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Persistence of a Brownian particle in a time-dependent potential
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We investigate the persistence probability of a Brownian particle in a harmonic potential, which decays to zero
at long times, leading to an unbounded motion of the Brownian particle. We consider two functional forms for the
decay of the confinement, an exponential decay and an algebraic decay. Analytical calculations and numerical
simulations show that for the case of the exponential relaxation, the dynamics of Brownian particle at short and
long times are independent of the parameters of the relaxation. On the contrary, for the algebraic decay of the
confinement, the dynamics at long times is determined by the exponent of the decay. Finally, using the two-time
correlation function for the position of the Brownian particle, we construct the persistence probability for the
Brownian walker in such a scenario.
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I. INTRODUCTION

The phenomenon of persistence has been of continuing
interest over the past decade. Persistence is quantified through
the persistence probability p(t) that a stochastic variable
has not changed its sign over a time t . In a wide class of
nonequilibrium systems this probability decays algebraically
with an exponent θ , and the exponent has been studied
in systems that include free random walk in homogeneous
[1,2] and disordered media [3], critical dynamics [4], surface
growth [5–11], polymer dynamics [12], diffusive processes
with random initial conditions [13–15], advected diffusive
processes [16], and finance [17,18]. A precise theoretical
prediction for p(t) can be worked out only for a select few cases
[19], the simplest scenario being an exponentially decaying
stationary correlator, as in the case of an overdamped Brownian
motion. In general, for most Gaussian stochastic processes
the decay of the stationary correlator, C(T ) ≡ 〈X(T )X(0)〉, is
nonexponential. The behavior of C(T ) in the neighborhood
of zero characterizes the density of zero crossings for the
underlying stochastic process [13,19]. When C(T ) near zero
has a quadratic dependence on time in the first order, the
number of zero crossings of the stochastic process is finite,
and the exponent θ is extracted using the independent interval
approximation (IIA) [13] or the sign time distribution of
the stochastic variable [15]. Conversely, when C(T ) ∼ 1 −
O(T α), with α < 2, the density of zero crossings is infinite,
and perturbation expansion about a random walk correlator
gives a good estimate of the persistence exponent [6].

The simplest of all these systems, which exhibit an algebraic
decay of p(t) with an exponent 1/2, is the case of an
overdamped Brownian particle. Occurring in the interface
of science and engineering, Brownian motion is ubiquitous
around us and plays a dominant role in the nanoscopic and
mesoscopic world. Not only is the underlying principle of this
stochastic process used for theoretical modeling of a wide
range of complex phenomena [20], but Brownian motion in
itself serves as an experimental tool for probing microscopic
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environments [20–23]. In the popular Langevin picture, the
erratic motion of a Brownian particle is well described by
Newton’s equation of motion with a viscous drag and a
δ-correlated stochastic force acting on the particle. While
the non-Markovian nature of the phenomenon can be taken
into consideration by using a generalized Langevin equation
with a finite correlation time for the stochastic noise and a
memory-dependent friction, in the following discussion we
shall restrict ourselves to the Markovian scenario.

In this article, we investigate the persistence probability of
a Brownian particle in a time-dependent potential, a scenario
corresponding to the trapping of a tracer particle in some
potential which eventually relaxes to zero. To keep the follow-
ing discussions at an analytically tractable level, we choose a
harmonic potential, given by U (x,t) = 1

2f (t)x2. The function
f (t) can be viewed as a time-dependent spring constant, with
f (t) → 0 as t → ∞, so that the particle motion becomes
unbounded in the long-time limit. The converse situation of
a constant confinement strength has already been studied
in Refs. [19,24,25]. In the Fokker-Planck description, the
calculation of the persistence probability translates to solving
the backward Fokker-Planck equation, with an absorbing wall
at x = 0. An alternative approach to determine the survival
probability, as outlined in Ref. [1,19,24], is from the two-time
correlation function for the position of the stochastic variable
x, exploiting the fact that for a Gaussian stationary process with
a correlator decaying exponentially at all times, the persistence
probability also decays exponentially.

The rest of this article is organized as follows: we introduce
the dynamical equations of motion and construct the two-time
correlation functions in Sec. II. A discussion on the mean-
square displacement of the Brownian walker and the relevant
time scales due to the time-dependent trap is also presented
in Sec. II. We study two types of relaxation phenomena: an
exponential and an algebraic relaxation of the confinement,
discussed in Secs. II A and II B, respectively. Finally, the
persistence probability is discussed in Sec. III.

II. BROWNIAN PARTICLE IN A TIME-DEPENDENT
POTENTIAL

For simplicity, we take the overdamped limit for which the
dynamics of a Brownian particle, with a unit mass, is governed
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by

ẋ = −f (t)x(t) + η(t), (1)

where η(t) is the stochastic velocity characterizing the solvent.
The above equation is further supplemented by the moments
of the stochastic noise,

〈η(t)〉 = 0, 〈η(t)η(t ′)〉 = 2Dδ(t − t ′). (2)

At this point, we assume that the stochastic noise is “internal,”
characterized by the viscosity and the temperature of the
solvent, while the time-dependent confinement is “external”
and does not change the δ correlation. An experimental
realization of the model system would correspond to a laser
trapping of a tracer, with the intensity of a laser decaying
in time. In such a scenario, the transport parameters and the
temperature T get renormalized [26,27]. The corresponding
solution to Eq. (1) is given by

x(t) = e− ∫ t

0 f (t ′)dt ′
∫ t

0
dt1η(t1)e

∫ t1
0 f (t ′1)dt ′1 , (3)

with the initial condition x(0) = 0. Denoting g(t) =∫ t

0 f (t ′)dt ′, the two-time correlation function can be con-
structed from Eq. (3),

〈x(t1)x(t2)〉
= e−g(t1)e−g(t2)

∫ t1

0
dt ′1

∫ t2

0
dt ′2〈η(t ′1)η(t ′2)〉eg(t ′1)eg(t ′2). (4)

A. Exponential relaxation

We first consider the case when the relaxation of the
potential is given by an exponential decay, f (t) = λe−t/τ .
There are two time scales in the system, τ and λ−1. The
latter determines the time scale when the Brownian particle
is confined in the potential, whereas the former determines
the relaxation of the potential [Fig. 1(a)]. We further consider
the situation when τ > λ−1; the relaxation time scale of the
potential is larger than the entrapment time scale λ−1. When
τ < λ−1, the confinement decays even before the particle can
be trapped, with the result that the Brownian particle undergoes
free diffusion.

Consequently, the function g(t) takes the form g(t) =
λτ (1 − e−t/τ ). Substituting for g(t) in Eq. (4) and subsequently
using (2), we arrive at

〈x(t1)x(t2)〉
= 2Deλτe−t1/τ

eλτe−t2/τ

∫ t2

0
dt ′2 e−2λτe

−t
′
2/τ

, (5)

with the assumption that t1 > t2. Performing the integral over
t ′2 in Eq. (5), the two-time correlation function becomes

〈x(t1)x(t2)〉 = 2Dτ eλτe−t1/τ

eλτe−t2/τ

× [Ei(−2λτ ) − Ei(−2λτe−t2/τ )], (6)

where Ei(x) is the exponential integral, defined as

Ei(t) = −
∫ ∞

−t

z−1e−z dz. (7)

Using Eq. (6), the mean-square displacement 〈x2(t)〉 reads

〈x2(t)〉 = 2Dτ e2λτe−t/τ

[Ei(−2λτ ) − Ei(−2λτe−t/τ )]. (8)

At this point, it is instructive to construct the limiting behaviors
of the mean-square displacement: when t < λ−1 and t > τ .
There are two scenarios we consider below, the first when τ

is large so that the limit τ → ∞ is appropriate and the second
when τ remains finite. In the limit of τ → ∞, the relaxation of
the potential is slow, and the Brownian particle feels a constant
confinement strength λ, and (8) reduces to

〈x2(t)〉 = D

λ
(1 − e−2tλ) + O(τ−1). (9)

To construct the corresponding two-time correlation function,
we expand the exponentials in Eq. (5) and keep the terms which
are independent of τ . The evaluation of the integral over t ′2 then
gives

〈x(t1)x(t2)〉 = D

λ
[e−λ(t1−t2) − e−λ(t1+t2)], (10)

which is exactly the correlation function for a nonstationary
Ornstein-Uhlenbeck process [25]. Eventually, for t 	 τ the
particle motion becomes unbounded and the mean-square
displacement grows linearly with time. A formal quantitative
result in this limit can be derived if we take the limit of t → ∞
in Eq. (8) and expand the term within the brackets to get

〈x2(t)〉 = 2Dτ e2λτe−t/τ

[
−γ + 2λτe−t/τ − λ2τ 2e−2t/τ

+ Ei(−2λτ ) + t

τ
+ 1

2
ln(1/2λ2τ )

]
,

where γ is Euler’s constant with a numerical value of ∼0.5772.
Keeping in mind that t 	 τ , the exponential functions in
Eq. (11) can be ignored in comparison to the linearly growing
term which survives, so that we recover the classic diffusion
of the Brownian particle with 〈x2(t)〉 = 2Dt . In the opposite
limit of t → 0, a Taylor expansion of Eq. (8) yields

〈x2(t)〉 = 2Dt + O(t2). (12)

The two limiting behaviors in Eqs. (11) and (12) are completely
independent of the time scales and therefore do not contain
any information about the confinement potential. On the
contrary, when the relaxation is slow (τ → ∞), only the
short-time dynamics is independent of λ or τ . The asymptotic
mean-square displacement, in the limit of a slow relaxation, is
constant in time and is determined by the ratio D/λ.

B. Algebraic relaxation

We now consider our second choice for the relaxation
dynamics of the harmonic potential, an algebraic decay of
the time-dependent spring constant,

U (x,t) = λ

2

(
τ

t

)α

x2, (13)

with α � 1. Using (4), the two-time correlation function is

〈x(t1)x(t2)〉 = 2D

1 − α
e−λ1t

1−α
1 e−λ1t

1−α
2

∫ t1−α
2

0
duuα/(1−α)e2λ1u,

(14)
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where λ1 = λτα/(1 − α). The integral in Eq. (14) over u yields

〈x(t1)x(t2)〉 = 2D

1 − α
e−λ1t

1−α
1 e−λ1t

1−α
2 (−2λ1)−1/(1−α)

γ

(
1

1 − α
,−2λ1t

1−α
2

)
, (15)

where γ is the lower incomplete γ function, defined as

γ (a,z) =
∫ z

0
e−uua−1du, (16)

and 	(a,z) is the upper incomplete 	 function satisfying
	(a,z) + γ (a,z) = 	(a). The numerical value of γ (a,z) can
be evaluated using Gauss’s continued fraction, which con-
verges for all values of z.

Substituting t1 = t2 = t , the mean-square displacement is
given by

〈x2(t)〉 = 2D

1 − α
e−2λ1t

1−α

(−2λ1)−1/(1−α)

γ

(
1

1 − α
, − 2λ1t

1−α

)
(17)

Unlike the exponential relaxation of the potential, there is
a single crossover time scale which emerges from Eq. (17),

τ =
(

1 − α

λτα

)1/(1−α)

, (18)

and it separates the regimes of normal diffusion and subdiffu-
sion in the system [Fig. 1(b)]. A Taylor expansion of Eq. (17)
for t < τ gives

〈x2(t)〉 = 2Dt + O(t2−α) for t < τ, (19)

while the asymptotic expansion yields

〈x2(t)〉 =
(

D

λτα

)
tα + O(t−(1−2α)) for t > τ . (20)

This counterintuitive result can be understood by considering
the motion of a free Brownian particle. In the absence of the
confinement potential the Brownian particle moves a distance√

t in time t . If we now switch on the potential, the strength
of the potential becomes λ(τ/t)αt , and for α < 1 we see that
the particle feels the “soft” walls all the time. Mathematically,
this argument translates to the fact that the new time scale τ in
Eq. (18) diverges as α → 1 and is not defined in the real line
for α > 1. We note that for α = 0, Eq. (17) reduces to that of
the Ornstein-Uhlenbeck process,

〈x2(t)〉 = D

λ
[1 − e−2λt ]. (21)

In Fig. 1, we show the mean-square displacement of a
Brownian particle whose dynamics is governed by Eq. (1)
and (2), with f (t) given by an exponential [Fig. 1(a)] and an
algebraic [Fig. 1(b)] relaxation. The numerical integration of
Eq. (1) was done using the Euler scheme with an integration
time step of dt = 0.001. In the numerical solutions, the
value of the diffusion coefficient D was taken as unity. For
the exponential relaxation of the confinement, the measured
mean-square displacement shows three distinct regimes: two
diffusive regimes with a crossover in between. For very short

(t < λ−1) and long (t > τ ) times, the particle does not feel
the trap, and its motion is purely diffusive, corresponding to
Eqs. (11) and (12). In the intermediate times, we observe
a plateau for λ−1 < t < τ , corresponding to the trapping of
the particle in the potential. To understand the origin of this
plateau, we expand the exponential in Eq. (1), and retaining
the zeroth order term then leads to a constant confinement,
so that the mean-square displacement saturates to a value
∝ λ−1. This behavior can be observed in Fig. 1(a), which
presents data for constant λ but different τ ; the inset shows
data for a constant τ but different λ. A comparison shows
that the plateau is determined by λ−1. On the contrary, for the
algebraic relaxation, since a single time scale emerges from the
dynamics, we observe only one crossover regime determined
by τ , which separates the diffusive and the subdiffusive
regimes [Fig. 1(b)].

III. PERSISTENCE PROBABILITY

To obtain the persistence probability, we take the route
outlined in Refs. [1,19]: we map the nonstationary process x(t)
to a stationary Ornstein-Uhlenbeck process. This is usually
achieved first by a normalization of x(t) by

√
〈x2(t)〉, the

root-mean-square distance the particle has traveled, and then
using a suitable transformation in time. Once we have the
stationary process X, with the correlator C(T ), the persistence
problem reduces to a calculation of no zero crossing of X.
When C(T ) is a purely exponential decay for all times,
the persistence probability is the solution to the backward
Fokker-Planck equation for an Ornstein-Uhlenbeck process,
which can be shown to decay as P (T ) = 2

π
sin−1 [C(T )]

[1,24]. An application of this method therefore requires the
transformation of the stochastic process x(t) to a Gaussian
stationary process. Since the correlation function in Eqs. (6)
and (15) is nonstationary, we make the following transforma-
tions: we first define the normalized variable X(t) ≡ x(t)√

〈x2(t)〉
and construct the two-time correlation function, following
which we make a suitable transformation in time to make
the correlator stationary, as well as an exponentially decaying
function for all times.

Before we proceed to give a derivation of the persistence
probability for the two models introduced above, we derive
a general result applicable to the model system in Eq. (1).
To transform the nonstationary process in Eq. (1), we con-
sider the transformations X = x(t)/l(t) and eT = l2(t)e2g(t),
where l2(t) = 〈x2(t)〉 and g(t) = ∫

f (t ′)dt ′. Substituting these
transformations in Eq. (1), we obtain a stationary Ornstein-
Uhlenbeck process,

dX

dT
= −1

2
X + η(T ), (22)

where η(T ) is a Gaussian white noise with zero mean and unit
variance. The relation between η and η can be determined from
the transformation of the δ function and takes the form η(T ) =
l(t)
2D0

η(t). The stationary correlator for the process in Eq. (22)

is then given by C(T ) = e−T/2. Accordingly, the persistence
probability in real time decays as p(t) ∼ e−g(t)/l(t). In the
following, we illustrate this explicitly for the two specific cases
presented in Secs. II A and II B.
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FIG. 1. (Color online) (a) Double logarithmic plot of the mean-square displacement 〈x2(t)〉 for the exponential relaxation of the confinement
with λ = 1 and τ = 1.0 (triangles), 10.0 (squares), and 100.0 (circles). The solid lines are the plots of Eq. (8) for the corresponding values of
τ and λ. The thick dot-dashed line in the main plot corresponds to λ−1 = τ = 1, while the dashed and the thin dot-dashed lines corresponds
to τ = 10 and τ = 100, respectively. The inset shows the variation of the mean-square displacement for different values of λ with τ = 100
fixed and λ = 0.01 (squares), 1.0 (circles), and 10.0 (triangles). The solid lines are a plot of Eq. (8) for the corresponding values of λ and
τ . The thick dot-dashed line corresponds to λ−1 = τ = 100, while the dashed lines denote the values of λ−1 = 0.1 and λ−1 = 1. (b) Plot
of mean-square displacement for λ = 1.0,τ = 0.001, and α = 0.1 (circles), 0.2 (squares), and 0.5 (triangles) and the corresponding plots of
Eq. (17) for the three values of α. The thick dashed black line is the plot of 2Dt , and the thin dot-dashed black lines are the plots of Eq. (20)
for the corresponding values of α. The inset is a plot of the mean-square displacement for λ = 1.0,α = 0.5, with τ = 0.001 (circles), 0.01
(squares), and 0.1 (triangles).

A. Exponential relaxation

The two-time correlation function for X reads

〈X(t1)X(t2)〉 = 〈x(t1)x(t2)〉√
〈x2(t1)〉〈x2(t2)〉

. (23)

Using Eqs. (6) and (8) in the above equation, we have

〈X(t1)X(t2)〉 =
√

Ei(−2λτ ) − Ei(−2λτe−t2/τ )

Ei(−2λτ ) − Ei(−2λτe−t1/τ )
. (24)

The time transformation eT = l2(t)e2g(t) reads

eT = Ei(−2λτ ) − Ei(−2λτe−t/τ ), (25)

which transforms (24) to

〈X(T1)X(T2)〉 = e− 1
2 (T1−T2). (26)

The correlator for the stochastic process X is stationary
and exponentially decaying. The asymptotic behavior of the
persistence probability for such a process is then given by
P (T ) ∼ e−T/2 [19]. Transforming back to real time, the
persistence probability for the process x(t) is then given by

p(t) ∼ [Ei(−2λτ ) − Ei(−2λτe−t/τ )]−1/2. (27)

For t � λ and t 	 τ , a Taylor expansion and an asymptotic
expansion of the above equation give p(t) ∼ t−1/2. Finally, in
the limit of τ → ∞, the persistence probability reads

p(t) ∼ [(1 − e−2λt )e2λt + O(τ−2)]−1/2, (28)

which is identical to the result of Ref. [25]. To determine
the persistence probability of the Brownian particle using

a numerical integration, we chose an ensemble of random
initial conditions in the neighborhood of zero [so that the
sign of x(0) is well defined] and followed the sign change of
the position. The fraction of particles which did not change
the sign of the coordinates in time t gives an estimate of the
persistence probability. The results presented in Eq. (27) (the
colored lines in Fig. 2) and (28) (the black dashed line in Fig. 2)

10 1 100 101
10 5

10 4

10 3

10 2

10 1

t

p
t

FIG. 2. (Color online) Double logarithmic plot of persistence
probability where f (t) decays exponentially for λ = 1.0 and τ = 1.0
(circles), 5.0 (squares), and 10.0 (triangles). The solid and the dashed
lines are the plots of Eq. (27) for the corresponding values of τ , and
dashed line is the plot of Eq. (28).
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are compared with the measured persistence probability (the
solid symbols), using the numerical simulation of Eq. (1), in
Fig. 2. For short and long times, the persistence probability
p(t) ∼ t−1/2, a signature of purely diffusive motion presented
in Eqs. (11) and (12).

B. Algebraic relaxation

To determine the survival probability, we proceed in a
similar way and construct the two-time correlation function
for the normalized variable X.

〈X(t1)X(t2)〉 =
√

h(t2)

h(t1)
, (29)

where the function h(t) is the bracketed term in Eq. (17),

h(t) = (−2λ1)1/(1−α) γ [1/(1 − α),−2λ1t
1−α].

Defining the time transformation eT ≡ l2(t)e2g(t) = h(t), the
nonstationary correlator in Eq. (15) is transformed into a
Gaussian stationary correlator which decays exponentially.
Following [19], the persistence probability in real time decays
as

p(t) ∼ {(−2λ1)−1/(1−α) γ [1/(1 − α), − 2λ1t
1−α]}−1/2.

(30)

We next consider the limiting behaviors of the persistence
probability given in Eq. (30). Substituting α = 0 in Eq. (30),
the probability reduces to the case of a harmonically confined
Brownian particle with constant confinement strength [25],

p(t) ∼ [e2λt (1 − e−2λt )]−1/2. (31)

For a finite value of α < 1, when t < τ , the persistence prob-
ability decays as p(t) ∼ t−1/2, while an asymptotic expansion
of Eq. (30) gives

p(t) ∼ 1

tα/2
e−(t/τ )1−α

. (32)

In Fig. 3, we compare the results of Eqs. (30)–(32) with
the measured persistence probability from the numerical
integration of Eq. (1). The colored lines in Fig. 3 correspond
to Eq. (30), while the black dashed lines are plots of Eq. (32).
At short times, the motion is purely diffusive, and therefore
we observe a t−1/2 decay of p(t) (the solid line in the inset in
Fig. 3).

We note that even though the mean-square displacement
for t 	 τ is similar to that of fractional Brownian motion, the
decay of the persistence probabilities in the two scenarios is
entirely different. For a particle which performs a fractional
Brownian motion, the corresponding steady state persistence
probability decays purely algebraically with an exponent 1 −
α/2 [6].

C. Effect of inertia

Finally, before concluding, we remark upon the divergence
of p(t) as t → 0. This singularity is entirely the artifact of
coarse graining in Eq. (1), where we have neglected the inertia
term. Strictly speaking, at this level of coarse graining, we
are not allowed to take the t → 0 limit since the inertia of
the particle plays an important role at such short times. The

10 1 100 101
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10 5

10 4
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10 2

10 1

t

p
t
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10 6

10 4

10 2

100

FIG. 3. (Color online) Plot of persistence probability for λ =
1.0,τ = 0.001, and α = 0.1 (circles) and 0.2 (squares). The solid
lines in the main plot are plots of Eq. (30) for the corresponding
values of α. The inset is a plot of the persistence probability for
λ = 1,τ = 0.01, with α = 0.1 (circles) and 0.2 (squares). The solid
black line is the plot of t−1/2, and the dashed lines are the plots of the
asymptotic expansion (32).

inclusion of the inertia term changes the short time dynamics
of the particle to a deterministic one, as opposed to purely
diffusive motion observed in the overdamped limit. Since
the motion is now deterministic, the particle is persistently
driven away from its initial position (the velocities remain
strongly correlated), with the effect that the survival probability
becomes constant. The purpose of this section is to demonstrate
the fact that the inertia term removes the short-time singularity
in the persistence probability. It is also motivated by the
recent experimental observation of the ballistic regime of a
Brownian particle and an expression for p(t) in this regime
would therefore be appropriate. An accurate analysis would
correspond to solving Eq. (1) with the inertia term included,
but it becomes difficult to extract any information from the
resulting expressions. However, since we are looking at a time
much shorter than λ−1, exclusion of the confinement is justified
as the particle does not feel the confinement at such small
times.

To this end, we consider the complete Langevin equation for
the momentum of a particle without any potential confinement,

ṗ = − γ

m
p + η, (33)

together with 〈η(t)〉 = 0 and 〈η(t)η(t ′)〉 = 2kBT γ δ(t − t ′).
Since, at short times, the dynamics of a Brownian particle
in the model systems presented above is purely diffusive, it
suffices to consider the Langevin equation for a free particle
for our present discussion.

The two-time correlation function for the velocities decays
exponentially as 〈v(t1)v(t2)〉 = kBT

m
e−|t1−t2|/τ0 [with an initial
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FIG. 4. (Color online) A double logarithmic plot of persistence
probability of a Brownian walker with the inertia term included in
the Langevin equation for the ratio of γ /m = 0.2 (squares), 1.0
(circles), and 5.0 (triangles). The solid line is a plot of the approximate
result derived in Eq. (37). The inset shows a double logarithmic
plot of the persistence probability of a Brownian particle in the
overdamped limit. The solid line is power law fit to the data t−θ ,
with θ = 0.482422. The analytical prediction for θ in this limit is
1/2.

condition 〈v2(0)〉 = kBT
m

] and the position correlation reads,

〈x(t1)x(t2)〉 = kBT

m

[
2m

γ
t2 − m2

γ 2

+ m2

γ 2
(e−t1/τ0 + e−t2/τ0 − e−(t1−t2)/τ0 )

]
, (34)

with τ0 = m/γ and the assumption that t1 > t2. While the
transformation of the correlator in Eq. (34) to a stationary
process is nontrivial, we can still extract some information
about the persistence probability in the limit of t → 0. Keeping
in mind this limit and that t1 > t2, a Taylor expansion of
Eq. (34) yields

〈x(t1)x(t2)〉 = t1t2

m

(
1 − 1

2

t1

τ0

)
. (35)

The two-time correlation function 〈X(t1)X(t2)〉 reads

〈X(t1)X(t2) =
√

1 − t1/2τ0

1 − t2/2τ0
. (36)

The transformation eT = (1 − t/2τ0)−1 transforms (36) into a
stationary process with an exponentially decaying correlation
function. The persistence probability p(t) in real time the
translates to

p(t) ∼ 2

π
sin−1[

√
1 − t/2τ0] (37)

The numerical integration of Eq. (33) was done with an
implicit integration scheme based on the leapfrog algorithm
for different values of the ratio γ /m and the value of T set to
unity. The results of the simulations are presented in Fig. 4 and
are compared to the approximate formula for p(t) in Eq. (37).

IV. CONCLUSION

In conclusion, we have investigated the persistence prob-
ability of a harmonically confined Brownian particle in the
overdamped limit, with the potential relaxing to zero at long
times. We consider two functional forms of the relaxation:
an exponential relaxation and an algebraic relaxation. The
simple model system presented in this article is analogous to
a moving wall [30], with a “hard” wall replaced by a “soft”
wall. The external confinement can be realized using a laser-
trapping experiment, with the intensity of the laser decaying in
time. When the confining potential relaxes exponentially, we
observe that the dynamics of the Brownian particle at short and
long times is purely diffusive and independent of the relaxation
time scales. On the other hand, for an algebraic relaxation,
the motion at long times is determined by the exponent of
the relaxation. Using the two-time correlation function for the
position of the Brownian particle, we construct the persistence
probability of the Brownian particle in the two scenarios.
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