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Heat radiation from long cylindrical objects
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The heat radiated by objects smaller than or comparable in size to the thermal wavelength can be very different
from the classical blackbody radiation as described by the Planck and Stefan-Boltzmann laws. We use methods
based on scattering of electromagnetic waves to explore the dependence on size, shape, and material properties. In
particular, we explore the radiation from a long cylinder at uniform temperature, discussing in detail the degree of
polarization of the emitted radiation. If the radius of the cylinder is much smaller than the thermal wavelength, the
radiation is polarized parallel to the cylindrical axis and becomes perpendicular when the radius is comparable to
the thermal wavelength. For a cylinder of uniaxial material (a simple model for carbon nanontubes), we find that
the influence of uniaxiality on the polarization is most pronounced if the radius is larger than a few micrometers,
and quite small for the submicrometer sizes typical for nanotubes.
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I. INTRODUCTION

Thermal radiation lies at the heart of modern statistical
physics and goes back to the beginnings of quantum mechanics
more than a century ago [1]. Planck’s law describes the
intensity I (per unit surface area and solid angle) of radiation
of a blackbody at temperature T :

I = h̄ω3

2π2c2

1

eh̄ω/kBT − 1
. (1)

Here, ω is the angular frequency of radiation and h̄ and c are the
reduced Planck’s constant and the speed of light, respectively.
Integration over angles and frequencies yields the well-known
Stefan-Boltzmann law [2] for the total power H radiated per
unit area A,

H/A = σT 4, (2)

with σ = π2k4
B/(60h̄3c2).

Only recently have various phenomena leading to modifi-
cations of these laws been explored. For example, the effect of
spatial coherence of the emitted heat radiation has been studied
by many authors [3–6] as this effect can be used in many
technological applications [7–10], such as thermophotovoltaic
and high-efficiency light sources.

For real materials, Eq. (1) can be adjusted by introducing the
(angle-dependent) emissivity of the material, which is unity for
a blackbody. For objects with sizes smaller than or comparable
to the thermal wavelength λT = h̄c/kBT (approximately
7.6 μm at room temperature), the radiated energy differs
from that given by the above equations because of interference
effects of the object with the emitted radiation. In other words,
the emissivity then depends on the size and shape of the object.
Additionally, if the object is smaller than the penetration
(skin) depth, the emitted power is proportional to the object’s
volume, rather than surface area. The heat radiation of small
spherical objects including these effects has been studied
since the 1970s [11,12]. Also, effects of excitations [13]
and electric currents [14] on the radiation have been studied.
Furthermore, recent studies on superscattering properties of
subwavelength nanostructures (e.g., nanorods) [15] make such
systems potential candidates for efficient heat transfer sources.

Experimentally, the radiation of thin cylindrical objects
with thickness in the range of the thermal wavelength is very
well accessible, and has, for example, been studied using metal
wires with interesting findings: 50 years ago, it was discovered
that the radiation of a hot thin metal wire is significantly
polarized [16]. Polarizations of 28% [16] and 50% [17] in
the direction perpendicular to the wire were measured for thin
incandescent tungsten and silver wires, respectively. In both
studies the thickness of the wires was larger than or comparable
to the thermal wavelengths. These findings triggered a number
of studies on the properties of thermal radiation of sources
of various designs, including platinum microwires [18,19],
semiconductor layers in external magnetic fields [20], bundles
of carbon nanotubes [21,22], and SiC lamellar gratings [23].

For wires with thickness smaller than or comparable to
the thermal wavelength, the radiation was found (e.g., for
platinum) to be polarized in the direction parallel to the wire,
becoming fully polarized as the width approaches zero [18,19].
Polarization effects have also been observed for radiation of
bundles of carbon nanotubes [21] and are considered a simple
way of finding the degree of alignment inside the bundle. For
carbon nanotubes, an explanation for this polarization, taking
into account the electronic structure of the tubes, has been
discussed in Ref. [22].

Recent work on the heat radiation of thin metal wires [24]
provides experimental as well as theoretical results, albeit
restricted to emission perpendicular to the cylindrical axis.
Also, in a series of works [25–27] the radiation emitted by
individual incandescent carbon nanotubes is discussed. In
Ref. [26], the polarization of the radiation is studied both
experimentally and theoretically using a model based on Mie
theory.

In this paper, we provide the general formalism to compute
the heat radiation of arbitrary objects in terms of their classical
scattering properties, which is part of the general frame-
work [28] for nonequilibrium electromagnetic fluctuations
involving multiple objects and arrays [29–35]. Thereby we
give a more extensive derivation of the corresponding results
presented in Ref. [28], which is also more general in terms
of material properties: We include the possibility of dielectric
or magnetic losses, locality or nonlocality. Additionally, we
provide a simpler formalism to derive the heat radiation
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[see Eq. (19) below]. To this end, we start from quantum
thermal fluctuations inside the object, following the theory of
fluctuational electrodynamics introduced over 60 years ago
by Rytov et al. [36]. Then we derive the heat radiation of
the experimentally important case of a cylindrical object,
discussing polarization effects for different conducting and
insulating materials, as well as asymptotic limits. This detailed
dicussion hence provides much deeper understanding of
material and size effects compared to the brief introduction of
dielectric cylinders in Ref. [28]. We derive the heat radiation
of a cylinder made of uniaxial material, where the symmetry
axis of the material and the cylinder coincide. We apply this
formula to introduce a simple model for the heat radiation of
multiwalled carbon nanotubes (MWCNTs).

The paper is composed as follows: In Sec. II, we give the
general formalism for heat radiation of arbitrary objects and
apply it to the case of a cylindrical object. Additionally, we find
the radiation of an anisotropic plate, generalizing the known
results [36] for the isotropic case. Section III finally gives the
specific form of the scattering operator for a cylinder made of
uniaxial material, needed to evaluate the formula of Sec. II B.
In Sec. IV, we discuss the total energy radiated by cylinders
made of different materials, such as dielectrics, metals, and
MWCNTs, putting special focus on the degree of polarization
of the radiation. Finally, in Sec. V, we discuss the spectral
density of the energy emitted by these materials, a quantity
which might be most accessible in experiments. We close with
a summary and discussion of our findings in Sec. VI.

II. HEAT RADIATION IN TERMS OF THE SCATTERING
OPERATOR

A. General formalism for arbitrary objects

Consider an object with homogeneous temperature Tobj

placed in vacuum, enclosed by an environment (e.g., a cavity
much larger than all other scales in the system) at temperature
Tenv. In global equilibrium, i.e., with Tobj = Tenv = T , the
autocorrelation function C of the electric field is related to
the imaginary part of the dyadic Green’s function Gij of the
object by the fluctuation-dissipation theorem (FDT) [36,37],

C
eq

ij (T ) ≡ 〈Ei(ω; r)E∗
j (ω; r′)〉eq ≡ 〈E(ω; r) ⊗ E∗(ω; r′)〉eqij

= [aT (ω) + a0(ω)]
c2

ω2
ImGij (ω; r,r′), (3)

where ⊗ denotes a dyadic product. aT (ω) ≡
ω4h̄(4π)2

c4 (exp[h̄ω/kBT ] − 1)−1 describes the thermal
contribution to quantum fluctuations; compare Eq. (1). The
zero-point fluctuations, which contribute a0(ω) ≡ ω4h̄(4π)2

2c4 , are
independent of the object’s temperature and do not contribute
to heat radiation. Hereafter we use the operator notation
G ≡ Gij (ω; r,r′), where operator multiplication implies an
integration over space as well as a 3 × 3 spatial matrix
multiplication, e.g., for the operators A and B (using the
Einstein summation convention),

(AB)ik(r,r′′) =
∫

d3r ′Aij (r,r′)Bjk(r′,r′′). (4)

The Green’s function is the solution of [38,39][
H0 + V − ω2

c2
I

]
G = I, (5)

which follows because the electric field obeys the Helmholtz
equation, Eq. (9) below. Here, H0 = ∇ × ∇× describes free
space, and V = ω2

c2 (I − › + ∇ × ( 1
— − I)∇×) is the potential

introduced by the object. › and — are the complex (possibly
nonlocal) dielectric permittivity and magnetic permeability
tensors of the object. For isotropic and local materials, they
reduce to scalars (e.g., › = εI). G0 is the Green’s function
of free space. Using the identities ImG = −GImG−1G∗ and
ImV = Im(G−1 − G−1

0 ) [37], which can be found from Eq. (5),
we obtain

Ceq(T ) = C0 + C(T ) − aT (ω)
c2

ω2
GImG−1

0 G∗, (6)

C(Tobj) = −aTobj (ω)
c2

ω2
GImVG∗

= −aTobj

c2

ω2
(ω)

∫
obj

d3r ′d3r ′′Gij (r,r′)

× ImVjk(r′,r′′)G∗
kl(r

′′,r′′′), (7)

where C0 = a0(ω) c2

ω2 ImG is the zero-point term. Equation
(6) shows two different finite-temperature contributions to
the electric field in equilibrium. C(T ) contains an explicit
integral over the sources within the object, as ImV is nonzero
only inside the object, and we identify it with the desired
heat radiation from the object. The expression in Eq. (7) can
be shown to be identical to expressions in the literature for
both complex electric and magnetic permeabilities [36,37],
where, in general, one has two terms, including Im › and Im—,
respectively. The introduction of the potential V appears useful
here, as it allows for a compact notation including both terms.
The third term in Eq. (6),

Cenv(Tenv) = −aTenv (ω)
c2

ω2
GImG−1

0 G∗, (8)

is the contribution sourced by the environment. As a specific
model for the environment, consider the objects enclosed in a
very large black cavity maintained at temperature Tenv. This
latter identification can be corroborated via a different route
by introducing a cold object into the thermal background field
E0 sourced by the environment, with field correlator given
by 〈E0 ⊗ E∗

0〉 = aTenv (ω) c2

ω2 ImG0. At this point, it is useful to
introduce the T operator or scattering amplitude T [38,40] of
the object. It relates the homogeneous solution (also sometimes
called the exciting field [40]) Eh (for V = 0) of the Helmholtz
equation [

H0 + V − ω2

c2
I

]
E = 0 (9)

to its (inhomogeneous) solution Eih with the object present.
This solution can be stated in terms of the Lippmann-
Schwinger equation

Eih = (1 − G0T)Eh. (10)

With this equation, the above introduction of the cold object
into the free environment field is readily done and Cenv is then
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the correlator of the field Es , the inhomogeneous solution with
the object present,

Cenv(Tenv) = 〈Es ⊗ E∗
s 〉 = (1 − G0T)〈E0 ⊗ E∗

0〉

× (−T∗G∗
0 + 1) = −aTenv (ω)

c2

ω2
GImG−1

0 G∗,

(11)

in agreement with Eq. (8). Here we used the identity [38]

G = G0 − G0TG0. (12)

Equation (11) highlights the physical interpretation of Cenv: It
is the radiation sourced by the environment and scattered by
the object.

Having found the contributions of the different sources
(environment and object), one can now vary the temperature
of these independently in order to arrive at the field outside
the object when its temperature is different from that of the
environment. If Tenv = 0 this field corresponds to the heat
radiation of the object. To this end, we notice that it is not
necessary to derive all the terms in Eq. (6) as explained in
the following: The explicit expression for C(Tobj) in Eq. (7)
contains the Green’s function with one argument inside and
one argument outside the object. While this function can be
derived in principle, we find it more convenient to express
C(Tobj) in terms of the Green’s function with both arguments
outside the object, as it is directly linked to the scattering
operator by Eq. (12). Therefore, it is interesting to note that
Cenv has all the sources outside the object and hence can be
found in terms of this Green’s function. While this is already
obvious in Eq. (11), we additionally present a more rigorous
way to derive Cenv. The environment sources, described by
εenv, can be thought of as being everywhere in the infinite
space complementary to the object infinitesimal in strength
(environment “dust” [37]), i.e., εenv → 1. Cenv in Eq. (8) can
hence be written

Cenv(Tenv) = aTenv (ω)

× lim
εenv→1

∫
outside

d3r ′G̃ik(r,r′)ImεenvG̃
∗
jk(r′′,r′),

(13)

which is identical to Eq. (4) in Ref. [28]. Here, we introduced
a Green’s function G̃ with V inside the object and εenv outside.
This is a simple modification of G as a finite εenv − 1 changes
only the external speed of light so that c in G is replaced by
c/

√
εenv.

Finally the heat radiation of the object at temperature Tobj

can now be found by solving Eq. (6) for C(Tobj),

C(Tobj) = aTobj (ω) c2

ω2 ImG − Cenv(Tobj), (14)

where G is found using Eq. (12). Note that Cenv(T ) can be
derived either from Eq. (13) or directly from Eq. (11). For the
case of the cylinder, we present below the former derivation in
detail, and briefly sketch the latter starting from Eq. (11).

We emphasize again that the field emitted by the object in
Eq. (14) is fully expressed in terms of the Green’s function
with both arguments outside the object. If one is interested
only in the total heat emitted, the first term, i.e., the equilibrium
field, need not be derived, as it contains no Poynting vector.

If, on the other hand, the radiation of the object is scattered
at other objects, e.g., in order to compute heat transfer or
nonequilibrium Casimir interactions, the full expression (14)
has to be kept.

B. Heat radiation of a cylindrical object

In order to compute the heat radiation of a cylindrical object
(denoted by subscripts c), we apply Eq. (14), evaluating the
environment contribution by use of Eq. (13). Afterward in
this section, we briefly sketch the derivation via Eq. (11).
In the cylindrical geometry (with parallel, radial, and angular
coordinates z, r , and φ, respectively), the free Green’s function
G0 is expanded in cylindrical vector waves Mreg

n,kz
and Nreg

n,kz

corresponding to M-polarized and N -polarized regular waves
[40]; see Appendix A. These are indexed by the multipole order
n and kz, the component of the wave number k = ω/c along
the cylindrical axis. For outgoing waves we use Mout

n,kz
and Nout

n,kz

accordingly. In this basis, the T operator of a cylindrical object
is diagonal in n and kz, but couples different polarizations.
Its entry T P ′P

n,kz
relates the amplitude of a scattered wave of

polarization P ′ in response to an incoming wave of unit
amplitude and polarization P , with P,P ′ ∈ {M,N}. More
precisely, the application of the T operator in Eq. (10) on
regular cylindrical functions reads

−G0TcPreg
n,kz

=
∑
P ′

T P ′P
n,kz

P′out
n,kz

. (15)

With these definitions and Eq. (A2), the Green’s function of
the cylinder is easily found, by use of Eq. (12), as

Gc = G0 − G0TcG0 = G0 +
∑
P,P ′

∞∑
n=−∞

(−1)n

×
∫ ∞

−∞

idkz

8π
Pout

n,kz
(r) ⊗ P′out

−n,−kz
(r′)T PP ′

n,kz
. (16)

When performing the integration in Eq. (13), we note that
G0(r,r′) in Eq. (A2) is separated into two pieces, corresponding
to r < r ′ and r ′ < r . The contribution of a finite region
vanishes asymptotically in the limit of εenv → 1 and can
thus be neglected without changing the result. We can hence
restrict the integration range to r ′ � r,r ′′, where we have to
use exclusively one of the pieces. In general, one can restrict
the integration in Eq. (13) to ξ (r′) � ξ (r),ξ (r′′), where ξ is the
component which distinguishes the two expansions of G0.

Due to the orthogonality of two basis sets of the wave
functions, the integrations over polar angle φ′ and cylindrical
axis z′ yield 2πδn,n′ and 2πδ(kz − k′

z), respectively, and we
are left with only one term for each polarization in Eq. (13),

lim
εenv→1

∫
r ′dr ′|̃Pout

−n,−kz
(r′)|2 = 2c2

πω2

1

Imεenv
+ · · · , (17)

where P̃out
n,kz

has analogous form to Pout
n,kz

with the wave number√
εenvω/c instead of ω/c. Also, the ellipsis represents higher-

order terms in εenv − 1. This equation holds for k2
z < ω2/c2;

for k2
z > ω2/c2 all terms are of order ε0

env and do not contribute
in Eq. (13), a manifestation of the fact that the environment
radiation does not contain evanescent waves.
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The radiation from the environment after scattering at the cylinder then reads

Cenv
c (Tenv)(r,r′′) = aTenv (ω)

∑
P,P ′

∞∑
n=−∞

∫ ω/c

−ω/c

dkz

8π

c2

ω2

{
Preg

n,kz
(r) ⊗ P′reg∗

n,kz
(r′′)δP,P ′ + Preg

n,kz
(r) ⊗ P′out∗

n,kz
(r′′)T P ′P∗

n,kz

+ Pout
n,kz

(r) ⊗ P′reg∗
n,kz

(r′′)T PP ′
n,kz

+ Pout
n,kz

(r) ⊗ P′out∗
n,kz

(r′′)
∑
P ′′

T PP ′′
n,kz

T P ′P ′′∗
n,kz

}
, (18)

where P stands for the polarization opposite to P . Physically,
Eq. (18) describes the thermal field for the case of an
environment at temperature Tenv and a cold cylinder (Tc = 0).
It can also be derived via Eq. (11), by noting that the radiation
of the environment without the cylinder present can be given
in closed form,

〈E0 ⊗ E∗
0〉 = aTenv (ω)

c2

ω2
ImG0 = aTenv (ω)

∑
P

∞∑
n=−∞

×
∫ ω/c

−ω/c

dkz

8π

c2

ω2

[
Preg

n,kz
⊗ Preg∗

n,kz

]
. (19)

Application of (1 − G0Tc) from both sides [compare Eq. (11)]
using Eq. (15) immediately leads to Eq. (18). This simple route
toward the environment radiation (and hence the radiation of
the object) has not been presented before to the best of our
knowledge.

Since we are interested only in the energy emitted by the
cylinder, we do not explicitly derive the equilibrium field
in Eq. (14) as it contains no Poynting vector. Equation (14)
thus states Kirchhoff’s law, that the energy absorbed by the
cylinder in the case Tenv = T , Tc = 0 is the same as the energy
radiated by it for Tenv = 0, Tc = T . This is a special case of
detailed balance in equilibrium, which generally states that
the absorption coefficient of an object equals its emission
coefficient. The formalism described here hence also provides
a convenient route to find the absorption coefficient of arbitrary
objects. Technically, due to these considerations, the Poynting
vector

〈S(r)〉 = c

4π

∫
dω

(2π )2
Re[〈E(ω,r) × H∗(ω,r)〉] (20)

of the field in Eq. (18) gives complete information about the
net energy flux for any temperature combinations. It can be
derived via B(ω,r) = −ic

ω
∇ × E(ω,r) as well as relation (A3).

The power |Hc| radiated per length L of the infinite cylinder
in the general case of finite Tenv and Tc is finally given by [28]

|Hc|
L

= − h̄

π2

∫ ∞

0
ωdω

[
1

eh̄ω/kBTc − 1
− 1

eh̄ω/kBTenv − 1

]
×

∑
P=M,N

∞∑
n=−∞

∫ ω/c

−ω/c

dkz

× (
Re

[
T PP

n,kz

] + ∣∣T PP
n,kz

∣∣2 + ∣∣T PP
n,kz

∣∣2)
. (21)

Obviously, if Tc < Tenv, there is a net energy flux into the
cylinder. In the following, we consider exclusively the case
Tenv = 0 (and denote Tc = T ), for which case the energy flux
is referred to as heat radiation of the cylinder. The expression
(21) can be split into two terms each representing a different

polarization of the corresponding electric field. Specifically,
the term which describes polarization parallel to the cylinder
is given by the N modes,

|HN |
L

= |H‖|
L

= − h̄

π2

∫ ∞

0

ωdω

eh̄ω/kBT − 1

×
∞∑

n=−∞

∫ ω/c

−ω/c

dkz

(
Re

[
T NN

n,kz

] + ∣∣T NN
n,kz

∣∣2 + ∣∣T NM
n,kz

∣∣2)
,

(22)

whereas the term responsible for the polarization perpendicular
to the cylindrical axis is given by the M modes,

|HM |
L

= |H⊥|
L

= − h̄

π2

∫ ∞

0

ωdω

eh̄ω/kBT − 1

×
∞∑

n=−∞

∫ ω/c

−ω/c

dkz

(
Re

[
T MM

n,kz

] + ∣∣T MM
n,kz

∣∣2+∣∣T MN
n,kz

∣∣2)
.

(23)

In the following we use a standard definition of the degree of
polarization I in order to quantify polarization effects,

I = |HN | − |HM |
|HN | + |HM | . (24)

If one prefers a description in terms of the scattering matrix
S [24,38] withSP ′P

n,kz
= 2T P ′P

n,kz
+ δP,P ′ , the radiation in Eq. (21)

can equivalently be written

|Hc|
L

= − h̄

4π2

∫ ∞

0
ωdω

[
1

eh̄ω/kBTc − 1
− 1

eh̄ω/kBTenv − 1

]
×

∑
P,P ′

∞∑
n=−∞

∫ ω/c

−ω/c

dkz

(∣∣SPP ′
n,kz

∣∣2 − δP,P ′
)
. (25)

Furthermore we note that the result for the perpendicular
emission of the cylinder given in Ref. [24] can be recovered
from Eq. (21) by restricting to kz = 0, taking into account
waves normal to the cylindrical axis only. In this case the T
operator is diagonal in the polarization P .

C. Limit of large radius (radiation of a plate of anisotropic
material)

For large radius, the radiation of a cylinder is asymptotically
identical to the radiation of a plate (a semi-infinite planar
object) of the same surface area [28]. For the case of a plate
made of isotropic material, the heat radiation is well known
[36]. Nevertheless, we will below study the heat radiation of
a cylinder made of uniaxial material (as a simple model for
carbon nanotubes) (see Fig. 1), in which case the limit of large
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FIG. 1. (Color online) Infinitely long cylinder made of a uniaxial
material. The symmetry axis of the cylinder coincides with the
symmetry axis of the diagonal dielectric tensor (the z axis). Electro-
magnetic waves radiated by the cylinder are denoted by M and N for
M polarized (perpendicular) and N polarized (parallel) respectively.
Note that generally M-polarized waves have components along both
azimuthal and radial directions. Also, although N -polarized waves
have nonzero components along all three basis directions, it is only
the component parallel to the cylindrical axis that contributes to the
Poynting vector.

radius is a plate of uniaxial material. In recent literature there
are discussions of heat transfer between plates of uniaxial
materials [41] as well as Casimir forces between a uniaxial
plate and single-walled carbon nanotubes [42], but we have
not come across an explicit result for radiation of a plate.
For materials with anisotropic electric or magnetic response,
the Fresnel coefficients are not diagonal in polarization s and
p (see Ref. [43] for these lengthy coefficients), but take the
general form rQ′Q for a scattered wave of polarization Q′ in
response to an incoming wave of polarization Q. Note that
s (p) polarization corresponds to the wave with the electric
field vector perpendicular (parallel) to the plane of incidence.
Thus, the heat radiated per surface area (the Poynting vector S)
can in this general case easily be found from Eq. (14), where,
using a plane-wave basis [40], the steps are similar to the ones
performed for the cylinder [Eqs. (16)–(18)]:

S = h̄

8π3

∫ ∞

0
dω

ω

eh̄ω/kBT − 1

×
∫

k⊥<ω/c

d2k⊥
∑

Q={s,p}
[1 − (|rQ|2 + |rQQ̄|2)], (26)

Here, k⊥ is the wave-vector component parallel to the plate.
For rQQ̄ = 0, this equation reduces to the well-known one for
isotropic materials [36]. The expression (26) can be rewritten
in terms of M and N polarization for cylindrical geometry. If
we define φ to be the angle between the optical axis (which,
in order to describe the radiation of a thick cylinder in terms
of that of a plate, is parallel to the plate surface) and the
intersection line between the plane of incidence and the plate
itself, then we can write the limiting values of the M and N

components of the cylinder radiation as

SM = h̄

8π3

∫ ∞

0
dω

ω

eh̄ω/kBT − 1

∫ 2π

0
dφ

∫ ω/c

0
k⊥dk⊥

×
[

1 − 1

2
{(|rs |2 + |rsp|2) cos2 φ

+ (|rp|2 + |rps |2) sin2 φ}
]
, (27)

SN = h̄

8π3

∫ ∞

0
dω

ω

eh̄ω/kBT − 1

∫ 2π

0
dφ

∫ ω/c

0
k⊥dk⊥

×
[

1 − 1

2
{(|rs |2 + |rsp|2) sin2 φ

+ (|rp|2 + |rps |2) cos2 φ}
]
. (28)

Note that rsp = rps when the optical axis is parallel to the plate.

III. T OPERATOR FOR A CYLINDER MADE OF
UNIAXIAL MATERIAL

In Sec. II B, we derived the heat radiation of a cylindrical
object expressed in terms of its T operator which is known
analytically [11,44]. One aim of this paper is to study the
radiation of a cylinder of uniaxial material as a simple model
for carbon nanotubes (see Sec. IV C). The corresponding T
operator, which seems unavailable in the literature, will be de-
rived here for the case depicted in Fig. 1, where the cylindrical
axis coincides with the optical axis. This is done by solving the
scattering problem in Eq. (10), which amounts to satisfying
the boundary conditions for the electromagnetic field at the
cylinder’s surface. The setup is described by isotropic local
magnetic permeability μ(ω) and the following tensor for the
anisotropic, but homogeneous and local, dielectric function
inside the cylinder:

ε̂(ω) =

⎛⎜⎝ εr (ω) 0 0

0 εr (ω) 0

0 0 εz(ω)

⎞⎟⎠ . (29)

The electric displacement field inside the cylinder can then be
written as

D = εr (ω)(Erer + Eφeφ) + εz(ω)Ezez,

where er , eφ , and ez correspond to unit vectors in cylindrical
coordinates.

Importantly, uniaxial materials split the incident beam
into ordinary and extraordinary ones [45]. In our geometry,
cylindrical M-polarized waves correspond to ordinary ones
and propagate according to the dielectric function εr . The
N modes correspond to extraordinary waves and propagate
according to an effective dielectric function which depends on
the direction of propagation.

The resulting T operator components T P ′P
n,kz

, as defined in
Eq. (15), are expressed in terms of Bessel functions Jn and
Hankel functions of first kind H (1)

n (see Appendix B for the
detailed derivation),

T MM
n,kz

= − Jn(qR)

H
(1)
n (qR)


1
4 − K2


1
2 − K2
, (30)

T NN
n,kz

= − Jn(qR)

H
(1)
n (qR)


2
3 − K2


1
2 − K2
, (31)

T NM
n,kz

= T MN
n,kz

= 2i

π
√

εzμ(qR)2

K

[H (1)
n (qR)]2

1


1
2 − K2
,

(32)
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where


1 = J ′
n(qNR)

qNRJn(qNR)
− 1

εz

H (1)′
n (qR)

qRH
(1)
n (qR)

, (33)


2 = J ′
n(qMR)

qMRJn(qMR)
− 1

μ

H (1)′
n (qR)

qRH
(1)
n (qR)

, (34)


3 = J ′
n(qNR)

qNRJn(qNR)
− 1

εz

J ′
n(qR)

qRJn(qR)
, (35)


4 = J ′
n(qMR)

qMRJn(qMR)
− 1

μ

J ′
n(qR)

qRJn(qR)
, (36)

and

K = nkzc√
εzμR2ω

(
1

q2
M

− 1

q2

)
. (37)

k = ω/c and q = √
k2 − k2

z are the wave-vector magnitude in
vacuum and its component perpendicular to the z axis, respec-
tively. qM = √

εrμk2 − k2
z and qN = √

εz/εr

√
εrμk2 − k2

z are
the wave-vector components perpendicular to the z axis for the
M-polarized ordinary and N -polarized extraordinary waves
inside the cylinder, respectively.

As required by continuity, the above T matrix can be
easily reduced to the isotropic case when εr = εz = ε. Then
the expressions simplify to qM = qN = √

εμk2 − k2
z ≡ q ′ and

K = nkzc(1/q ′2 − 1/q2)/(
√

εμR2ω), and our results reduce
to the known forms for an isotropic cylinder [11,44].

IV. EXAMPLES AND ASYMPTOTIC RESULTS

In this section we numerically and analytically study the
radiation of a cylinder for different material classes. We start
with isotropic dielectrics and conductors and finally present the
case of a uniaxial material using the “in-layer” and “interlayer”
responses of graphite to model MWCNTs. We consider μ = 1
for all studied materials.

A. Dielectric cylinder

Figure 2 illustrates the results of the numerical calculation
of the radiation by SiO2 and SiC cylinders for T = 300 K
normalized by the Stefan-Boltzmann value, Eq. (2). For SiO2

optical data were used, whereas for SiC the following dielectric
function was taken [46]:

εSiC(ω) = ε∞
ω2 − ω2

LO + iωγ

ω2 − ω2
T O + iωγ

,

where ε∞ = 6.7, ωLO = 0.12 eV, ωT O = 0.098 eV, and γ =
5.88 × 10−4 eV.

We see the effects discussed in Ref. [28] involving the
three length scales radius R, thermal wavelength λT , and skin
depth δ = c/(Im

√
εω), where the last depends on frequency.

If R is the smallest scale, i.e., much smaller than the smallest
relevant skin depth and λT , the radiation is proportional to the
volume of the cylinder. In this case, radiation emitted inside
the cylinder will hardly be reabsorbed on its way out so that all
regions of the cylinder contribute equally to the emission. The
other asymptotic behavior is approached when R is the largest
scale, i.e., much larger than the largest relevant skin depth and
λT . Then only the cylinder surface contributes to the radiation,
which approaches the values of a plate of equal surface area
as seen in the figure.

(a)

(b)

FIG. 2. (Color online) The normalized heat radiation as a function
of radius R for (a) SiO2 and (b) SiC cylinders at temperature T =
300 K. Calculations were performed using Eq. (21), and the analytical
expansions Eqs. (38) and (39). The horizontal lines show the radiation
of (a) SiO2 and (b) SiC plates. λT and the smallest skin depths δ in
the relevant frequency range are marked on the R axis.

The length scale λT sets (via the Boltzmann factor) the
range of relevant wavelengths of emission. Nevertheless, for
dielectrics there is a fine structure to this range given by
the resonances of the material. In the case of R � δ, the
cylinder emits predominantly at the resonance wavelengths
of the material, where δ is minimal. On the other hand, for
R � {δ,λT }, the emissivity is strongest in regions where ε ≈ 1
(compare the plate emissivity).

In general, one might expect resonance effects when the
emitted wavelength is of the order of R/(2π ) (similar to Mie
resonances for a sphere [11,12]). Due to the contribution of all
wavelengths, these are smeared out in the total heat emitted.
For SiO2 in Fig. 2, the fact that the emissivity exceeds the plate
result for R ≈ 20 μm might be connected to such resonances.

Figure 2 shows imprints of the dielectric function of SiC
which has a sharp strong resonance (leading to a small δ),
but apart from the resonance, SiC is almost black (i.e., has
very large δ) in our frequency range. The two regimes R �
{δ,λT } and R � {δ,λT }, where the cylinder radiation follows
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the discussed asymptotic laws, are far apart, and very large
radii R are necessary to approach the classical plate result. In
Fig. 2, the radiation for R = 150 μm is still distinctly different
from the asymptotic result. This might be advantageous for
experiments, as a SiC cylinder does not have to be very thin in
order to observe deviations from the Stefan-Boltzmann law.

In the limit of R � {δ,λT }, the radiation can be studied
analytically; see Appendix C, where we find the following
asymptotic laws for the two polarizations:

lim
R�{δ,λT }

|HN |
A

= 1

6

∫ ∞

0

dω

(2π )4
aT (ω)cR

× Im
ε(ω)2 + 2ε(ω) − 1

ε(ω) + 1
, (38)

lim
R�{δ,λT }

|HM |
A

= 1

2

∫ ∞

0

dω

(2π )4
aT (ω)cRIm

ε(ω) − 1

ε(ω) + 1
. (39)

Note the linear increase with R, corresponding to the pro-
portionality of the unnormalized radiation to the volume. The
numerical evaluation of these asymptotic forms has been added
to the graphs in Fig. 2, where the agreement for small R to the
full results is visible. As expected and seen from the equations
above, cylinders with purely real dielectric functions (or more
generally with real potential V) will not radiate, because the
dissipative properties of the material are responsible for the
heat radiation (in accordance with the FDT). This holds for
any R. The N polarization given in Eq. (38) dominates over
the M polarization in Eq. (39) if

[Reε(ω) + 1]2 + [Imε(ω)]2 � Imε(ω) (40)

holds, which is the case for most materials. Further insight can
be gained by additionally requiring the temperature to be so
low that one can expand the dielectric function, i.e., λT � λ0,
where λ0 is the wavelength of the lowest resonance of the
material. In this case [39],

ε(ω) = ε0 + i
λinω

c
+ O(ω2), (41)

with ε0 and λin real. Plugging (41) into Eqs. (38) and (39), we
can perform the frequency integration, and we have

lim
R�{δ,λT },λ0�λT

|HN |
A

= 4π4

189

h̄c2λinR

λ6
T

[
1 + 2

(ε0 + 1)2

]
, (42)

lim
R�{δ,λT },λ0�λT

|HM |
A

= 8π4

63

h̄c2λinR

λ6
T

1

(ε0 + 1)2
. (43)

Interestingly, to lowest order in T , both components scale
as T 6 and hence fundamentally differently from the Stefan-
Boltzmann law in Eq. (2), which scales as T 4.

The degree of polarization I in Eq. (24) is finally given by

lim
R�{δ,λT },λ0�λT

I = ε2
0 + 2ε0 − 3

ε2
0 + 2ε0 + 9

. (44)

Although the condition λ0 � λT is not fulfilled in Fig. 2,
Eq. (44) still gives a hint as to why SiC has a higher degree of
polarization compared to SiO2, as ε0 is tangibly larger for SiC,
and Eq. (44) monotonically increases with ε0 (for ε0 > 0).

(a)

(b)

FIG. 3. (Color online) The normalized heat radiation as a function
of radius R for an Au cylinder at temperatures (a) T = 300 K
and (b) T = 30 K. Calculations were performed using the Drude
model [47] with Au optical properties. Full numerics Eq. (21), the
analytical expansion Eq. (46), and the approximation of Eq. (47)
were used. Black horizontal lines indicate the radiation of Au plates
at corresponding temperatures. λT and the skin depth δ in the relevant
frequency range are marked on the R axis. In the insets the degrees
of polarization (24) are plotted.

B. Well-conducting cylinder

Conductors differ from insulators by having a significantly
smaller skin depth δ, leading to very different radiation
characteristics. In this section, we first study the radiation
using a simple Drude model with the parameters of gold
in order to highlight the different limiting behaviors. Then
we turn to tungsten, which has been extensively used in
experiments [16,24].

The Drude model for gold [47],

εAu(ω) = ε∞ − ω2
p

ω(ω + iωτ )
, (45)

has the parameters ε∞ = 1, ωp = 9.03 eV, and ωτ = 2.67 ×
10−2 eV.

Figure 3 shows the numerical result for the total radiation
by a gold cylinder at 300 and 30 K. We observe a behavior
drastically different from those in Fig. 2: the radiation,
normalized by surface area, can be many orders of magnitude
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larger than expected from the Stefan-Boltzmann law. More
precisely, it increases with decreasing R, has a maximum at
R ≈ δ [for the Drude model of gold (45), δ(ω) has no sharp
minimum, and we show the skin depth corresponding roughly
to the thermal wavelength], and approaches the laws (38)
and (39) only for very small (unphysical) radii. For R � λT ,
the result of a gold plate is approached. The large values of
radiated power, compared to the Stefan-Boltzmann law, can
be explained by the interplay of two effects: A large imaginary
part of the dielectric function gives rise to strong radiation from
every volume element of the conductor. On the other hand, it
also leads to a very small skin depth such that most radiation is
reabsorbed inside the conductor, and only a thin surface layer
contributes to the radiation. In the region where R ≈ δ, one
has very strong emitting elements which all contribute to the
total radiation, and hence the emission normalized by surface

area is maximal. Interestingly, when the conductivity goes to
infinity, the effect of vanishing skin depth is stronger than the
effect of increasing radiation such that the emissivity vanishes
as 1/

√
ε. In this case, the classical (plate) limit goes to zero

and the maximum in the curve shifts to smaller and smaller R.
The insets show the degree of polarization (24) as a function

of R. For R � λT , the radiation from the gold cylinder is fully
N polarized. For R � λT , the degree of polarization becomes
negative and asymptotically approaches zero for R/λT → ∞.
These qualitative features agree with experimental [16–19,24]
as well as theoretical [24] studies on the radiation of thin wires.

For conductors, the appropriate limit for an analytic expan-
sion is λT � R � δ (where δ is of the order of nanometers
for good conductors). In this case, the leading element of the
T operator is T NN

0,kz
; see Appendix D. The resulting radiation is

then completely N polarized and reads

lim
λT �R�δ

|Hc|
A

=
∫ ∞

0

dω

(2π )2
aT (ω)

c2

(2π )2ω

∫ π/2

0
dθ

2Re[1/
√

ε] cos3 θ

| cos2 θ (2γE − iπ )ωR/c − 2i/
√

ε + 2 cos2 θωR/c ln [cos θωR/2c]|2 ,

(46)

where γE ≈ 0.577 is the Euler-Mascheroni constant and θ is
the angle of incidence so that kz = k sin θ .

As described above, we see here explicitly that the radiation
(in the considered range of radii) vanishes for |ε| → ∞.
This expression cannot be further simplified as the integrand
diverges at θ = π/2 if we omit the small term −2i/

√
ε

in the denominator. A result similar to (46) was obtained
by Rytov [48] (whose derivation was restricted to Reε = 0
and Imε � 0); it differs by the absence of the first term in
the denominator. We emphasize, however, that this term is
necessary for accurate results in the considered limit.

Rytov suggested a further simplification of his expression
by setting cos θ = 1 in ln [cos θωR/2c], so that the integra-
tion can be performed analytically. Omitting cos2 θ (2γE −
iπ )ωR/c in the denominator, the following result for the
radiation can be obtained after integration:

lim
λT �R�δ

|Hc|
A

≈
∫ ∞

0

dω

(2π )2

c7/2

2(2π )2ω5/2

× aT (ω)Re[1/
√

ε]
|ε|1/4

|R ln [ωR/2c]|3/2
.

(47)

Note that Eq. (47) was derived for any well-conducting
(nonmagnetic) medium, whereas the corresponding result,
Eq. (IV.35) in Ref. [48], considers only the case of a purely
imaginary dielectric function (and μ �= 1). Due to this the
integrand of Eq. (47) differs from Eq. (IV.35) in Ref. [48]
by Re[1/

√
ε]|ε|1/4 instead of (μ/4Imε)1/4 (which agree for

Reε = 0 and μ = 1). Also, we emphasize that Eq. (47) is an
approximation whereas Eq. (46) is the exact asymptotic limit
for λT � R � δ.

Figure 3 provides a test of these approximations, demon-
strating that for T = 30 K, where the ratio of λT and δ is larger
than at T = 300 K, Eq. (46) describes the full solution over
roughly one decade in R. For T = 300 K, the agreement is
not as good as the ratio of λT and δ is too small. Equation
(47) gives a rough estimate of the overall dependence on R

in Fig. 3, but the values differ by roughly a factor of 10 from
the exact results. Moreover, above some threshold value of R

we cannot obtain a finite radiation rate from Eq. (47) because
of the divergent term due to the logarithm of unity in the
denominator of the integrand.

After this (more theoretical) discussion of gold, where we
used the same ε for both temperatures in order to demonstrate
the pure effect of temperature via the Boltzmann factor, we turn
to the experimentally relevant material tungsten, at relevant
temperatures of T = 298 and 2400 K as shown in Fig. 4. We
use the corresponding dielectric function for tungsten [49],

εW (ω) = 1+
3∑

p=1

K0pλ2

λ2 − λ2
sp + iδpλspλ

− λ2

2πcε0

2∑
q=1

σq

λrq − iλ
,

(48)

where λ is the wavelength in vacuum, c is the velocity of light,
and ε0 is the permittivity of vacuum in SI units. The remaining
parameters are listed in Table I.

The overall radiation of tungsten at 298 K is very similar
to that of gold at 300 K in Fig. 3. At high temperature
T = 2400 K, the increase of the normalized radiation over
the Stefan-Boltzmann law is reduced. We attribute this to
a smaller conductivity at T = 2400 K. We also observe in
the insets that the zero in the polarization curves shifts by
roughly a factor of 10 when between the two temperatures.
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(a)

(b)

FIG. 4. (Color online) The normalized heat radiation as a function
of radius R for a tungsten cylinder at temperatures (a) T = 298 K and
(b) T = 2400 K. Calculations were performed using Eq. (21) with
dielectric function (48). Black horizontal lines indicate the radiation
of tungsten plates at the corresponding temperatures. λT and the skin
depth δ in the relevant frequency range are marked on the R axis. In
the insets the degrees of polarization are given from expression (24).

This manifests that the zero in the polarization curves is mostly
a function of R/λT as λT is also shifted by almost a factor
of 10. Furthermore, although the polarization in the inset is
indistinguishable from unity at small R, we note that the ratio
of N and M polarizations is a factor of 103 larger for T =
298 K than for T = 2400 K.

C. Multiwalled carbon nanotube

We finally turn to heat radiation of a cylinder made of
uniaxial material. This can be considered a simple model
for a MWCNT [50] which is of high importance in modern
science and technology. As a MWCNT is a wrapped-up
graphite sheet, we can in a crude approximation regard it as a
(solid) cylinder described by two different dielectric response
functions: the response along the cylindrical axis is given
by the in-layer properties of the graphite sheets, whereas the
response perpendicular to this axis is approximately given by
the interlayer response. We also note that most mineral crystals

TABLE I. Optical data for tungsten from [49]. Temperature T

is in kelvins. Conductivities (σ1, etc.) are in units of 106 �−1 m−1.
Wavelengths (λr1, etc.) are in micrometers. K01, etc., and δ1, etc., are
dimensionless.

T 298 2400

σ1 17.5 1.19
σ2 0.21 0.25
λr1 45.5 3.66
λr2 3.7 0.36
K01 12
K02 14.4
K03 12.9
λs1 1.26
λs2 0.6
λs3 0.3
δ1 0.6
δ2 0.8
δ3 0.6

have uniaxial optical properties, and heat emission by these
materials might open new possibilities for applications [41].

Figure 5 shows the heat radiation of a MWCNT for T =
300 K using expressions (21) and (30)–(37), normalized as
before by the Stefan-Boltzmann law H = σT 4A. We used the
following form for the graphite dielectric function [51]:

εr,z(ω) = 1 − �2
p

ω (ω + i�0)
−

∑
j

fjω
2
p(

ω2 − ω2
tj

) + iω�′
j

, (49)

FIG. 5. (Color online) The heat radiation of a MWCNT as a
function of radius R, normalized by the Stefan-Boltzmann result,
at T = 300 K. Contributions from two polarizations are indicated.
The corresponding thin curves without boxes represent the heat
radiation for “isotropic graphite” with dielectric function (εz + εr )/2.
Horizontal lines of different colors indicate the graphite plate classical
result for the correspondingly colored curves. λT and the smallest
skin depth δ in the relevant frequency range are marked on the R

axis. Note that the smallest skin depths corresponding to both εr and
εz are approximately equal and labeled here by δ. In the inset the
degree of polarization is given from expression (24).
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TABLE II. Optical parameters for the in-layer dielectric function
of graphite (εz) from [51]. fj and αj are dimensionless, whereas ωtj

and �j are in eV.

j 1 2 3 4 5 6 7

fj 0.134 0.072 0.307 0.380 0.065 0.553 1.381
αj 24.708 0.524 0.217 0.518 0.286 0.248 15.101
ωtj 2.358 5.149 13.785 10.947 16.988 24.038 36.252
�j 9.806 472.7 4.651 1.797 2.418 21.395 37.025

where �p = √
f0ωp and a specific form of �′

j =
�j exp[−αj ( h̄ω−h̄ωj

�j
)2] is used, which best describes the experi-

mental data. For the dielectric function component εz along the
cylindrical axis, i.e., the in-layer response, the parameters are
ωp = 19 eV, �0 = 0.091 eV, and f0 = 0.016. The remaining
parameters are given in Table II. For the dielectric function
component εr perpendicular to the cylindrical axis, i.e., the
interlayer response, the parameters are ωp = 27 eV, �0 =
6.365 eV, and f0 = 0.014, and the remaining parameters are
given in Table III.

These parametrizations apply to the frequency ranges
0.12–40 eV and 2–40 eV for εr and εz, respectively, but
we nevertheless use them for the range of roughly 0.004–
0.2 eV due to the lack of simple analytic forms for the broader
range. Note that λT corresponds to a frequency of 0.163 eV
for T = 300 K.

The overall radiation curve is in between the characteristic
shapes of dielectrics and conductors (compare Figs. 2 and 3):
the regime proportional to volume as in Eqs. (38) and (39) is
visible for small R in contrast to Fig. 3. On the other hand,
the strong increase over the plate result and over the Stefan-
Boltzmann value, characteristic for conductors, is visible as
well. These features follow from the dielectric functions in
Eq. (49) carrying a smaller conductivity compared to gold.

In order to highlight the effect of material anisotropy, in
Fig. 5 we also show the thin curves without boxes for which
we use an isotropic dielectric function, given by (εz + εr )/2.
We see that the influence of anisotropy on the radiation is
almost negligible at small R, whereas at intermediate R it
strongly increases the degree of polarization perpendicular
to the tube. Interestingly, the asymptotic value of I in the
inset is different from 0 and takes the value −0.297, an effect
purely due to the anisotropy, which is computed using the
result for a plate of anisotropic material, Eqs. (27) and (28).
We note that a very thick MWCNT might in fact be best
described by a plate with optical axis perpendicular to the
surface. Thus, while Fig. 5 gives the correct radiation for

TABLE III. Optical parameters for the inter-ayer dielectric func-
tion of graphite (εr ) from [51]. fj and αj are dimensionless, whereas
ωtj and �j are in eV.

j 1 2 3 4 5 6 7

fj 0.073 0.056 0.069 0.005 0.262 0.460 0.200
αj 0.505 7.079 0.362 7.426 0.000382 1.387 28.963
ωtj 0.275 3.508 4.451 13.591 14.226 15.550 32.011
�j 4.102 7.328 1.414 0.046 1.862 11.922 39.091

FIG. 6. (Color online) The spectral density divided by the Stefan-
Boltzmann law as a function of wavelength λ for a SiO2 cylinder of
radius R = 5 μm at temperature T = 300 K. In the inset the spectral
degree of polarization is provided.

a material with the dielectric properties given in Eq. (49),
it probably only describes MWCNTs for small R. Since, at
small R, the polarization is hardly dependent on the anisotropy
of the material, we conclude that the polarization effects for
MWCNTs [21] are mainly an effect of the cylindrical geometry
rather than anisotropy of the material.

V. SPECTRAL EMISSIVITY

In Sec. IV, we studied the total heat radiation of a cylinder
made of different materials. While this is of interest in connec-
tion with efficient heating or cooling, another quantity that can
be more appropriate for direct comparison to experiments is
the spectral emissivity. In this section, we discuss the spectral
emissivity for cylinders made of dielectrics (SiO2), conductors
(tungsten), and uniaxial materials (graphite) for a fixed radius
of R = 5 μm.

The spectral emissivity (density) Hω is given by the
integrand of Eq. (21),

|Hω|
L

= −aT (ω)
c4

(2π )4ω3

∑
P=M,N

∞∑
n=−∞

×
∫ ω/c

−ω/c

dkz

(
Re

[
T PP

n,kz

] + ∣∣T PP
n,kz

∣∣2 + ∣∣T PP
n,kz

∣∣2)
. (50)

We denote by HωM and HωN the correspondingly polarized
components of Hω.

A. SiO2

Figure 6 illustrates the spectral density for SiO2 at T =
300 K. The unsteady local fine structure reflects the nature of
the optical data which have a number of smaller peaks. For
short wavelengths (high frequencies) M-polarized radiation
mostly dominates, whereas for λ � 25 μm the N -polarized
radiation starts to prevail up to the limit of long wavelengths
(low frequencies). In the inset the spectral degree of polariza-
tion as a function of wavelength is shown, where

Iω = |HωN | − |HωM |
|HωN | + |HωM | . (51)
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(a)

(b)

FIG. 7. (Color online) The spectral density divided by the Stefan-
Boltzmann law as a function of wavelength λ for a tungsten cylinder
of radius R = 5 μm at temperatures (a) T = 298 K and (b) T =
2400 K. In the insets the spectral degrees of polarization are provided.

The two large valleys in this curve are due to the two dominant
resonances of SiO2. The fact that the resonances lead to
negative valleys in the polarization is a feature specific for
the radius chosen. For large wavelengths, the spectral degree
of polarization approaches a constant value, which can be
computed easily using expressions (38) and (39),

lim
{δ,R}�λ

Iω = |ε(ω)|2 + 2Reε(ω) − 3

|ε(ω)|2 + 2Reε(ω) + 9
. (52)

Furthermore, if additionally λ � λ0 holds, the dielectric
function is described by Eq. (41) and the spectral degree of
polarization is given then by Eq. (44).

Note that the spectral degree of polarization is independent
of temperature if the dielectric function is independent of
temperature.

B. Tungsten

Figure 7 shows the spectral density of radiation for
tungsten cylinders at T = 298 and 2400 K. The shape of
the curves is very similar to Planck’s classical law due
to the Bose-Einstein statistics factor in aT (ω). The curves
peak at values slightly larger than the corresponding thermal

FIG. 8. (Color online) The spectral density divided by the Stefan-
Boltzmann law as a function of wavelength λ for graphite cylinder of
radius R = 5 μm at temperature T = 300 K. In the inset the spectral
degree of polarization is provided.

wavelengths. For short wavelengths M-polarized radiation is
stronger than N -polarized, whereas for λ � 2R, N -polarized
radiation dominates, strongly suppressing the M-polarized
radiation in the limit of long wavelengths. This transition
of polarization is also manifested in the insets where the
spectral degrees of polarizations are plotted. In the limit of
long wavelengths these approach unity, as can be justified by
results of Sec. IV B, where it is shown that the N component is
dominant in the limit λT � R � δ. On the other hand, in the
limit of short wavelengths the spectral degree of polarization
approaches zero as the cylinder radiates as an isotropic plate.
We emphasize again that the spectral degree of polarization is
independent of temperature [if ε(ω) is].

C. Graphite

Figure 8 shows corresponding results for a graphite cylinder
at T = 300 K, displaying similar behavior as in the case
of conductors in Fig. 7. The transition point where the
polarization changes sign is at λ ≈ 25 μm. Analogously to
the behavior in conductors, the spectral degree of polarization
for a graphite cylinder tends to unity in the limit of long
wavelengths, i.e., the spectral density has polarization parallel
to the cylinder. The range of wavelengths 200–300 μm shows
an unexpected wiggle in the curves, the origin of which is
unclear.

We note that Iω goes to zero for λ → 0, although a finite
value is approached for R/λT → ∞ in Fig. 5. This is due to the
fact that both εz and εr tend to 1 for ω → ∞, and the material
is asymptotically isotropic. Nevertheless, at λ ≈ 5 μm, the
polarization is very strong compared to Fig. 7, an effect which
we attribute to the anisotropy of the material.

Another model describing the spectral degree of polariza-
tion of MWCNTs is presented in Ref. [26], where we note
a partly common structure with our description arising from
the expansions of Eqs. (C1)–(C5). For large λ/R → ∞, both
the experimental data as well as the theoretical predictions of
Ref. [26] give values for Iω close to unity, in agreement with
Fig. 8.
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FIG. 9. (Color online) Spectral degree of polarization as a
function of wavelength λ for cylinders made of isotropic dielec-
tric, isotropic conducting, and anisotropic conducting materials for
R = 5 μm. Black horizontal and orange lines correspond to long-
wavelength limiting values for conductors (isotropic and uniaxial)
and the dielectric [using Eq. (52)], respectively.

D. Comparison of material classes

Finally, Fig. 9 compares the spectral polarization for
the different materials discussed, where we used simplified
dielectric functions for dielectrics and uniaxial materials in
order to illuminate the pure influence of λ/R.

Figure 9 manifests that the overall dependence of the
polarization on wavelength is quite universal, following similar
curves for all cases shown. Fundamental differences are seen
in the limiting cases. In the limit of large wavelengths the
polarization of all conductors approaches unity, whereas that
of dielectrics go to a constant value different from unity when
λ � {δ,R} [see Eq. (52)].

In the opposite limit of small wavelengths, Fig. 9 manifests
strong dependence of the polarization on uniaxiality. We
emphasize that by showing additionally artificial materials
with very strong anisotropy (a factor of 199 between εr and
εz). By varying this factor, a range from roughly 0.4 to −0.9
in polarization at λ = 10 μm can be swept. Figure 9 clearly
illustrates that the smaller εr/εz, the smaller the spectral
polarization.

VI. DISCUSSION

In this article, we derived a general formalism to study the
heat radiation of a single object held at uniform temperature.
While the presented formalism can describe the radiation of
arbitrary objects, we focus on cylindrical objects, providing
explicitly the heat radiation formula [Eq. (21)] in terms of its
T operator. In order to work out the radiation of multiwalled
carbon nanotubes in a simple model, we derive the T operator
for a cylinder made of uniaxial material. We study the cases of
dielectrics, conductors, and MWCNTs numerically, discussing
certain limits (e.g., small radius) analytically. To lowest order
in temperature T , the heat emitted by dielectric cylinders is
proportional to T 6, in contrast to T 4 in the Stefan-Boltzmann
law, Eq. (2).

For all materials, the limiting value of very large radius
is given by the radiation of a plate of equal material. In the
limit of small radius, dielectrics emit proportionally to their
volume, whereas this regime is not reached for conductors in
the physically relevant range of radii. Instead, the radiation
normalized per surface area can be very large for conductors,
and we observe values as high as almost 100 times the
value expected from the Stefan-Boltzmann law. The maximum
occurs where the radius is roughly equal to the skin depth (e.g.,
a few nanometers for gold). We note that the validity of using
a continuous dielectric function at the scale of nanometers is
questionable and has to be addressed in future studies.

The heat radiated by a long cylinder is polarized. All
studied materials show common overall features of their
degree of polarization: cylinders with radius smaller than the
thermal wavelength emit predominantly radiation polarized
parallel to their axis, whereas for radii larger than the
thermal wavelength, the polarization points in the direction
perpendicular to the cylinder. The limiting value of the degree
of polarization for small radii is different for insulators and
conductors: while the former approach a value less than unity,
thin conductors emit completely polarized radiation and the
degree of polarization approaches unity.

The effect of uniaxiality on the polarization is most
dominant for large radii, where the degree of polarization can
be tuned over a wide range by adjusting the ratio of parallel and
perpendicular responses. For small radii, uniaxiality hardly
influences the polarization. As MWCNTs fall into the latter
size regime, we conclude that the polarization measured
experimentally for nanotubes is mostly a consequence of
geometry, and not so much of material anisotropy.

Detailed comparison to experimental data (see, e.g.,
Refs. [25–27] for MWCNTs) will be left for future work.
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APPENDIX A: CYLINDRICAL HARMONICS AND FREE
GREEN’S FUNCTION IN THE CYLINDRICAL BASIS

According to Ref. [40], the cylindrical harmonics can be
written as

Mreg
n,kz

(r) =
[

in

qr
Jn(qr)er − J ′

n(qr)eφ

]
eikzz+inφ,

Nreg
n,kz

(r) = c

ω

[
ikzJ

′
n(qr)er − nkz

qr
Jn(qr)eφ

+ qJn(qr)ez

]
eikzz+inφ, (A1)

where Jn is the Bessel function of order n. Mreg
n,kz

and Nreg
n,kz

correspond to regular magnetic multipole (TE) and electric
multipole (TM) waves, respectively. Also, kz and q are the
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wave vectors parallel and perpendicular to the cylindrical z

axis, respectively, satisfying the relation q = √
k2 − k2

z , k =
ω/c. J ′

n corresponds to the first derivative with respect to the
argument. Furthermore, we denote the corresponding outgoing
waves by Mout

n,kz
and Nout

n,kz
; these differ from regular ones by re-

placement of Jn with the Hankel function of the first kind H (1)
n .

The above solutions correspond to transverse waves, i.e.,
∇ · Mreg

n,kz
= ∇ · Nreg

n,kz
= 0. Moreover, they obey the useful re-

lations Mreg
n,kz

= c
ω
∇ × Nreg

n,kz
and Nreg

n,kz
= c

ω
∇ × Mreg

n,kz
. These

relations are also valid for outgoing waves.
The free Green’s function in cylindrical waves reads [40]

G0(r,r′) =
∑

P=M,N

∞∑
n=−∞

(−1)n
∫ ∞

−∞

idkz

8π

×
{[

Preg
n,kz

(r) ⊗ Pout
−n,−kz

(r′)
]
, r ′ > r ,[

Pout
n,kz

(r) ⊗ Preg
−n,−kz

(r′)
]
, r ′ < r.

(A2)

The following relation for propagating cylindrical waves is
useful for deriving the Poynting vector:

Re

[
ir

∫ 2π

0
dφ

(
Preg

n,kz
(r) × ∇ × P′out∗

n,kz
(r)T P ′P∗

n,kz

+ Pout
n,kz

(r) × ∇ × P′reg∗
n,kz

(r)T PP ′
n,kz

) · er

]
= 4δP,P ′Re

[
T PP

n,kz

]
, (A3)

Re

[
ir

∫ 2π

0
dφ

[
Pout

n,kz
(r) × ∇ × P′out∗

n,kz
(r)

] · er

]
= 4δP,P ′ .

APPENDIX B: SCATTERING OF ELECTROMAGNETIC
WAVES FROM UNIAXIAL CYLINDRICAL OBJECTS

Consider a wave propagating in an anisotropic medium,
with dielectric permittivity tensor (29) and magnetic perme-
ability μ(ω).

Considering the system’s uniaxial symmetry we look for
wave solutions in the form of cylindrical harmonics (A1),

Mreg,in

n,kz
(r) =

[
in

qMr
Jn(qMr)er − J ′

n(qMr)eφ

]
× eikzz+inφ, (B1)

Nreg,in

n,kz
(r) = c

ω

[
ikzJ

′
n(qNr)er − nkz

qNr
Jn(qNr)eφ

+ γNqNJn(qNr)ez

]
eikzz+inφ,

where γN is some constant which modifies the N -polarized
cylindrical harmonic due to uniaxial anisotropy. Importantly,
we do not care about keeping the harmonics (B1) normalized as
that does not influence calculations of the T matrix elements
in which we are interested. Note that the time dependence
exp(−iωt) is omitted here.

The following Maxwell’s equations must be satisfied:

−∇ × ∇ × Mreg,in

n,kz
(r) = 1

c2

(̂
εμ

∂2

∂t2
Mreg,in

n,kz
(r)

)
,

∇ · [̂
εMreg,in

n,kz
(r)

] = 0, (B2)

with analogous relations for Nreg,in

n,kz
(r).

Substituting expressions (B1) into equations (B2), we
obtain the following unnormalized wave solutions:

Mreg,in

n,kz
(r) =

[
in

qMr
Jn(qMr)er − J ′

n(qMr)eφ

]
eikzz+inφ,

Nreg,in

n,kz
(r) = c

ω

[
ikzJ

′
n(qNr)er − nkz

qNr
Jn(qNr)eφ

+ εr

εz

qNJn(qNr)ez

]
eikzz+inφ, (B3)

where qM and qN are the wave-vector components perpendic-
ular to the z axis for the two solutions, respectively,

qM =
√

εrμk2 − k2
z , qN =

√
εz/εr

√
εrμk2 − k2

z . (B4)

One solution is an ordinary wave and is M polarized, whereas
the other one is called an extraordinary wave and possesses N

polarization [45].
In order to solve the scattering problem for the cylinder,

we expand the electromagnetic field in the cylindrical basis
(A1) and (B3) outside and inside the cylinder, respectively.
The expansion coefficients for the field inside and outside can
be obtained by matching boundary conditions at the cylinder’s
surface for field components tangential to the surface.

Using the definition of the T matrix, we describe the
scattering process of a regular magnetic wave by the field
outside the cylinder, which is

EM,out
n,kz

= Mreg
n,kz

+ T MM
n,kz

Mout
n,kz

+ T NM
n,kz

Nout
n,kz

, (B5)

and the field inside the cylinder,

EM,in
n,kz

= AMM
n,kz

Mreg,in

n,kz
+ ANM

n,kz
Nreg,in

n,kz
. (B6)

Analogously, for an incident electric (TM) multipole field, the
field outside the cylinder becomes

EN,out
n,kz

= Nreg
n,kz

+ T MN
n,kz

Mout
n,kz

+ T NN
n,kz

Nout
n,kz

(B7)

and the field inside the cylinder

EN,in
n,kz

= AMN
n,kz

Mreg,in

n,kz
+ ANN

n,kz
Nreg,in

n,kz
. (B8)

We next derive the specific form of the Tmatrix coefficients
by matching the boundary conditions for the medium, i.e.,
the continuity of Eφ , Ez, Hφ , and Hz across the cylindrical
surface. Plugging the explicit form of cylindrical harmonics
(A1) and (B3) into these conditions, we obtain two sets of four
linear equations for the expansion coefficients. Using B =
−i(c/ω)∇ × E and H = B/μ, we can write the system of
equations for reflection and transmission amplitudes in the
case of the incident magnetic waves in the form

Mn,kz

⎛⎜⎜⎝
AMM

T MM

ANM

T NM

⎞⎟⎟⎠
n,kz

=

⎛⎜⎜⎜⎜⎝
c
ω
qJn(qR)

J ′
n(qR)

0
nkzc

qRω
Jn(qR)

⎞⎟⎟⎟⎟⎠ , (B9)

with the matrix
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Mn,kz
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

qMc

μω
Jn(qMR) −qc

ω
H (1)

n (qR) 0 0

J ′
n(qMR) −H ′(1)

n (qR)
nkzc

qNRω
Jn(qNR) − nkzc

qRω
H (1)

n (qR)

0 0
εr

εz

qNc

ω
Jn(qNR) −qc

ω
H (1)

n (qR)

nkzc

μqMRω
Jn(qMR) − nkzc

qRω
H (1)

n (qR) εrJ
′
n(qNR) −H ′(1)

n (qR)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (B10)

For the incident electric waves the linear equations are

Mn,kz

⎛⎜⎜⎝
AMN

T MN

ANN

T NN

⎞⎟⎟⎠
n,kz

=

⎛⎜⎜⎜⎜⎝
0

nkzc

qRω
Jn(qR)

c
ω
qJn(qR)

J ′
n(qR)

⎞⎟⎟⎟⎟⎠ . (B11)

The solutions to these sets of equations (B9) and (B11) are
provided in Eqs. (30)–(37).

APPENDIX C: SMALL-R EXPANSION OF THE T
OPERATOR OF THE CYLINDER

In order to derive Eqs. (38) and (39), we need the expansion
of the T operator in terms of ωR/c. For a cylinder made
of isotropic material with magnetic permeability μ(ω) and
dielectric permittivity ε(ω), we find for the limit R � {δ,c/ω}

T NN
0,kz

= − iπ

4
(ε − 1)

(̃
k2
z − 1

)
(ωR/c)2, (C1)

T MM
0,kz

= − iπ

4
(μ − 1)

(̃
k2
z − 1

)
(ωR/c)2, (C2)

T NN
1,kz

= T NN
−1,kz

= iπ

4

k̃2
z (μ + 1)(ε − 1) + (μ − 1)(ε + 1)

(ε + 1)(μ + 1)

×(ωR/c)2, (C3)

T MM
1,kz

= T MM
−1,kz

= iπ

4

k̃2
z (μ − 1)(ε + 1) + (μ + 1)(ε − 1)

(ε + 1)(μ + 1)

×(ωR/c)2, (C4)

T MN
1,kz

= T NM
1,kz

= −T MN
−1,kz

= −T NM
−1,kz

= iπ

2

(εμ − 1)̃kz

(ε + 1)(μ + 1)

×(ωR/c)2, (C5)

where k̃z = kz/k. Substitution of the these forms into Eqs. (22)
and (23) yields Eqs. (38) and (39).

APPENDIX D: LEADING TERM OF T OPERATOR FOR
c/ω � R � δ

For c/ω � R � δ, the leading term of the T operator is the
T NN

0,kz
element, which has then the following form:

lim
c/ω�R�δ

T NN
0,kz

= −π

π+2iγE+ 2(
1−k̃2

z

)
(2i+√

εωR/c)
+ 2i ln [

√
1 − k̃2

zωR/2c]
,

(D1)

where γE ≈ 0.577 is the Euler-Mascheroni constant. It can
be numerically shown that other elements of the T matrix are
negligible.
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