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Conformal smectics and their many metrics
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We establish that equally spaced smectic configurations enjoy an infinite-dimensional conformal symmetry
and show that there is a natural map between them and null hypersurfaces in maximally symmetric spacetimes.
By choosing the appropriate conformal factor it is possible to restore additional symmetries of focal structures
only found before for smectics on flat substrates.
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Not only do symmetries characterize and constrain the
structure of physical theories, they also allow us to choose
convenient frames, coordinates, and variables to analyze and
formulate our questions. Symmetries of the ground state
manifold are especially interesting, being the deep origin of
Nambu-Goldstone modes and the consequential topological
defects. Ground states in smectics have broken rotational
and translational symmetries which lead to disclinations and
dislocations as topological excited states. However, smectics
are easily identified in the laboratory through the formation of
focal conic domains—where defects take the shape of conic
sections—which are a hallmark of layer order [1]. In prior work
[2] it was found that there exists a hidden symmetry of these
focal conic domains, namely, they admit a natural action of
the Poincaré group on a Minkowski spacetime that extends the
space on which the smectic lives. In this Rapid Communication
we show how this formalism extends to describe smectics on
curved substrates while retaining the hidden symmetry among
textures through an infinite dimensional conformal freedom in
the choice of spacetime metric.

Geometry and topology play a prominent role in determin-
ing the order and properties of soft materials [3–5]. Textures
that would be suppressed by a large energetic cost in flat
space can become energetically preferred, or may even be an
unavoidable requirement of topology. For instance, smectics
on bumpy surfaces show an accumulation of dislocations in
regions of positive Gaussian curvature, and the flat space
ground state of straight equally spaced layers is frustrated by
focusing of the layer normals and the formation of cusps [6,7].
On compact spaces, such as the sphere, defects are typically a
topological necessity and their presence then impacts upon all
aspects of the possible textures and their potential modes of re-
laxation or low energy excitations [8]. Though the presence of
disclinations and dislocations in smectics on curved substrates
has been discussed with ingenious applications of differential
geometry [3,8], and the formation of cusps in response to
surface curvature demonstrated to be a generic motif [6,7], to
the best of our knowledge direct analogs of the exquisite focal
conic domains that so typify smectics in flat space have not
yet been discussed.

The insight of Ref. [2] is that seemingly distinct focal conic
textures are in fact related in a precise way, through a hidden
symmetry revealed by analogy with special relativity. The
extension to a curved setting raises the question of whether or

not a similar hidden symmetry exists there, perhaps exploiting
ideas from general relativity and the structure of curved
spacetime, and indeed this turns out to be the case. First let us
recall the construction in flat space.

Smectics are described via level sets of a phase field
φ(x) = na, n ∈ Z, where a is the layer spacing, and are
governed by a free energy that penalizes bending, κ ≡ ∇2φ,
and layer compression, e ≡ (1 − |∇φ|). The only way to
have vanishing curvature and compression is to build equally
spaced, planar layers [9,10]. More generally, at long length
scales, bending energy is much less costly than compression.
This favors configurations where the compression vanishes
away from a set of defects, which may be idealized as curves
and points. Geometric insight into these textures can be gained
by considering the surface S given by the graph of φ inside
Rd+1 [11]. When the compression vanishes these are constant
angle surfaces [12] (in the Euclidean sense) with the surface
normal [13] N˜ and one basis vector of the tangent plane
T˜ making an angle of π/4 with the φ direction. A deeper
insight is furnished by a component-by-component bijection
of (d + 1)-tuples between (Euclidean) Rd+1 and Minkowski
spacetime M ≡ Rd,1. Then with respect to the Minkowski
metric ds2 = dφ2 − dx2, both N˜ and T˜ are null in Rd,1 and
the surface S is a null hypersurface. Since S is null, through
every regular point passes a unique light ray (null geodesic)
of M that is contained entirely in S. These light rays making
up S project to a family of geodesics in Rd whose tangents at
every point coincide precisely with the director field n = ∇φ,
the unit normal to the smectic layers.

Though this general structure establishes the connection
with the more traditional geometric approaches [6–9,14], the
spacetime perspective adds the additional insight that different
configurations of layers are connected through the symmetries
of Minkowski spacetime. Null surfaces inM remain null under
Lorentz transformations but space and time, i.e., φ, are mixed.
Equal time slices of the same null surface using the new time
coordinate φ′ yields an equally spaced smectic texture that
is distinct from the original one, but related to it through the
spacetime transformation. For example (Fig. 1, upper panel),
the surface consisting of the pair of light cones with vertices
at P˜1 = (x1,φ1) and P˜2 = (x2,φ2) has a “focal” curve in M
(and a corresponding, experimentally visible, projection onto
R2) where they intersect, which, directly from the definition
of conic sections, is a conic. We use the term “focal curve”
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FIG. 1. (Color online) Null surfaces, such as the intersection of
two light cones, in Minkowski spacetime can be used to describe
equally spaced smectic textures on the plane, if we adopt the usual
Cartesian coordinates for Minkowski spacetime (upper panel). By
using a different set of coordinates, such as the Carter-Penrose
coordinates of (2), the same null surface can also be used to describe
equally spaced smectic textures on the sphere (lower panel). Viewing
the same null surface from different Lorentz frames (left and right
columns) yields different smectic textures, but relates them through
the spacetime symmetry.

to name any locus of points where the director field is
discontinuous and thus visible under standard microscopy.
Under a Lorentz boost, φ and components of x mix but we
still have two light cones, just with a new intersection locus.
As it turns out there is a symmetry between equally spaced
groundstates on different substrates.

Extending the general framework to smectics on an
arbitrary curved space U with metric dl2 = hijdxidxj is
immediate: The correspondence with null surfaces that we
have described is quite general and the entire discussion
carries over verbatim. Equally spaced smectic textures are in
direct correspondence with level sets of null hypersurfaces
in a spacetime with metric ds2 = dφ2 − dl2 and the null
geodesics which rule the surface S project to geodesics of the
so-called optical metric dl2 on U . What is less immediate
is that this correspondence still has any deep insights to
offer, and in particular that it continues to reveal any hidden
symmetries between smectic textures. The spacetime metric
ds2 = dφ2 − dl2 does not have the symmetries of M and is
not invariant under Poincaré transformations. Indeed there are
no symmetries that mix the space and time coordinates, for
the spacetime has a simple product form U × R and all the
curvature lies in the spatial sections. “Boosts” would mix the
curved and flat pieces and render a distinct spacetime. With this
metric there are no hidden symmetries. Fortunately, however,
this is not the only choice we can make.

The key point is that we are restricting our attention to
smectic textures that are everywhere equally spaced and that
these correspond to null surfaces in a Lorentzian spacetime. It

is well known that the null structure of a spacetime is preserved
under conformal rescalings of the metric [15,16]. Thus a given
surface, for instance the intersection of two light cones, will
appear null in any of the conformal family of metrics

ds2 = �2[dφ2 − hij (x)dxidxj ], (1)

where �(φ,x) is an arbitrary conformal factor, and any member
of this conformal family of spacetimes can be used to describe
equally spaced smectic textures on U (with metric dl2). A
natural question, then, is what choice of conformal factor
should be made? And are there any choices for which the
hidden symmetry is restored?

An example, well known in relativity, provides some imme-
diate insight. The conformal structure of (2 + 1)-dimensional
Minkowski spacetime can be revealed by defining new coor-
dinates (φ,α,β) through t = �M sin φ,x + iy = �M sin α eiβ

with �M = [cos φ + cos α]−1, producing the metric [16]

ds2
M = �2

M [dφ2 − dα2 − sin2 α dβ2]. (2)

Thus Minkowski spacetime is conformal to S2 × R. Null
surfaces in M, viewed using the metric (2), correspond to
equally spaced smectic layers on the surface of the two-sphere
S2. The general apparatus that was constructed for relating
null surfaces in M to focal conics in flat space [2], carries
over in its entirety to furnish a description of equally spaced
smectic textures on the sphere (in any dimension, in fact),
simply by switching between the usual Cartesian coordinates
(t,x,y) of M and the Carter-Penrose coordinates (φ,α,β) of
the conformal version of the metric (2). Since the spacetime
is M, we recover the natural action of the Poincaré group
that mixes space and time coordinates, revealing once again a
hidden symmetry between the smectic textures; see Fig. 1.

Moreover, the conformal freedom reveals a much greater
structure, for not only are seemingly distinct smectic textures
on S2 related via a spacetime symmetry, they are also related
to textures (and symmetries) of smectics in flat space. They
are, after all, the same null surface, in the same spacetime,
just being viewed by different observers. Similarly, by choos-
ing coordinates (φ,α,β) defined by t = eφ cosh α,x + iy =
eφ sinh α eiβ , we cover the interior of the future light cone
through the origin inMwith a metric conformal to the standard
one on H2 × R. Thus with this choice of coordinates the same
null surfaces in M can be used to describe equally spaced
smectic textures on the hyperbolic plane.

Can we go further? Are there other choices of coordinates
such that M is conformal to U × R for an arbitrary spatial
surface U? The answer is no: Maximally symmetric space-
times can only accommodate metrics of the form (1) with
maximally symmetric spatial sections [17], i.e., U is either
(i) the plane Rd , (ii) the sphere Sd , or (iii) the hyperbolic
plane Hd . Other spatial sections require a less symmetric
spacetime. However, it is also interesting to observe that we
need not restrict ourselves to Minkowski spacetime as the
underlying spacetime: The conformal freedom in (1) allows
us both to view smectics on different spatial sections with
the same spacetime and to view smectics on the same spatial
section with different spacetimes. For instance, smectics on
each of the three maximally symmetric spaces (Rd,Sd ,Hd )
can be described using an optical metric (1) corresponding to
any of the three maximally symmetric spacetimes: Minkowski
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(M), de Sitter (dS), and anti-de Sitter (AdS). This then raises
the question: Why use Minkowski? And, is there a reason to
choose one representation over the others?

Certainly for smectic textures in flat space, Minkowski
spacetime may seem to be the natural choice. But is it still
the natural choice for smectics on the sphere? We suggest that
here the use of anti-de Sitter has some potential advantages.
First, AdS is distinguished among the three by having a
periodic time direction and since we wish to associate this
to the smectic phase φ—itself a periodic quantity—the use
of AdS may bring certain benefits, especially if we consider
smectic textures with dislocations. A second distinguishing
feature of AdS is that it is the only homogeneous spacetime
in which we can view space as a sphere and where the time
coordinate φ is associated to a proper Killing vector field,
rather than just a conformal one; for the same reason we might
choose M and dS for smectics on R2 and H2, respectively.
Although this is not crucial for the equally spaced textures
we consider here, it may prove useful when the compression
is nonzero. For these reasons we summarize briefly the use
of AdS in describing smectic textures on S2. Although a
complete classification of all possible textures is challenging,
for the same reasons as described in Ref. [2] a very large class
of textures, covering all experimentally observed focal conic
textures, may be pieced together from the intersections of null
planes and light cones. Thus it suffices to describe the generic
features of these simple null surfaces, from which any desired
texture can be constructed. Note that this construction works
in any dimension, but we will focus on the relevant case of
two-dimensional smectics.

Recall that AdSd+1 can be isometrically embedded in Rd,2,
with its natural metric, as the hyperboloid

t2
1 + t2

2 − x2 = 1. (3)

The isometries of AdS are then generated by the action of
SO(d,2) on this hyperboloid and they descend to a natural
action of SO(d,2) on the set of smectic textures on Sd .
The choice of coordinates t1 + it2 = sec α eiφ , x1 + ix2 =
tan α eiβ in R2,2 provides a parametrization of AdS3 such
that the induced metric is of the form (1) with � = sec α

and where the spatial metric dl2 is the usual round metric
on S2. The coordinates φ,α,β cover the entire AdS3 with
φ ∈ [0,2π ), α ∈ [0,π/2), β ∈ [0,2π ), and thus only cover one
hemisphere of the S2, with the conformal factor sec α taking
the equator to infinity in AdS3.

From the point of view of smectics, the advantage of
embedding in R2,2 is that null surfaces in AdS3 are also null
in R2,2, which provides a convenient means of constructing
them. Starting with the analog of smectic ground states, we
can take as a representative null plane in AdS3 the intersection
of the hyperboloid (3) with the plane x1 = t1. In terms of our
coordinates (α,β,φ) this is the relation sin α cos β = cos φ and
thus equally spaced values of φ correspond to equally spaced
layers x = const on the standard embedding of the sphere into
R3, x2 + y2 + z2 = 1. Now, the plane x1 = t1 intersects AdS3

in two disjoint pieces, t2 � 1 and t2 � −1, so that we are
really describing two null planes in AdS3. However, as the
coordinates α,β only cover one hemisphere, this duplicity is
useful in defining the smectic texture on the entire S2: The
two pieces can be mapped to different hemispheres and glued

FIG. 2. (Color online) Smectic texture on a sphere derived from
a pair of null “planes” in AdS3. Left: The two planes have the same
orientation. Right: The two planes have orthogonal orientations. See
text for details.

together along the equator, corresponding to infinity in AdS3.
Although this process leads to +1 point defects on the equator
of the sphere, these defects are nowhere to be found in AdS3

since it does not include the equator. More generally, when
gluing together the two hemispheres, there is no reason for us
to choose the same orientation of plane waves: For instance, we
may take the second plane wave to be given by the intersection
of the plane t1 = x2 with AdS3 (t2 � −1), as shown in Fig. 2.
When they are different, there are four +1/2 point defects on
the equator, but otherwise the layers can be made to join so
that the normal is continuous.

Now we consider light cones in AdS3 and their related
disclinations in S2. Since AdS3 is maximally symmetric, its
geometry looks exactly the same everywhere. A light cone at
P˜ = (1,0,0,0) gives rise to a point defect at the North pole
of S2, with lines of constant latitude as layers. Rotations in
t1 ∧ t2 and x1 ∧ x2 shift φ and β, respectively. The former
evolve time and the latter just reparametrize the layers. Boosts
in t2 ∧ x1 and t2 ∧ x2 fix P˜ and thus also just reparametrize
the layers. However, a boost in t1 ∧ x1 with velocity v = sin ψ

maps the condition t1 = 1 to t1 sec ψ − x1 tan ψ = 1, which
is equivalent to cos φ = s · n, where n = (sin ψ,0, cos ψ) and
s = (sin α cos β, sin α sin β, cos α) is an arbitrary point on the
sphere. As a result, layers of constant latitude are rotated
around the axis ŷ by an angle ψ . Similarly, a boost in t1 ∧ x2

yields a rotation around x̂.
We finally come to the question of focal sets. Consider a

point (s,φ) at the intersection between the future light cone
emanating from (f1,φ1) and the past light cone emanating
from (f2,φ2). Denoting the distance along the sphere by d,
this means that d(s,f1) = φ − φ1 and d(s,f2) = φ2 − φ so
that d(s,f1) + d(s,f2) = φ2 − φ1, the equation for an ellipse.
Similarly, the intersection of two future or two past light
cones yields |d(s,f1) − d(s,f2)| = |φ1 − φ2|, the equation for a
hyperbola. Note, however, that the distinction between ellipses
and hyperbolas is artificial on the sphere, since a light cone
always refocuses after a time π ; the equation for a hyperbola
with foci at f1,f2 goes into the equation for an ellipse with a foci
at f̃1,f2, with f̃1 the antipodal point of f1. In fact, even a parabola
on the sphere is an ellipse: The locus of points equidistant
from an arbitrary point and a great circle is identical to the
locus generated by either an ellipse or hyperbola between the
arbitrary point and the conjugate poles of the great circle.

In closing, we note that whenever the focal curve is an
ellipse on any space, then simple geometry allows us to see that
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the energy of a simple focal domain arises only from the focal
curve. Consider the focal set depicted on the right in Fig. 1.
The null surface only differs from that on the left along the
cusp: Cutting along the rim and flipping the well over results
in the null surface for a single disclination. Since no bending
or stretching were necessary it follows that the only energy
difference between the right and the left is concentrated on the
focal curve. Thus, though the elastic energy for a smectic

F = 1

2

∫
ddx{B[(∇φ)2 − 1]2 + K(∇2φ)2} (4)

is not invariant under the hidden Poincaré, SO(2,2), or SO(3,1)
symmetries of the underlying space, the energy of these
focal domains transforms locally. The compression energy
remains vanishing under such transformations and the bending
energy is only different on the focal curve. This geometric
transformation extends to all ellipsoidal focal sets in three
dimensions, and so forth.

It does not appear, however, that any such simplification
occurs for more complex domains, in particular the toric focal
conic domains. Though the special conformal transformation
of Minkowski spacetime can be used to map a circular focal set
to any other conic [18], there exists an immediate obstruction
to any sort of energetic comparison because the hyperbolic

and parabolic focal sets are not compact. Either they run off to
infinity or they end on point disclinations [2]. Once we admit
focal curves we must also admit point defects; once we admit
point defects we are compelled to set boundary conditions at
infinity to conserve topology or, as is the usual case, we can
add the point at infinity and study our problem on the sphere.
Thus our ability to study smectics on compact surfaces such as
Sd becomes necessary to properly formulate these problems.

We note that the conformal freedom of the null hyper-
surfaces is a sort of pointwise realization of the projective
geometry of light cones. Whether we can extend these ideas
or exploit the full power of Lie sphere geometry [19] to
understand the geometric symmetry of the full energy or the
structure of higher genus spaces remains open.

In future work we will study these issues, generalizations
to higher dimensions, and to more complex focal structures. In
addition, we will explore the use of AdS to study the inclusion
of dislocations and smectic textures with nonuniform spacing.
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