential interaction.

The form of the interaction AW is defined carefully in
FTSPD, but to second order in the pseudopotential is given by

AW = AW + AW® 4. (6)
where
AW®D =3 " F,G,, (7)
1
AW® = 2> FuFGu, ®)
and
F; = Zgij¢ja &)
J

and where the interaction matrix o;; is defined by

0ij(q) = V(q)(3ipd;B + 8iBSjp), (10)

where V(q) is the Fourier transform of the potential. (We have
not found it confusing to use the same symbol for both the
coordinate- and wave-number-space representations. )

The trace, Tr, is defined carefully in FTSPD and SDENE,
however, we do not need the details in defining Eq. (3) since
all the noninteracting cumulants among the fields p and B are
available for the noninteracting case in FTSPD. This suffices
to determine G;; x. We gave the solution for the noninteracting

yi(jo) in both FTSPD and SDENE and provide a summary of
the results in Appendix A.

In general, the procedure is to determine y;; and K;;, then
solve Eq. (1) to obtain the two-point correlation functions
Gp> Gop, and G p,. In the special—but very important—case
where the system is in thermal equilibrium, one finds that there
is a simple fluctuation-dissipation relation (FDR) between the
two-point quantities,

Gpp(q.0) = Gpplq.0) = ifwG ,p(q,0). Y

In SDENE, we showed that one has in this case a simple
kinetic equation satisfied by the density-density correlation
function

0 _
2 Gmlat) = —Dg*6S7(q)G,p(q,1)

t
_ d
— Dq* / dsB*pTpn(q.t = $)7-Gpp(s),
T/

12)
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where X pp(q,t) is the kinetic contribution to I'gp occurring
in Eq. (1), S(g) is the static structure factor, p is the average
density, and D = kzT D is the product of the temperature
and diffusion coefficient. In the same work, we determined the
collective contribution to I';; to second order in an expansion in
apseudopotential and established that Fg; and ng)a themselves
satisfy a FDR and are quadratic functionals of the exact
density-density correlation function G,,(g,t). Here we want
to determine the “single-particle” contribution to I'gp.

III. EQUATION OF STATE

In our approach here, we generate approximations for both
the static and dynamic properties. In SDENE, we showed
how approximations for the static structure factor entered the
analysis and we used the collective part of the self-energy,
K;;, to make contact with the equilibrium statics via the static
structure factor. Here, we want to show how the equation of
state enters the development.

A. Equation of state
In FTSPD, we established the fundamental identity for the
one-point quantity
G; = Trp;e AW, (13)
where i labels space, time, and fields p or B. This is the
equation of state. For zero external field, H = 0, and keeping

terms to second order in the pseudopotential as given by
Eq. (6), we find the one-point quantity

1
G = Tr¢,»|:1 +AWD + AW + E(AW“))Z} +

1
= Tr; + Trep; Z FuGu + T Z F,F,
X (Guv + Gqu) + e
1
=Tegi + ) TrgioudiGu+ 5 ) Trdioudioude

u,k u,v,k,l
X (Guv + GuGu)+ e

1
=G+ G0uG, + 5 > GRouo
u,k u,v,k,l
X(GL¢U+GMGU)+"'~ (14)
Using wave-number and frequency labels such that 1 =

(k1,w1), we have the zeroth-order contribution (valid for
uniform systems)

G (q1.01) = 8;,8(1)po. (15)

where we introduce the notation (1) = (Zn)dé(ql)ZnéS(a)l)
and where py is the density in the absence of interactions in
the grand canonical ensemble.

Next, we have the first-order contribution

G'() = G (12)04(23)G(3), (16)
where we now move to a convention where summation over

repeated indices and integration over repeated, barred variables
is implied. At all orders, the two-point cumulant has the form

Gi;(12) = G;;(1)5(1 +2) (17)
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[with 8(1 +2) = 2m)¥8(q1 + ¢2)2m8(w; + w,)] due to trans-
lational invariance, and likewise the full one-point cumulant is

Gi(1) = 6ipd(1)p, (18)

where p is the average density.
Itis easy to show that the first-order contribution then yields

G"(1) = G\9(12)05,(23)G,(3)
= G{y(10)V(0)G ,(0)
= [-8G"(]V0)p
= —BV(0)pos(1)5, (19)

where, in the next to last line, we used the identity GS);(IO) =
—BG (1) discussed in Appendix B.
Turning to the second-order contribution, we have

G2 = Gy + G2, (20)
where

GV = 16(123)0,,(38)01,(35)G.(H)G,(5)  (21)

and
GPP(1) = 1G(123)0,,(38)04,(35)G v (33).  (22)

We can express the three-point cumulants in terms of the three-
point irreducible vertex,

G(123) = =G (1HGY) (25)G) (36)y 0. (356).  (23)

Jy xyz

(The noninteracting three-point vertex functions yi(ﬁg are
summarized in Appendix A.) This gives

G = —1GY16)GY NG (38)y(678)0,,(28)
x 01, (35)Gu@ G, (5)
= —1G16YQETRCNDNGI®)
= —160(16)y 0678
x [-BV(0)p1GP(N-BV (051G (B)
= =GBV - yQ6)GO()]
= LBV (051G (1)
S[BV(0)p1 posip(1), (24)

where (in the fourth line) we have used the identity (established
in Appendix B)

y(123)GP3) = -y 12). (25)

Next, we have the more complicated second-order contri-
bution

GP(1) = 1G{)1(123)0,(24)01,(35)G 0 (35)
= -1G612)y0(238)G,.(33), (26)
where we again have an effective propagator
Gy:(12) = G)(13)04,(38)G 1, (35)0,,,(56)G 0 (62)
=G, (D81 +2). (27)
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Looking at the i = B component, we have
GEP() = 16912y 0(23%G,.(3%)
= —1GH(12)y0.(238)G,.(39). (28)
Enforcing the § functions, we find

1 ~
Gy (1) = —28(1)G(1.0) f d3y9.(0.3, — 3)G,.(3)

1 ~
— —ES(I)G(IQZ(I,O)/d3[y/§2)3(0,3, —3)G,5(3)

+¥59,00.3, = 3)Gg,(3)]. (29)

Consulting the forms given in Appendix A for the three-
point vertex functions, we see that each contributes at most
a term linear in frequency. When we perform the frequency
integral over the response function weighted by this factor,
we find that the integrals vanish since one can close in the
half plane where the response function is analytic. (This is the

upper half plane for G, and the lower half plane for Gp,.)
Thus

GYP1) =o. (30)
Returning to the p component of Eq. (26), we have
GO = —3G0N(12)y.234G,.(34). @31

The integrals over the response components of G vanish for the
same reasons given above and one is left with the contribution

1 N
G2(1) = —EG;O;(lo)fdsygj]p(os, —3)G,,(3)
1 N
= (4GP / 3y (0.3, — 3G, 3).
(32)
Then, using
© 0,3, —3)=1/ppg 33
prp( L) )_ /ﬂpos ( )
we are left with

1 .
Gi)z’z)(l) - 5(1)2—m[d3Gpp(3)

1 [ d% do -
=8(1)=— | ——=—G,,(k,
D30 | @y 2 Gk

0 2 (2”) ’
Whel‘e we use the reSult

dw -
/ £2G ) = RFPVAOS ) 35)

derived in Appendix C.
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Collecting all the contributions to the equation of state—
Egs. (14), (19), (24), and (34)—we have

1
p= Po(l = PBV () + S [pBV O)F

B [ d'k
5 Wv (k)S(k)>
~ [ d% o,
— 5o (1 — 7O+ 370+ 5 [ o (k)S(k)) ,
(36)

where V = 5BV and § = §/p. This agrees with a strictly
static formulation of the problem [12], and can be rewritten in
the form
p . 1 Ak -, -
— = - V) + — Vak)Sk)|. 37
: exp[ <)+2ﬁ/(2n)d ®S®| 6

Expanding in V leads back to Eq. (36).
We elaborate on the equation of state and connect it to a
more conventional form in Appendix E.

B. Treatment of G;;
We next need to treat the propagator
Gij = Trgypje +AVIH (38)

in order to determine y;; using Eq. (4). We shall see that G;;
is, roughly speaking, a single-particle quantity. The expansion
in powers of V follows closely the expansion in treating the
equations of state. After expanding AW in powers of V, we
have

Gij = G\ + G\ ou Gy
+1G0100(Guw + GuGy) + O(V3).  (39)

The first term is just the noninteracting matrix propagator
determined in FTSPD as

G(12) = G(1)8(1 +2) (40)
with
Gl = (G =~ @
and
GO(1y = 2POk1_ (42)
e w? + i}

The first- and second-order terms are addressed in turn.

1. First order

For the first-order contribution,

) _ 0
Gij = Gijk

okeGo, 43)

we again replace the zeroth-order three-point cumulant with
the three-point vertex using Eq. (23) and find

G =G0 (-=0)GY (44)

iu vj?
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where the self-energy is given in Fourier space by
=1012) = y© (123)GY) 33)01:(35)G 4 (5)
= V(123G 3 B0)G ,(0)V (0)
= V(123 = BG(3)p]V (0)
—BV(0)pl-y9(12)]
= BAV(0)y(12). (45)

Putting this back into Eq. (44) and remembering that
G(.O)y(O)G(U(;) = GE?), we have

G)(q.0) = =G\ (q.w)BV(0)p. (46)
Combined with the zeroth-order result, we have
G:7(q.0) + G (g.0) = G (g.0)[1 = V(0)Bp]  (47)
and we see that the first-order contribution is a static contribu-
tion to the equation of state.

2. Second order

Working at second order we have the two pieces contribut-
ing to G;j,

2 _ »2,1 2,2)
gij - gij + gi‘i ’ (48)
where
gg'l) = %GE?]){[UkuUKuGqu (49)
and
gl.(f’Z) = %G,('?llgakualfv(;uv‘ (50

Let us take the disconnected piece first. Using the represen-
tation G, (1) = pé(1)8,,, we have

GirP(12) = 1G5 (1200)[V (0)5]2
= 182GV (0)51%, (51)
where we use the identity from Appendix B given by
Gy (1200) = PG (12). (52)
Turning to the substantial contribution, we have

22) _ 10
gi(j ) = EG,('j/){gUkuUlZvGuw (53)
For the first time we encounter the noninteracting four-point
cumulant,
0 __ ~(0) ~(0) ~(0) ~(©0) (0)
Giike =Gy GG, G (54)

Lw yx_vzw’

where we have introduced the four-point vertex y9) . It is
important to recognize that the four-point vertex has a one-
particle reducible contribution and a one-particle irreducible

contribution,

©) O.R) 1,00 (55)

yxyzw = yxyzw xyzw
The reducible contribution can be written quite generally as

0,R (0) (0) ©) ©) 0) (0)
YR = yokGYion + VirGieVivw + VeukGktVeyrs  (56)

where, to the order we are considering here, we may take
Gij — Gl(.?) such that

O,R) _ ,(0) ~(0), (0) 0) ~)_ (0) ©0) ~),,0)
yxyzw - yxykaK ylZzw + yxzk Gk[ V(Zyw + Viwk Gké y@yz' (57)
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The noninteracting four-point irreducible vertex functions are
determined in Ref. [13] and summarized in Appendix A.
Using Egs. (55) and (57) in Eq. (54), we obtain the second-
order contributions to G;;,
gi(]g,z) — gi(.?,lR,l) T glg]g,z,R,z) n g;]g,z,k,s) n gzlg,z,l)7 (58)

where we have four pieces. The first is a disconnected
contribution

(2,2,R,1) 1 ~(0) ~(0)_ (0) ~(©0) A~
gij = 3Gy Gy VG Vs(?l)u Gws (59

¥
where G is defined by Eq. (27). The next two terms are one-
loop contributions given by

(2.2,R2) _ 1~ 0 ). ) ~(©0)
gij - EGix yszGZwGls ylSJS)yGyj (60)

and gi(f*z*“) = g}f*z’R'Z). Finally, we have a Hartree-like
contribution

G = 3GRGH Y NG . ©1)
Consider first the disconnected term
g5 N2 = 16336 A)y,335)
x GP(36)y© (678)G ., (78).  (62)

Since the frequency integral over the response components of

G, vanish we have
(2,2,R,1)
G>*12)
= 16913)GY22)y© 335)GV(56)y© (678)G ,, (78)
2 ix Jjy yxyp s yspp 124
= LG (13)GY) 24y (345)G |y (50)y 5., (678)G 1, (78)
= 160(13)GV 24y (335G, (56)y 5, 678)G 5, (78).
Let us pause and look at the combination
Gh(56)y4.,(678)G ,,(78). Using the implicit & functions,
we can write this as

G 3(56)741, (678)G 1 (78)
= G)(5.0) / ATy 0,7, = NGop(D.  (63)
Because yg/)))p(OJ, -N=1/ ,Bpg, the only remaining integra-
tion is over Gpp(7). Inserting this, along with G%(S,O) =
0

—,BGE))(S), we have
G % (56)y 5 (678)G ,(78) = [-BGO(5)] / d7G ,,(1)/ Bo;
(64)

which gives

1 - _ _
(2,2,R.1) ©) (©0) (0) )
Gi; (12) = EGix(13)G i HY O (345)[ -G (5)]

x / d7G ,,(1/pj- (65)

If we finally use y9)(345)G¥(5) = —y0(34), then we are
left with

2,2,R,1 1 0 3 0 i 27 =,
G+ (2) = 363G Ay 3 / d1G,,(1)/ P}
1 o ~ P
= EGU (12) | d7G ,,(7)/p}. (66)
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This term goes into the statics and the determination of
the equation of state to second order. Combining this with the
zeroth- and first-order contributions, we have the very simple
result

0) (1 (2,1 (2,2,R.1)

1
= GE?)[I —PBV(O) + S[PBV OF

> [ dk
% Y vz(k)S(k)]
- Gf.?)E. (67)
Lo

The remaining three terms in Eq. (58) are of the form of
(2)

self-energy terms which make contributions to y;;".

3. Summary of results at second order

The results for the single-particle propagator to second
order in perturbation theory can be written in the form

P 0 0). (2) ~0
Gij = —G = Gylv Gy, (68)
Lo
where
2 (2,100p) 2.H
yi(j) = y; oop +yi(j ) (69)
and where
2.1 0) ~ 0)_ (0
v =~y GGy, (70)
and
2.H 0.1) &
v = =37 Gue. (71)

To this order in perturbation theory we can rewrite Eq. (68)
in the form

G =G — G753 G (72)
where GE?) is Gﬁ?) with pg replaced by o and )71.(]2) is yi(jz) with
oo replaced by p. Comparing with Eq. (4), we can identify

_©0) , -
vi =7 + 75 (73)

There is no explicit first-order term for the single-particle two-
point vertex.

C. The full two-point vertex function

The two-point vertex is then the sum of the single-particle
contribution y;; and the collective contribution Kj;,

Iy = v + Kij. (74)
Let us review the collective contributions and discuss the full
vertex function.
The first-order collective contribution is simply
1
K = o, (75)

while the details of the second-order collective contribution
are worked out carefully in SDENE and result in

K = —1¥iuwGuwGu:Tus; (76)
where

Gpp = Gpr01yGyp. (77)
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In SDENE, we kept terms of the lowest order in the vertices and
effective cumulants to develop the nontrivial approximation

K = —1vimGuwGuvy (78)

with the symmetrized propagator
G,‘j = %(Gl('g)O'kZGéj + G,‘kO'kgng)-)). (79)

Bringing all these pieces together, we have for the second-
order two-point vertex

M) = =7 + K + 72 + K1), (80)

Notice that (2 P and K| -(-2) share the same one-loop structure,

but with dlfferent propagators All the propagatorsG,;, Gf?),
Gij, and G;;satisfy the fluctuation-dissipation relation.
It was shown in SDENE that loop contributions like these

can be written as

v =201, (81)
and
KD =099, (82)
where
e 1 [ d%; dik,
OOy =—/ 21)8(q1 — ks — k
Vil = = am) )d( )" 8(q1 — k3 — ks)
dws dow
/ o Glgr 0 Glguon Ty, (83)
dky dk,
OGN, 48(q) — ks — k
[Jij] = 2y (Zn)d( )" 8(q1 — k3 — ks)
dw; dow
x / —— "2 G(g3,03)G V(g 00) i,
2n 2w
(84)
I = 1 o1 [1+i(w3K 13 + wsK14)]? (85)
Bp — Ao

2628 wostwos—w—in
and
1 [1+i(wsK K\
-,BB:_Im_[ + (3K 13 + wy .14)] ' (86)
B2 wostws—w —in

Let us look at the static limit where the structure factor is
related to the potential in perturbation theory by

1
S(q) = —m- (87)
The terms up to first order are easy to simplify in the w — 0
limit and we have
75,(q.0) = —% (88)
and
K§)(q.0) = —V(g). (89)

Looking next at the second-order terms, we have for the
collective loop term

1 d kg dw3 =
28p* ] @y 2m

/ _Gpp(q k3,w4)

K$(q.0) =

pp(q3’0)’§)

PHYSICAL REVIEW E 85, 051105 (2012)

1 d%;
= 2557 | Gyl PPV kS (k)]

X [—ﬁﬂv(q —k3)S(qg — k3)]

272 /(2 )dV(k)S(k)V(q )S(g — k),

(90)

where we have used the zero time results derived in SDENE.
Doing the same with the single-particle loop contribution, we
find

dk dw
(2 loop) 3 3
@0== |55 f G ks, 3)

d
) / = G(O)(q — k3,y)
1 ddk3 da)3
= E (ZT)‘J pp(k3 w3)

=57/ T8 v s 1)
T B ) oy
We now look at the Hartree-like term. Using the results
summarized in Appendix A, we have

1
2, 0,
VI(RpH)(q’w) Zy;pr)er
1
0,1) 1) 1)
= 2 [prp GPP + prBpGBP + prpBGPB]
1 ddk3 dw3

283 ] @ny 2x

oo 3o w3
x [(2+ SR b 4) (ks 3)
K1 K3 K3

—E%G (k w)———G (k- a))i|
B Bp(k3,w3 B oB k3, w3

92)
where (under our constraints)
= K1431K143 1 + K131 K13 1, 93)
a3 = K1_31K_33, (94)
oy = Ki431K143,3. (95)

Noting that integrals over w3;G,,(ws) vanish due to odd
symmetry and integrals over the response functions vanish
when the contour is closed in the appropriate half plane, we
are left with

1 dk;

100 = g [ G kS
iw dd]ﬂ
2652 (2n)d< )V kSt 06

We can take a closer look at the second term. Writing out
the full form of o, we have

o [ dks (“2>v (k3)S(ks)
285° ) @y R
_ —io [ d (@ +q-k)?  (¢°—q k)’
2852 ) (@n) < (g + k3)*q? (q — k3)*q? )
x V2(k3)S(k3). CH)
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If we perform a change of variables,
PP = —k*=q"+k —2q-ks, 98)
v’ = (g +k7 =¢"+k +2q-ks, (99)

then the measures of the two terms change to

2rksp 2rksv

d’ky = dksdpduki = — dksdp = dksdv,

(100)

where u = cos(f)and du = — sin(0)d0 is the standard angular
integration substitution. Using this set of variables, it is easy
to see that the term vanishes,

d
ks (%) V?(k3)S (ks)

Qm)d \ Ky
dky —y - dv kv (V2 + g% — k*)?
= | Erwie(- | L2 T 8T
/271 *) ()< /27‘[ q 4v2g?
dp k 2 2_k22
+/_P3_Pw —0. (101)
2r ¢ 4p*q?

This leaves us with an w-independent Hartree term given
by

dk;

(2,H) 72 <
®) = ——— V2(k3)S(k 102
Yep (4,0) 552 ] @y (k3)S(ks)  (102)
which cancels the loop term:
V52(q.0) = 0. (103)
Collecting the results, we have finally
Caa.0) =~ 5=~ V@) + 3 [ L
BT T T T g2 | 2y
x §(k)V (g — k)S(qg — k). (104)
or, inverting,
=1+ - [ 2K
D=5 ) Gry
x SV (g —k)S(q — k). (105)

This is the same quantity evaluated in SDENE to determine
the effective potential.

IV. THE KINETIC EQUATION

A. The kinetic equation

Having determined I';; to second order, we could proceed
to solve the Dyson’s equation for G.4. However, there is a
more economical route sketched out in SDENE that takes
advantage of the FDR and which is nonperturbative. Using the
FDR, we can go from Dyson’s equations to a single equation
for G,,(k,t). We fill in the details of the analysis given in
SDENE.

To derive the kinetic equation, we begin with the Bp
component of Dyson’s equation:

Gy =TppGpy +T'p,Gpp =85, =0. (106)

PHYSICAL REVIEW E 85, 051105 (2012)
In g, t space, this is explicitly

/dsFBp(q,t —$)Gp(g,s — 1)

+ /dsFBB(q,t—s)GBp(s—t/)zo. (107)
Let us split the two-point vertex into two contributions as
Tij(q.t) = v (q.t) = Zij(q.0). (108)

where we define yi(].l)(q,t) to be all terms local in time such
that '

v (.t — $)Gii(g.s — 1) = 7 (q.0Gk(q.t — 1), (109)
From this, it follows that
v = 7;;]9) + K;]D + yl.f’m. (110)

The second group, %;;(g,t), is the dynamic memory function
[14] which retains its convolution form and is made up of the
remaining contributions,

Xii(g,t) = _Vi‘(,‘z’loop) - Ki(jZ)' (111)
We may now write Eq. (107) as
VoG o(t.1) + via(Gp,(t.t) = W(t.t),  (112)

where

\Il(t,t/):/ dsTp,(t — )G pp(s — 1)

+/ dsXgp(t —$)Gpo(s —t')  (113)

o0

using the fact that Xp,(t —s) ~ 0(r — s) and Gp,(s —t') ~
0(t' — s). We then use the fluctuation-dissipation relations

0
ZBp(t—s)ze(t—s),BEEBB(t—s) (114)
and

]
Gpy(s —t) =0 — s)ﬂﬁGpp(s —t) (115)

to obtain

! d
w(t,t') = —/ ds [ﬁgxw(r — s)i| Gpp(s — 1)

’

t

3
—/ dsZppt = $)B 5 -Gpls = 1) (116)

If we integrate the first integral by parts, we have

W(t,t') = —BEpp(0)G,,(r — 1)
! d
+ B /700 dsXpp(t — s)ngp(s —t)
' dsX 9 G !
_:3/_00 N BB(Z_S)a pp(s_t)

= —BXpp(0)G,,(t — 1)

t
a
+,3/ dsXpp(t — s)aGpp(s -1, (117)
v
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where we assume ¢ > t'. Putting W(¢+ — t') back into Eq. (112)
and setting G, = 0 (due to ¢ > '), we then have the kinetic
equation

YSAG ppt —1') = —BEpp(0)G (¢ — 1)

! d
+ﬂf dsZBB(t—s)a—stp(s —t).
(118)

This is the same form derived in SDENE, but with the division
of the vertices more fully defined.

To continue, we need explicit forms for our local
and memory function contributions. Collecting terms, we

PHYSICAL REVIEW E 85, 051105 (2012)

find

(1) _ 1 8 .
Vo (@:1) = ﬁD_ 2|5 TP Dq* | — V(g)

ko,
~ 57 / Gyt S,

The BB contribution to the memory function is a bit more
complex and we address it next.

(119)

B. Memory function

Let us set up a Fourier transform for the loop pieces which
make up the memory function in the form

do _, . A 1 +i(msK Ki4))?
E(AB)( 1) = / _we:sz(AB)[_ﬂzlm[ +i(w3Ky3 + wy ’ 14)] } (120)
2 w3+ ws—w—1in
where AB is short for GG in the case of the collective contribution and G G'” for the single-particle contribution.
We first concentrate on the argument
1 +i(sK Ki4))?
—ﬂ2]133=1m[ +i(w3K 3 + wq '14)] ’ (121)
w3+ w4 —w—110
If we change variables such that
x = w3Ki3 + wsKa (122)
and
u=w-— (w3 +wy), (123)
we have
1 4 2ix — x? —in4inx? 4+ 2ixu+u+2xn—ux> n(l —x?) 2xu
—B*Jps =Im———— = —Im 2 =22 242 (124)
u—1in u? 4+ n? us—+n us+n
Returning to our Fourier transform, we have
u2 + 772 uZ + ,72
2
_ g20UB)| pitworton / du |0 —x7)  Zxu
27 u2 + )72 M2 + n2
A . 1
— ,BZO(AB)[el(w3+w4)[{E(1 _x2)+l..x}}. (125)

At this point, we have now exactly the exponential weight required, exp[—i(w3 + w4)t], to factorize the problem. We have
(upon substituting x back in) the explicit result

1 d%s; d%kq
p2p* ) Qm)t 2m)d
X [1 4+ 2i(w3K13 + 04K 14) —

1 d%ks; d%kq
= 27)18(qy — k3 — ky) | dt]8(t, — 1]
571 | G G @~k — ko) [ anisce 1

dws dw
E(AB)(qlvtl) = 2 (2 )d8(q1 —k3 k4)/ 3 4 *l(w3+w4)t

(@03K13 + w4K14>2]A<k3,w3>B<k4,w4>

(126)

8’2 aty 9t

1-2K 0 2K 9 +K & +K o
B a1, o 39:2 14

J0 0
+2K ;3K 10— }A(/Q 1) B(ky, 1)),

where we have introduced an auxiliary variable #| to help show that the derivatives act only on specific terms.

051105-8



KINETIC EQUATIONS GOVERNING SMOLUCHOWSKI ...
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Moving from generic to our specific loop contributions, we have

1 dlk; diky
286 ] @)l @y

Xpa(q1.t1) =

_ 9 _ 0
X 1—2K13——2K14—/
ot 3[1

X [2G (k3. 11) GOk 1]) + G (k3. 11)G (ks t])]-

Q) 8(q) — ks — k4)/dt,’8(t1 —1))

+ K} 8—2 + K3 8—2 —i—21?131514ii
Porz T T Mo 3ty dt]

(127)

We see that we generate time derivatives because the three-point vertices are frequency dependent.
In addition to the full time-dependent form, we also need the t = 0 contribution [15]. In the limit of small time, the derivative

terms vanish and we find the simple result

Sps(g.t = 0) = L[ d'k Vz(k)S(k)JrL/ﬂV(k)S(k)V —8(g — k)
PR == g | 2y 28202 | @y (@ =3 =0

(128)

Using our results for the static structure factor to second order given in Eq. (105), we can rewrite the second term, giving us

d

Spa(gt=0) = — E 2050 + -1+ 7 §!
BB(q.t = )_W/(Zn)d ()()+%( +Vig) — S5 (g).

(129)

C. Final form

Inserting these results into the kinetic equation, we see that a number of terms will cancel yielding

ot

Performing a simple shift in time, we can rewrite this as

ot

This equation is of the memory function form where we
now have a field-theoretic prescription for the determination
of ¥pp(q.t — s). The static part of the memory function yields
a term proportional to the inverse static structure factor. The
dynamic part of the memory function is just the BB matrix

element of the loop contributions, )/i(jz’w()p '+ K 1(12) In SDENE

we showed explicitly that K l(jz) satisfies a FDR and we will

show elsewhere that y,>'°

y explicitly satisfies a FDR as well.

V. CONCLUSION

‘We have shown here that, in the case where one is in thermal
equilibrium, the density-density correlation function satisfies
a kinetic equation of the same form as in MCT [8-10]. The
interesting point is that we can explore the corrections of
the relevant memory function, Xpp. Since Xpp comes from
a detailed microscopic derivation, there are several features
which differ from the conventional mode-coupling analysis.
At second order in perturbation theory, we have a structure

where one has a one-loop structure where the three-point
vertices have a frequency dependence. There are two pairs
of effective propagators. One contribution is a product of G;;
propagators where

(132)

Gij = (G owGyj + GirowGY)) (133)

a / M - o— / M ! - a /
—Gop(qt — 1) = —Dg*557(q)G (gt — 1) — DqZ/ dsB*pXpp(q.t —s)ngp(q,s — ).
.

9 _ _ J 9
—G,p(q,t) = —Dg*pS™(@)G pp(q,t) — quf dsB*pTps(q.t — s)aGpp(q,s).
0

(130)

(131)

and the other contribution is from the product of G;; and GE?)
where

Gij = GO0 Gry0,.G. (134)

w

Thus the microscopic theory is more involved than MCT. In
Appendix D, we show that G;; and G; ; themselves satisfy a
FDR.

At the next order in perturbation theory, one generates two-
loop structures such as

=0 (12) = (135)

In a companion paper [7], we will look at the long-time
kinetics generated by the kinetic equation using analytic
techniques. The main result is that one finds, as in MCT, that
the late time decay shows two power-law regimes governed
by exponents a and b. We show in the current case that @ and
b satisfy the relation

rd—ay
r'd—2a)

_ T(1 + by

)" - )
T(1 + 2b)

(136)

where A is a parameter determined in the model.
In a second companion paper [6], we look at the numerical
evaluation of the second-order kinetic equation derived here.
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APPENDIX A: SUMMARY OF THE ZEROTH-ORDER
THREE-POINT VERTEX FUNCTIONS

Let us begin with a few definitions. First, we have the
commonly occurring wave-number combinations

Ki; = Dq; - q;. (Al
xki = Ki; = Dq;, (A2)
and
_ K,‘j
Kij=—. (A3)
KiKj

We also have the important combination
Gl = —iw; + K. (A4)

The two-point vertex functions were first derived in SDENE
and are

y0(12) =0, (AS)
y12) = — Gy 5(142), (A6)

o Bpoki

—1,%
yO12) =~ 51 42, (A7)

r Bpok1

and

yap(12) = — 2 5(1+2). (A8)

,32,00/(1

The three-point vertex functions were first derived in
Ref. [13] and are

PHYSICAL REVIEW E 85, 051105 (2012)

and

yi5(123) =0, (A12)

where

E| = 0K + o3K13 (A13)

and where the other vertices are easily constructed by
symmetry.

The four-point vertex functions were also derived in
Ref. [13] and are the sum of a reducible and irreducible
contribution,

©) O,R) ©,1)
Yijke = Yijke  t Vijie (A14)
where
(0,R) ©) ~(0),,0) ©) ~(0),,(0) ©) ~(0),,0)
Ve = Vin Gy + Vie Gavyje + Vi G vy (A15)
The full (amputated) results are
70 =0, (A16)
O epd
Veppp = 1687 Nr, (A17)
?é(ggp = 887G, " Nr, (A18)
Tapop = 4B2G3 Gy Ny + M), (A19)
and
Phwp = 2871G7 "G5 G ¥ [Ny + My + Mz + Mul,
(A20)
where
My =Mp+ Miz+ My + My + Moy + Mzy,  (A21)
My = §p0G5' G, K1a[G3,4(G5 + G})
+ G344(G3 + G16(1 + 2 + 3 + 4), (A22)

and

Nr = 1p0{K12K34[G5, 4 + G344l + K13K24[G5,y + Goys]

K14K»[G} G S(1+24+3+4), A23
V;gi,(lB) —o. (A9) + K14K23[G5 3 + Goy3]}6(1 +2+3 +4) (A23)
The irreducible pieces are given by
1 - 1% = 1 0,1 _
Vi (123) = _ﬂ_pg[lqzc;2 Y KiGy s+ 2+ 3) yoD(1234) = 0, (A24)
©,1)
1 1234) = 0, A25
= 5[l =B +243), (A10) Vpsss(1239) (A23)
o 7o L Y (1234) = 0, (A26)
Vin(129) = 2255 Kbl 4243, (AL
0
|
2 _ _ _ _
Vé0é22(1234) = _ﬁ2_pg‘3(1 + 2+ 3+ DK 144K2, 144K114 + K1113K2,143K143]
2
= —’32/03 S(1+24+3+D[Q14ak144 + Q113k143] (A27)
0
and
1 o o
Vf;(;;/f;(1234) = FS(I +2 43+ D2 —iwr(Ky114K2 114k114 + K1 143K2,143K143)
0
—iw3(K1132K31100K112 + K1 144 K3 104K144) — i04(K1 130K s 1500k 12 + K1 143K 4 1436143)]
L PR S (A28)
=—|2-) a—|
,3/03 i Ki
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where
0143 = Ki113K2,143, (A29)
Q144 = K1,134K2 144, (A30)
= Ki43,1K1432 4+ Ki441K 1542, (A31)
o3 = Ki121K1425 + Ki441K1443 (A32)
and
as = Ki10,1K 1424 + Ki431K 143 4. (A33)

APPENDIX B: REDUCTION IDENTITIES

A number of “reduction identities” are used in this work.
These are part of a larger collection which is discussed in
Ref. [13]. The proofs of these relations are essentially brute
force demonstrations and it will be sufficient to sketch the
basics here. The reduction identities fall into two types.

First, zeroth-order cumulants of a particular number of
fields can be reduced to a cumulant of a smaller number of
fields when the argument of the B field is zero. In this work,
we particularly make use of two relations,

G{3(10) = —BG{"(1) (BI)

and

G{155(1200) = G (12), (B2)

which can be verified by explicitly writing out each cumulant
and setting the relevant variables to zero. (For convergence,
we must set the frequencies to zero first, then the wave
numbers.) The calculation is tedious, but straightforward, and
S0 is omitted.

PHYSICAL REVIEW E 85, 051105 (2012)

Second, zeroth-order vertex functions of a particular num-
ber of fields can be reduced to a vertex function of a smaller
number of fields when the argument of the p field is zero, for
example with the common term

Y (120) = —y0(12)/ po. (B3)

Again, this is a straightforward exercise.

From these two simple facts, we can derive other useful
identities. When one convolves a quantity with a one-point
cumulant [either G;(1) or G 50)(1)], the implicit constraining §
function will usually cause one or more fields in the product
to vanish. For example, a combination which appears several
times in our work is

y.(123)GV3) = v (1200G9(0)
=[-»012)/po]po
= —yJa2). (B4)

As another example, consider the first-order contribution to
the equation of state (which appears again as a component of
the second-order contribution),

GO(1) = GG3(12)05,(23)G,(3)
= G, (12)05,(20)G ,(0)
= G} (10)05,(00)G ,(0)

G100V (0)5

—BG,V(©0)p

—BpopV(0)8(1). (BS)

APPENDIX C: STATIC CONTRIBUTION FROM G,,p(l)

Let us look at the integral

/ da)1
2

d
G polqr.o1) = / %[G;°;<1)V<1>Gpg<1>V<1)G;°g<1>+Giﬁ}(l)w1>GBp<1)V(1>G§$2,(1>

+GOMVDG,,(HVIHGH ()]

= V(g / [GOM(GYMG, 5D + Gr(HGDD) + GYMG,,MHGUM]. (€1

Recall the forms of the zeroth-order cumulants,
(0)(1) — M (C2)

wi] — iKl ’
G921 = M’ C3
(D= —— o (C3)
and

GOy =2 - (C4)

wy + ik wy — ik
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where k1 = Dg?. Using these, we have

doy - 1 1% —iK] 1 iKky i i
[ o =sivian [ (G50 525) + 4 (o - o)

x (L pB<1>+—GBp<1>>] (C5)

w) + Ik

For the G,p term, we close the contour integral in the upper half plane while for the G, term, we close in the lower half
plane. This gives

fd““ (1) = p2V( )[—( =L ﬁG (qu.ixr) + — () G >+ﬁfd““(K—12>G (1)]
oy PP = Py q1 4 pBQl,lKl 14 poBq1, — K w%—i‘Klz PP
da)l /<12
= p2Viq1) ——ﬁG,,B(cn ic)G (g1, — i1) + B f (ﬁ)cp,,(l). (C6)
a)1+/c1

Using the FDR to express G, and G, in terms of G ,,, we have the final result:

dw —w 1 1 K2
/ LG Gpp(1) = p3p*V (41)/ |: pp(Qval)< > 1)(1'/(1 s + s —w1) +Gpp(q17wl)<w]2T1K]2>:|

dw; 0? + «?
= Vi [ Gt

Gpp(‘]lawl)

= pyB*V3(q1) / Z—H‘Gpp@l,wl). (C7)

The integral over G, is simply the static structure factor and we have

d
/ ﬂGp,,m = 2BV (q)S(qy). (C8)

APPENDIX D: FLUCTUATION-DISSIPATION o _ 2, o
RELATIONS FOR G AND G ="l (D9)

In this appendix we prove that the dressed propagators G G,p = _3 I, (D10)

and G individually satisfy the same fluctuation-dissipation
relation that G satisfies. These results hold at all orders of  then we have for the imaginary part of G
perturbation theory. |
ImGpB = Z(GpB - GBp)
1. G fluctuation-dissipation symmetry

14 . . . .
Recall the form of G;; given by Z[(RO +ilo)(R+il) —(Ro — ilo)(R —il)]

Gy = {606y 4 GuonGT). DD = VR0 + bR o1
Explicitly, this yields Looking next at G ,,, we have
- - 14 ) 2 ) 2
Gos = 3(GO3VG,5+GosVGly) = GS4VG,s,  (D2) G,y = E[(RO + 110)< - ;1) +(R - 110)< - 510>
Gpp = (GO VGg, +Gp,VGY)) = GLVG (D3) 2 2
Bo = 2\ e T B T B T By Bot Y Be +(R+i1)(_—10)+(Ro—ilo><‘_I>]
1) 1)
and oy
~ ©) ) -
Gr=5(G VG +GOVGE +GsVGY+G,VGy)). o ZRol +2Rlo). (D12)
(D4) This implies, then, the normal fluctuation-dissipation relation,
If we write out our contributing terms as real and imaginary - 2
components, Gpp = _;ImGPB' (D13)
GO = Ro+ilo, (D5)
Gpop =R +il, (D6) 2. G fluctuation-dissipation symmetry
Gg)/)) = Ry—ily. (D7) We may repeat the same procedure for G; ; given by
Gp, = R—il, (D8) Gij = G\)04,G,.0,GY). (D14)
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Explicitly, we have

G5 =GS3VG,pVGS), (D15)
G, = Gy VGp,VGY), (D16)
and
0 0 0
Gpp=GOVGyVGY + GO VG, VG
+ GLOE,VGPBVGE%). (D17)

Using the same decomposition into real and imaginary
components, we have

~ | -

ImGpB = 2_l.(GpB - GBp)

V2
= Z—i[(Ro +ilp)(R+il)(Ry+ily)

—(Ro —ilp)(R — iI)(Ro — ilp)]

= V?[I(R; — I;) + 2RRo 1] (D18)

Q
3
I

o) 2
~=IoVA(R + )R +11) = VA(RS + I§) =1

2, . .
— ZIoVAR —il)(Ry — ily)
w

2

= —=V?[(R} — I;)I + 2LyRoR]. (D19)
w

Therefore we again get the expected fluctuation-dissipation
relation,

Gpp = ——ImG 5. (D20)
w

APPENDIX E: EQUATION OF STATE
We have identified the equation of state to second order in
the pseudopotential as
d

T 1 [di%k ., .
po = po(P) = pexp [V(O) "2 f 57 (k)S(k)}- (ED)

1. Conventional form

To connect this to a more conventional form for the equation
of state recall that we are in the grand canonical ensemble
and

tpy = Pt (E2)

where p is the chemical potential and ¢ is some microscopic
length. We then have the thermodynamic identity

opP 8
e (E3)
ap 8 o’
where P is the pressure. Starting with
Bu = In(pol?). (E4)
we have
dBP)  _9(Bn) _ P dpo
— =p = - (ES)
ap ap Po 9P

PHYSICAL REVIEW E 85, 051105 (2012)

Atfirst order, everything can be cleanly worked out. Starting
with

po = pexp[V(0)] (E6)

we have

0 - EAZ(0)
% — exp[ VO] + pexp V()L
p ap

= exp[V(0)] + V(0)exp[V(0)]
= (1+ V(0) exp[V(0)]

- %(1 + V(0)). (E7)
Putting this into Eq. (ES), we find
AP
BP) _ ﬁ@a LTO)=14pVO)p.  (EY)
ap po P
Therefore

BP = p+1BV(0)5% (E9)

Clearly, we find the ideal gas law and the first-order
correction.
If we write more generally that

po = pe'lP! (E10)
we have
8,00 _ ow
= = exp[W]+ pexp[W]——
ap ap
_ow
=exp[W](1+5-—
ap
=p—_°<1+ﬁ8—v_v), E11)
P ap
which yields
a(BP ow
WBP) _ ;W (E12)
ap ap
In perturbation theory, we have
1 d’k
W = V() — /(2 )dﬁ pV2(k)S(k)+---  (E13)
which gives
ow w1 d 25V2(k 8S(k)
- == El4
2= 5 3] e PV (E14)
Recalling that
~ 1
Stk)y = ——, El5
0 =15 (E15)
we have
aSk) .,  dlpck
93 _ g2 212l (E16)
ap ap
which finally gives
8(,3P) 1 'k, ,
=1 V(@ V=(k
o5 = 1AV =5 | SV
k
[S(k)+ S2(k) [p o )]} (E17)
0p
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or, integrating,

1 1 dk
BP =p+ 5,52,BV(0) ~5 (zﬂ)dﬂsz(k)
x [pS(k) + pS*(k)c(k)]
dk

_ = 1, _ B 2 2
=p+ 5P BV () 7/ (Zn)dv (k)S=(k). (E18)

2. Comparison with Carnahan-Starling form

We can go one step further and compare our results with
the Carnahan-Starling equation of state. This form is an
approximate, but quite accurate, equation of state valid for
hard spheres.

Recalling the Carnahan-Starling form [16,17], we have

BP _ l+n+n’—7n’
p (1—mny
Let us begin by taking the derivative of this with respect
to 15,
IBP) _ i(-l +n+n2—n3)

(E19)

ap  ap 1 —mn)?
A+t —n _8<1+n+n2—n3>8n
ST a—gp e\ a=w e

A4+ -0

=P
n((l—n)(1+2n—3n2)+3(1+n+n2—n3))
1 —n?

_ 1+4n+4n2—4n3+n4. (E20)

=y

PHYSICAL REVIEW E 85, 051105 (2012)

This result is the left-hand side of the thermodynamic relation
in Eq. (ES). Let us now rewrite the right-hand side.

We have
P 9po _ o |:,5€W(n) aW(n) 8_7] + eW(n):|

pPo 9P po an  9p
oW
AL (E21)
an
where we again use the general form for py given by

Eq. (E10).
Setting the left and right halves are equal, we have
L+4n+4n* —dn’ +n* n8W(n) N
(I —mnt an
which we may rearrange as

1. (E22)

OWG) _ 1+4n+4n’ —4n’ +n* (A —n* 24—

an n(l —n)* A=t
(E23)

Integrating, we find

24 —x)  8np—9n2 433
W) = / dx = (E24)
o (1—=x) 1 —ny?
or, returning to the full form for py,
_ 8n —9n* + 3173}
pPo=peXp| — = (E25)
p[ -y

We now have an independent measure for the quality of our
equation of state results. As one self-consistently solves for
the pseudopotential, we may compare our perturbative result
Eq. (E1) to this result.
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