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Two-dimensional solitons in PT linear lattice potentials
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We investigate two-dimensional (2D) ordinary and gap solitons in the 2D and the quasi-one-dimensional
parity-time (PT ) linear lattice potentials. The stability diagrams for both versions of PT potentials are given.
Particularly, we find that 2D gap solitons with self-attractive nonlinearity may exist in the PT lattice, but they
are unstable due to the collapse instability.
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I. INTRODUCTION

Over a decade ago, Bender and Boettcher reported [1] that
spectra can be entirely real in a wide class of non-Hermitian
Hamiltonians if the system is parity-time (PT ) symmetric.
Since then, considerable attention has been focused on this
subject. The PT symmetry requires that the real part of the
PT complex potential is an even function of position while
the imaginary part is odd. Interestingly, PT Hamiltonians can
be recognized as a general class of pseudo-Hermitian systems
given that their eigenenergies are real. Probably the most in-
triguing property in a PT Hamiltonian system is the existence
of an “exceptional point” (critical threshold), below which the
spectrum is real, while above which the system undergoes a
rather sudden “PT -symmetry-breaking” phase transition with
the spectrum becoming complex. The characteristics of this
“exceptional point” orPT -symmetry breaking are extensively
addressed in many different contexts [2–11].

It is suggested [12,13] that optics offers a highly fertile
ground for experimental realization and detailed investigation
of systems with PT symmetry, provided that a medium is
created with alternating regions of gain and loss. Pioneering
theoretical works [14–16] stimulated recent experimental
studies that eventually resulted in the observation of the
PT -symmetry breaking in both passive [17] and active [18]
optically coupled systems. This will probably enable manufac-
turing of integrated PT photonic devices with extraordinary
capability, such as double-refraction or energy flow tailoring.
A new direction concerning PT optical lattices [19,20] and
the related PT -based solitons can also be envisaged. Hence,
further exploration of general properties of solitons in various
PT potentials is recalled. The existence, stability, and propa-
gation dynamics of the one-dimensional (1D) optical solitons
in a PT linear periodic potential have been examined in detail
in Ref. [13]. The 1D solitons supported by the PT -symmetric
nonlinear lattices were also reported recently [21,22]. In order
to achieve an insight into the formation of PT -based solitons
[13,21,22], the current paper studies how a soliton is created
and stabilized in a two-dimensional (2D) space.

In this paper, we investigate disparate types of 2D
solitons (both ordinary and gap ones) in a full 2D
PT linear lattice potential {V (x,y) = 4(cos2 x + cos2 y) +
4iV0[sin(2x) + sin(2y)]}and a quasi-1D (Q1D) [i.e., V (x) =
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4 cos2 x + 4iV0 sin(2x)] one. It is relevant to stress that our
model is substantially different from those obtained recently
in the PT waveguide study, where the 2D optical gap solitons
have not yet been investigated [13]. We reveal that the
imaginary part of the solitons always emerges in the form
of a dipole. It is also found that, in contrast to those reported
[13,19,20] in the 1D case, the stable 2D solitons can only
exist for small V0. They become less stable with increasing
V0. Thus, we come to the conclusion that the 2D solitons
survive only for sufficiently small V0. An open question on 2D
gap solitons under self-attractive intrinsic nonlinearity is also
tested in thePT model; our study shows that such gap solitons
exist under certain conditions, and they are unstable. All the
results reported here are based on direct numerical simulations,
as the analytical computation would be too cumbersome.

The rest of the article is organized as follows. The model
and its band spectrum are introduced in Sec. II. Localized states
in the semi-infinite gap and the first and second band gaps are
reported in Sec. III. The 2D gap soliton with self-attractive
nonlinearity and the localized states in the low-dimensional
PT potential are explored separately in Secs. IV and V, and
the article is concluded in Sec. VI.

II. THE MODEL AND ITS BAND SPECTRUM

The system with the 2D PT linear lattice potential can be
described with the scaled Gross-Pitaevskii [23] (or nonlinear
Schrödinger) equation for the Bose-Einstein condensation
wave function (or the amplitude of the electromagnetic wave
in optics), ψ (x,y,t):

iψt = −(1/2)
(
∂2
x + ∂2

y

)
ψ − V (x,y)ψ − g|ψ |2ψ, (1)

where t is the time coordinate (or the propagation distance
in optics) and the nonlinear coupling is normalized such that
g ≡ ±1, with the plus and the minus sign corresponding to the
self-attractive and the self-repulsive nonlinearity, respectively.
As mentioned above, the PT potential is then to be V (x,y) =
4(cos2 x + cos2 y) + 4iV0[sin(2x) + sin(2y)].

Stationary solutions to Eq. (1) with chemical potential μ

(or the propagation constant −μ in optics) are in the form
of ψ(x,y,t) = φ(x,y) exp(−iμt), where the function φ(x,y)
satisfies

μφ = −(1/2)
(
∂2
x + ∂2

y

)
φ − V (x,y)φ − g|φ|2φ. (2)

The band spectrum of Eq. (1) in the 2D PT linear lattice
potential can be computed with a linearization of Eq. (2)
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FIG. 1. The band spectrum of the linearization of Eq. (2) in
the irreducible zone (triangle �XM) of the first Brillouin zone
for the PT linear lattice potential V (x,y) = 4(cos2 x + cos2 y) +
4iV0[sin(2x) + sin(2y)] at (a) V0 = 0.02, (b) V0 = 0.33, and (c)
V0 = 0.5. (d) shows the first Brillouin zone of the PT lattice in
the reciprocal lattice space; the high-symmetry points (�XM) in the
irreducible zone are marked.

in a way similar to that in solid-state physics. Specifically,
according to the Bloch theorem, the PT lattice is first mapped
onto the reciprocal lattice space, and then the band structure is
obtained along the directions with the highest symmetries of
the irreducible zone (triangle �XM) in the first Brillouin zone
[see Fig. 1(d)]. In Fig. 1 we show the associated spectrum for
V0 = 0.02 (a), V0 = 0.33 (b), and V0 = 0.5 (c). As usual, there
exists a semi-infinite gap (semi-infinite region below the first
band), together with gaps with different orders—including the
first and the second order when V0 < 0.5. The PT -symmetry
breaking happens right at the phase transition point V0 = 0.5.
Above this value the first and the second band gaps will
merge and the band gap disappears [Fig. 1(c)], in analogy
to what is reported previously [12,13]. In the following, we
will construct localized stationary modes of Eq. (2) and then
test their stability with numerical simulations by adding small
random perturbations to the so-found solutions and integrating
Eq. (1).

FIG. 2. (Color online) A typical example of a stable ordinary
soliton of the model with the full 2D PT linear potential, for V0 =
0.02, g = +1, μ = −5.85, and N = 0.94. (a) and (b) are the real and
imaginary parts of wave function φ(x,y); (c) is the contour plot of
mod |φ|.
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FIG. 3. The bifurcation diagram μ(N ) for the stable (solid curve)
and unstable (dashed curve) ordinary solitons (in the semi-infinite
gap) of the model Eq. (2) at V0 = 0.02 with (a) the 2D PT linear
potential and (b) the Q1D potential.

III. LOCALIZED STATES IN THE SEMI-INFINITE GAP
AND THE FIRST AND SECOND BAND GAPS

To construct the localized state, we use the Gaussian
ansatz as the input, φ(x,y) = A exp[−(x2 + y2)/(2W 2)], with
amplitude A and width W . Based on the fact that the
real and the imaginary component of the PT potential are
even and odd, respectively, we may define the norm N =∫ +∞
−∞

∫ +∞
−∞ φ(x,y)φ∗(−x, − y)dxdy instead of the commonly

used N = ∫ +∞
−∞

∫ +∞
−∞ |φ(x,y)|2dxdy [12].

A stable ordinary soliton, generated in the semi-infinite gap
with self-attractive nonlinearity, is shown in Fig. 2. We can
see that the real part of the soliton is similar to the usual
quasi-isotropic localized state, while the imaginary part is
in a dipole mode. A bifurcation diagram for soliton stability
is depicted in Fig. 3(a). A saddle-node bifurcation occurs at
N ≈ 0.53 where a stable and an unstable branch of solitons
are generated. The curve μ(N ) for the stable solitons obeys
the Vakhitov-Kolokolov (VK) criterion [24], ∂μ/∂N < 0,
while the branch ∂μ/∂N > 0 corresponds to unstable solitons,
similar to those found in both the 1D [25] and the 2D [26]
incommensurate linear and nonlinear lattices. The unstable
solitons will decay into radiating waves (i.e., in Fig. 4) under
very small perturbation.

Compared with ordinary solitons, gap solitons have more
complex profiles, i.e., usually with multiple side peaks.
Examples of stable gap solitons, generated in both the first
and the second band gap with self-repulsive nonlinearity, are
displayed in Figs. 5 and 6, respectively. More and higher side
peaks appear in Fig. 6, since solitons in the second band gap
have larger energies than those in the first band gap. As shown

FIG. 4. (Color online) The evolution of an unstable ordinary
soliton of Eq. (1) with the 2D PT linear potential, for V0 = 0.02,
g = +1, μ = −5.43, and N = 0.42. Initial perturbation is 1% in size
of the soliton amplitude or phase.
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FIG. 5. (Color online) A typical example of a stable gap soliton
in the first band gap with the full 2D PT linear potential, for V0 =
0.02, g = −1, μ = −3.6, and N = 3.5. (a) and (b) are the real and
imaginary parts of wave function φ(x,y), (c) is the mod |φ|, and
(d) is its contour plot.

in Fig. 7, unlike the ordinary soliton, the stable gap soliton
always features ∂μ/∂N > 0, satisfying the “anti-Vakhitov-
Kolokolov” criterion [25,26]. Like the ordinary soliton, the
unstable gap soliton also suffers decay.

IV. EXISTENCE OF THE 2D GAP SOLITON WITH
SELF-ATTRACTIVE NONLINEARITY

Let us consider here a quite general open problem—the
existence of 2D gap solitons with self-attractive intrinsic
nonlinearity. This possibility could be numerically checked by
gradually increasing V0 starting from V0 = 0.324. Figure 8
shows a 2D gap soliton supported by the self-attractive
nonlinearity (g = +1) at V0 = 0.33. Its existence is attributed
to the fact that the amplitude or the norm of the imaginary
part of the gap soliton is comparable to (or even larger than)
that of the real part, in contrast to the case of the gap soliton
with self-repulsive nonlinearity. This is also the reason why the
profile of the current gap soliton is no longer quasi-isotropic,
as can be seen from a comparison between Figs. 8(d) and 5(d).
Furthermore, double peaks emerge in the real part as well as in
the modulus. A valley also shows up in the real part, making
it look like a dipole. These unique features are the direct and
natural outcome of the PT potential. We verified that these

FIG. 6. (Color online) Similar to Fig. 5, but in the second band
gap, for V0 = 0.02, g = −1, μ = −2.43, and N = 4. (a) is the mod
of wave function |φ| and (b) is its contour plot.
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FIG. 7. The function μ(N ) for the gap solitons in the (a) first and
(b) second band gap with the 2D PT linear potential. The solid line
represents the stable solitons (located inside the marked stripe), the
dashed line corresponding to the unstable ones.

gap solitons always collapse in finite time (not shown here).
Reconfirming the fact that both ordinary ones and gap solitons
are stable only for small V0, e.g., the instability appears when
V0 � 0.04, demonstrated by extensive numerical calculations.
This is vastly different from the 1D case, where a soliton
survives even for a moderate value of V0, e.g., V0 = 0.45 in
Fig. 3 of Ref. [13].

V. LOCALIZED STATES IN THE LOW-DIMENSIONAL PT
LINEAR LATTICE POTENTIAL

Another interesting issue is to create localized states in
the low-dimensional PT potential. The profile of a localized
state, produced in the Q1D potential, is highly stretched in
the y direction, as displayed in Fig. 9, since the soliton is
constrained by the Q1D potential only in one direction (i.e.,
the x axis). The bifurcation diagram of the 2D soliton in
the Q1D potential is depicted in Fig. 3(b). Again agreeing
with the VA criterion [24], the soliton family is stable when
∂μ/∂N < 0.

In addition, we demonstrated that the localized modes—
both the ordinary and the gap solitons (whether in the first or

FIG. 8. (Color online) Similar to Fig. 5, but for the unstable gap
soliton with self-attractive nonlinearity (g = +1), at V0 = 0.33, μ =
−3.8, and N = 2.1. (a) and (b) are the real and imaginary parts of
wave function φ(x,y), (c) is the mod of wave function |φ|, and (d) is
its contour plot.
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FIG. 9. (Color online) Similar to Fig. 2, but with the Q1D PT
linear potential, for V0 = 0.02, g = +1, μ = −2.925, and N = 0.91.
(a) is the mod of wave function |φ| and (b) is its contour plot.

second band gap), constructed for the imaginary Q1D PT po-
tential [i.e., V (x,y) = 4(cos2 x + cos2 y) + 4iV0 sin(2x)]—
are very similar to their full 2D counterparts (not shown
here). This finding is very important because it may potentially
simplify the fabrication of compact integrated PT photonic
devices in the future. Furthermore, a decrease of the imaginary
component in the Q1D potential will help curb the collapse of
solitons to a certain extent.

VI. CONCLUSIONS

We studied the two-dimensional (2D) localized states,
including both ordinary and gap solitons, in the 2D and the
quasi-one-dimensional (Q1D) parity-time (PT ) linear lattice
potentials. The stabilities of these solitons are examined
with direct numerical simulation by adding small random
perturbations (to both real and imaginary parts). A remarkable
feature is that the imaginary part of the solitons always appears
in the form of a dipole mode. The 2D gap solitons with
self-attractive nonlinearity are found to exist as unstable states.

A challenging problem ensuing from this analysis is to
stabilize the gap solitons with self-attractive nonlinearity
[Fig. 8], i.e., to overcome or depress the smearing of the
soliton with proper external interference. Furthermore, it could
also be interesting to carry out a detailed analysis of solitons
and solitary vortices by extending the current investigation to
the hybrid system in the framework of combined linear and
nonlinear PT lattices [21,25–28].

Note added. Recently, we learned that a similar work was
published in Ref. [29], while where the 2D gap solitons have
not been considered.
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