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Normal and anomalous diffusion in random potential landscapes
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A relation between the effective diffusion coefficient in a lattice with random site energies and random transition
rates and the macroscopic conductivity in a random resistor network allows for elucidating possible sources of
anomalous diffusion in random potential models. We show that subdiffusion is only possible either if the mean
Boltzmann factor in the corresponding potential diverges or if the percolation concentration in the system is equal
to unity (or both), and that superdiffusion is impossible in our system under any condition. We show also other
useful applications of this relation.
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A classical particle’s diffusion in a random potential or
hopping on a lattice with disordered site energies Ei is a
versatile theoretical model with a wide range of applications
[1]. The particle’s motion typically corresponds to normal
diffusion, but can get subdiffusive in the presence of deep
traps or in the case of infinite contrast when approaching
percolation transition. A question arises, whether there can
be other cases leading to subdiffusion except for these two
(or combinations thereof). In what follows we show that the
diffusion coefficient in a discrete disordered lattice is always
finite (i.e., that no superdiffusion can be observed) but may
vanish (possibly giving rise to subdiffusion). Independently
of the particular distribution of nonzero transition rates, this is
possible either if the percolation threshold in the corresponding
network is unity (e.g., in one dimension, on finitely ramified
fractals, or when we are already at percolation threshold) or if
the mean Boltzmann factor 〈exp(−Ei/kT )〉 diverges (or both).
According to the Arrhenius law, the last situation corresponds
to the divergence of the mean sojourn time at a site, pertinent
to trapping.

We start from the master equation for the probabilities pi

to find a particle at a site i of a lattice (with lattice spacing a)

ṗi =
∑

j

(wijpj − wjipi), (1)

where wij are transition rates from site j to site i different
from zero only for nearest neighbors. Equation (1) can
either follow from some microscopic scheme or be obtained
by a discretization of the Fokker-Planck equation for the
overdamped motion in a continuous potential. The system
is taken to be homogeneous and isotropic in the statistical
sense. This requirement excludes underdamped cases for
which the velocities and coordinates enter differently, thus
leading to anisotropy of the state (phase) space. In what
follows we consider a d-dimensional lattice with total of
M � 1 sites assigned energies Ei being identically distributed
random variables. We assume that the system is isothermic and
possesses true thermodynamical equilibrium under appropri-
ate boundary conditions, i.e., that the transition rates fulfill
the detailed balance condition wijp

0
j = wjip

0
i at equilibrium

(the superscript 0 will denote the corresponding value at
equilibrium throughout the work). The transition rates 0 �
wij < ∞ are not necessarily bounded from above, and some
of them may be put to zero to mimic percolation situations. The

values of p0
i are given by p0

i ∝ bi = exp(−Ei/kT ), where bi

denotes the Boltzmann factor, T is the temperature, and k is
the Boltzmann constant.

Our discussion maps the initial problem onto the one for
random resistor-capacitor networks. Let gij be the correspond-
ing conductivities of the bonds, and 〈gij 〉EM be the effective
conductivity of a corresponding network in the static regime.
Then the effective diffusion coefficient in a network follows
as

D∗ = a2 〈wji exp(−Ei/kT )〉EM

〈exp(−Ei/kT )〉 . (2)

The statements done in the first paragraph are then demon-
strated by using the results from the theory of electric
circuits and from the percolation theory. Some other useful
applications of Eq. (2) are shown.

Equation (2) by itself is not new, but we give here its
physical derivation which stresses its general applicability
and its connection with thermodynamics. Thus, the discussion
for the case of a barrier model (all Ei are the same, but the
transition rates fluctuate) is contained in Ref. [1], Eq. (2.15).
Moreover, Eq. (2) naturally appears when applying an effective
medium approximation (EMA), like the one of Ref. [2]. A
derivation for a continuous case (Langevin description in
the Ito interpretation) is given in Ref. [3]. Note that the Ito
prescription may correspond to the trap model in the discrete
case [4], i.e., to a situation different from the one of Ref. [1]. In
our work we confine ourselves to a discrete setup which allows
for the application of the theory of electric circuits for the
analysis of the results (although we make a limiting transition
to continuum to illustrate some outcomes of the approach).

We start by rewriting Eq. (1) as an equation for mean
numbers (“concentrations”) of noninteracting particles at the
corresponding sites, ṅi = ∑

j (wijnj − wjini), connected with
probabilities via ni = Npi with N being the total number
of particles. In equilibrium all n0

i are proportional to the
Boltzmann factors, n0

i = Cbi with prefactor C depending
on the number of particles, on the system’s size, and on
distribution of bi . Putting the detailed balance condition
into the form wijn

0
j = wjin

0
i we denote wijn

0
j = gij where

gij = gji is now a property of the bond. Using this notation
we rewrite Eq. (1) as an equation for the temporal evolution of
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activities ζi = ni/n0
i (see the Supplementary Material [6]):

ζ̇i = 1

n0
i

∑

j

(gij ζj − gjiζi). (3)

Equation (3) is formally equivalent to the evolution equation
of node potentials in a random resistor-capacitor model [1],
with conductivities gij and capacitances n0

i .
Let us now calculate the effective diffusion coefficient

provided it exists (i.e., the system homogenizes at large
scales). For random resistor networks the homogenization of
conductivity is mathematically proved for local conductivities
bounded from above and from below; see [7] and references
therein. The boundedness from below excludes the conductor-
isolator percolation model, but homogenization still holds
provided the system percolates [8]. Physically, it is known that
the conductor-superconductor system homogenizes below the
percolation threshold for superconductor [9].

We mimic a stationary experiment on measuring the diffu-
sion coefficient via the first Fick’s law: The system, in the form
of a membrane of thickness L and of transversal dimension
W , separates two reservoirs, the left one with a well-stirred
solution of particles at concentration νl , the other one with a
slightly lower concentration νr . The membrane is considered
as impermeable for the solvent, and both concentrations are
kept constant. The constant particles’ current I through the
membrane is measured and connected with the mean diffusion
coefficient inside it. Since in general a jump of the (free) energy
per particle can form on a contact between the membrane and
the solution (e.g., when the fluid is a good solvent for diffusing
particles and the membrane is, on the average, a bad one, or
the other way around), the effective diffusion coefficient inside
the membrane has to be defined through

D∗ = IL

Wd−1(〈nl〉 − 〈nr〉) , (4)

where 〈nl〉 and 〈nr〉 are the mean particle concentrations in
the layers of the membrane in immediate contact with the
solution; see Fig. 1. In a stationary state ζ̇i = 0. Moreover,
in the thermodynamical limit L → ∞ the permeability of the
membrane and thus the current tend to zero. We will call this
situation “quasiequilibrium” in what follows.

The contact with solution is modeled by additional arrays
of sites to the left and to the right from the membrane, with
constant particles’ concentrations and constant energies E0

which can be chosen arbitrarily (E0 defines the quality of
the solvent). These additional sites are connected to the ones
on the membrane’s sides via extremely high transition rates
fulfilling the detailed-balance condition. In this case a local
equilibrium between the surface sites and the solutions persists
independently of the particles’ distribution inside the bulk. Due
to this the activities of the surface sites are all equal to ζl = Aνl

and ζr = Aνr at the left resp. right boundary of the membrane,
where the prefactor A depends on E0. Thus, ni in the leftmost
layer are proportional to ζln

0
i = Aνln

0
i and in the rightmost

layer to ζrn
0
i = Aνrn

0
i so that the mean concentrations in

the layers are nl = Aνl〈n0
i 〉 and nr = Aνr〈n0

i 〉, where we
assume that the distribution of the site energies in the surface
layers is the same as in the bulk. We then calculate the
corresponding total current I through the system noting that

FIG. 1. A schematic illustration of the situation considered in the
text: the disordered medium in contact with two reservoirs, the mean
concentration at different positions, and the lattice model applied.

the equations for the currents and activities in a stationary
state are the same as the ones given by the Kirchhoff’s
laws for an electric circuit. Making such a reinterpretation
we see that I = g∗(Wd−1/L)(ζl − ζr ) where g∗ = 〈g〉EM is
the effective conductance (conductivity of a bond in the
effective ordered medium with the same total conductivity
as our heterogeneous one), where the subscript EM denotes
the effective medium mean. Therefore D∗ = a2g∗/〈n0

i 〉. The
prefactor a2 is introduced to restore the dimension as follows
from Eq. (4), when passing from distances L measured in
lattice units to distances measured in centimeters. We note
that since n0

i are proportional to the Boltzmann factors, and
since rescaling of all gij by a constant factor leads to changing
g∗ by the same factor, the proportionality factor C cancels out;
this gives Eq. (2).

The result is rather transparent. If we are able to measure
the effective conductivity of the system, we can connect
it with the effective mobility μ∗ (and thus with the diffu-
sion coefficient) via Nernts-Einstein equation σ ∗ = n0qμ∗ =
n0qD∗/kT , where n0 is the equilibrium concentration of
particles with charge q. Reverting this expression we get
D∗ ∝ σ ∗/n0, which is essentially Eq. (2).

One may argue that the correct way is to define D∗ through
the gradient of the coarse-grained concentration, and not via
the total concentration difference. As we show in Ref. [6] this
definition leads to the same result since local concentrations
and local activities decouple under quasiequilibrium (but only
under this condition).

Let us first discuss some applications of Eq. (2) other than
discussed earlier. Equation (2) gives the possibility to obtain
the universal bounds on the effective diffusion coefficient
based on those for the effective conductance, i.e., the universal
Wiener bounds [10] and the tighter Hashin-Shtrikman bounds
for isotropic systems [11], as well as to generalize some exact
results for two-dimensional systems based on duality [12]. In
this presentation we concentrate on continuum models where
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FIG. 2. (Color online) EMA result and Hashin-Shtrikman bounds
for the symmetric binary case (p = 1/2) vs contrast x for d = 2 (a)
and for d = 3 (b).

Eq. (1) arises from discretization of a Fokker-Planck equation
for p(x,t): ṗ = D�p + (D/kT )∇(∇U (x)p) with constant
diffusion coefficient D and disordered potential U (x). The
details of calculations are given in Ref. [6].

The universal Wiener bounds for the conductance are given
by 〈g−1

ij 〉−1 � 〈gij 〉EM � 〈gij 〉. In our cases this corresponds
to

a2w0

〈exp(Ei/kT )〉〈exp(−Ei/kT )〉 � D∗ � a2w0. (5)

Note that the lower bound reproduces the exact result for the
one-dimensional system with random potential and constant
diffusion coefficient.

In Figs. 2 and 3 we plot the Hashin-Shtrikman bounds
for two cases: the case of the binary disorder Ei = E1 with
probability p and Ei = E2 with probability 1 − p, and the
case of Ei possessing an exponential distribution with cutoffs,
the one with density P (Ei) = β e−βEi [e−βE2 − e−βE1 ]−1 for
E2 < Ei < E1 and vanishing elsewhere (apart from cutoffs
this distribution is reminiscent of the exponential energy
distributions leading to CTRWs). As a comparison, the
results of the effective medium approximation (EMA), see
Refs. [13,14], are shown. The results are plotted as the function
of a contrast x = exp[(E2 − E1)/kT ] being the ratio of the
maximal and the minimal value of gij .

Note that the result for the effective diffusion coefficient
for the symmetric binary case in 2D is essentially exact since
in this case 〈g〉EM = √

gagb due to the duality relation [12].
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FIG. 3. (Color online) EMA result and Hashin-Shtrikman bounds
for truncated exponential P (Ei) vs x for d = 2 (a) and d = 3 (b).

In the limit of very strong disorder D∗ may vanish or
diverge. In the first case D = 0, the system either does not
show any transport (does not percolate) or shows anomalous
transport slower than diffusion (i.e., shows subdiffusiom). In
the second case it might show superdiffusion.

If D∗ vanishes, it can do so either because the numerator
〈wji exp(−Ei/kT )〉EM vanishes or because the denominator
〈exp(−Ei/kT )〉 diverges, as well as in the cases when both
possibilities are realized simultaneously (which may give rise
to subdiffusion of mixed origins [5]). We discuss the conditions
under which the corresponding behavior may take place. If
D∗ diverges, it can do so because the numerator diverges, or
because the denominator vanishes, or both. As we proceed to
show, none of these possibilities can be realized. This excludes
not only superdiffusion, but also the “compensated” cases
of normal diffusion when both numerator and denominator
vanish or diverge simultaneously.

For further discussion we first recapitulate the following
properties of percolation systems: (i) The mixture of resistors
with given finite conductivity (at concentration p) with
insulating bonds (of zero conductivity) at concentration 1 − p

possesses zero conductance below the percolation threshold
pc and finite conductance above it. The corresponding system
homogenizes at scales above the correlation length [1]. This
homogenization also takes place for arbitrary distribution of
the conductivities of the resistors [8]. Similarly, (ii) the mixture
of resistors with given finite conductivity (at concentration
p) with superconducting bonds (at concentration 1 − p)
possesses finite conductance below the percolation threshold
ps

c for superconducting bonds, with 1 − ps
c = pc, and infinite

conductance above it. These properties do hold not only for the
Bernoulli percolation model but also in the case when the short-
range correlations in the occupation probabilities of the bond
by the corresponding resistors/insulators/superconductors are
present. This statement is a (silently assumed) basis of all
renormalization group approaches in percolation.

Using the results of the theory of electric circuits, see,
e.g., [15], we show that the total conductivity of a resistor
network is a nondecaying function of the conductivity of each
particular bond. Let us consider the system as placed between
two “superconducting” bars considered as a terminal 1 of the
system. Let us consider the poles i and j between which gij

is switched as terminal 2. Using the theory of two-terminal
circuits we calculate the input impedance (total conductivity)
zin as a function gij : zin = z11 − z12z21/(z22 + gij ), where
zαβ are the elements of the impedance matrix of the system.
For a system of reciprocal passive elements (no batteries, no
diodes) this matrix is nonnegatively definite and symmetric as a
consequence of nonnegative heat production and of reciprocity
theorem. In the case of a pure resistor network the matrix is
real. Thus, z11,z22 � 0 and z12z21 = (z12)2 � 0, so that zin is
a nondecaying function of gij .

Now we show that the numerator never diverges. We fix
some q < 1 − ps

c = pc and declare the fraction q of bonds
(starting from the ones with largest g) to be superconductive.
The lowest conductivity of a changed bond is gmin. The
superconducting bonds are nonpercolating by construction,
and the conductance of the remaining system is finite, being
smaller than a conductance of the resistor-superconductor
mixture where all conductivities are put to gmin. Thus the
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numerator can only diverge if pc = 0, i.e., never in finite
dimension.

The numerator does not vanish for a system with percolation
concentration pc < 1. Let us remove a portion q < 1 − pc

of bonds with smallest g without destroying percolation and
denote the largest removed conductivity by gmax > 0. The rest
of the system percolates and has a conductance which is larger
then the conductance of a two-phase system constructed of
resistors with g = gmax and g = 0, which is nonzero since we
are above percolation threshold. Thus the numerator can only
vanish if pc = 1, and no bonds can be removed.

The denominator in Eq. (2) can diverge if the corresponding
mean value of the Boltzmann factor diverges. Since bi =
exp(−Ei/kT ) is proportional to the sojourn time at a site i

in equilibrium, this corresponds to diverging mean sojourn
time at a site, i.e., to a trap model, which in high dimensions is
equivalent to CTRW with a broad distribution of waiting times.

The denominator cannot vanish. Let p(E) be the probability
density of Ei , and EM > −∞ its median,

∫ EM

−∞ p(E)dE =
1/2. Since 〈b〉 = 〈exp(−Ei/kT )〉 = ∫ ∞

−∞ e−E/kT p(E)dE

where the integrand is nonnegative, we have
〈b〉> ∫ EM

−∞ e−E/kT p(E)dE > exp(−EM/kT )
∫ EM

−∞ p(E)dE =
(1/2) exp(−EM/kT ) since exp(−E/kT ) is monotonically
decaying.

Summarizing our findings we state that there exists an exact
correspondence between the effective diffusion coefficient in
a random potential and macroscopic conductivity in a random
resistor model. This simple relation allows us to obtain exact
bounds on the effective diffusion coefficient. It also allows
for elucidating possible sources of anomalous diffusion in
such model. Thus, the subdiffusion is possible either if the
mean Boltzmann factor of the corresponding potential diverges
(energetic disorder) or if the percolation concentration in a
system is equal to unity, i.e., if the system is already at the
percolation threshold, in one dimension, or on finitely ramified
fractals (structural disorder). Superdiffusion is impossible in
our system under any condition.
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