
PHYSICAL REVIEW E 85, 046602 (2012)

Generalized Lenard chains, separation of variables, and superintegrability

Piergiulio Tempesta*
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of generalized Lenard chains generated by a Hamiltonian function defined on a four-dimensional ωN manifold
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I. INTRODUCTION: SUPERINTEGRABILITY
AND SEPARATION OF VARIABLES

The aim of this paper is to establish a connection between
the theory of integrable and superintegrable systems on one
side and that of bi-Hamiltonian separation of variables on
the other side. We will provide a theoretical framework for
studying separation of variables for classical systems by means
of the notion of generalized Lenard (GL) chains. These chains,
jointly with a couple of compatible Poisson tensors, are the
main geometrical objects for our bi-Hamiltonian description of
classical mechanics. These structures guarantee the separation
of variables in a suitable bi-structured manifold.

In classical mechanics, superintegrable systems are Hamil-
tonian systems that possess more than n integrals of motion
functionally independent, globally defined in a 2n-dimensional
phase space (see, e.g., [1] for a monograph on the topic).
These systems are also called noncommutatively integrable
[2,3]. Especially important are the maximally superintegrable
ones, i.e., those having 2n − 1 integrals. It turns out that
for these systems all bounded orbits are closed and the
motion is periodic [4]. The first study in this direction was
made by Bertrand [5], who derived this result in the case of
spherically symmetric potentials. Among the physically most
relevant superintegrable potentials are the harmonic oscillator
and the Kepler potential, the Calogero-Moser potential, the
Smorodinsky-Winternitz systems, the Euler top, etc. [1–6].

In quantum mechanics, superintegrable systems are also
particularly interesting: they possess accidental degeneracy of
the energy levels. This degeneracy can be removed by con-
sidering the quantum numbers associated with the additional
integrals of motion. A paradigmatic example is offered by the
Coulomb atom [7–9].

Recently, new examples of superintegrable systems have
been discovered [10–19]. In Refs. [4,20], it has been proved
that the topology of phase space is characterized by a
bifoliation consisting of an isotropic foliation of invariant tori,
and of its coisotropic polar foliation.
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One of the most effective methods to solve Hamiltonian
systems is to find a complete integral of the corresponding
Hamilton-Jacobi (HJ) equation through the technique of
separation of variables. For the sake of clarity, we will recall
briefly the geometric setting of Hamiltonian dynamics [21].

Let (M,ω) be a symplectic manifold, i.e., a 2n-dimensional
manifold endowed with a nondegenerate closed two-form ω,
said to be a symplectic form. Such a geometrical structure
selects a privileged dynamics on M , the one given by
Hamiltonian vector fields defined by

iXH
ω = −dH

(iXH
denotes the contraction operator with regard to the vector

field XH , and d denotes the exterior derivative operator) or,
equivalently,

XH = (ω�)−1dH,

where ω� : T M → T ∗M denotes the fiber bundle isomor-
phism induced by ω. The function H is said to be the
Hamiltonian function of the vector field XH . A symplectic
form acting on vector fields is equivalent to a nondegenerate
Poisson bracket defined as

{F,G} := ω(XF ,XG) = 〈dF,XG〉, (1)

(< , > denotes the natural pairing between one-forms and
vector fields), i.e., as a skew-symmetric composition law on
the ring C∞(M) satisfying

{F,GH } = {F,G}H + {F,H }G
0 = {F,{G,H }} + {G,{H,F }} + {H,{F,G}} (2)

{F,G} = 0 ∀F ⇒ dG = 0.

A local chart (q,p) := (q1, . . . ,qn,p1, . . . ,pn) satisfying
{qi,pj } = δij , {qi,qj } = {pi,pj } = 0 is said to be a system
of canonical or Darboux coordinates. In such coordinates the
(time-independent) Hamilton-Jacobi equation corresponding
to a Hamiltonian vector field XH reads

H

(
q1, . . . ,qn,

∂W

∂q1
, . . . ,

∂W

∂qn

)
= E. (3)
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A solution (W,E) with W (q; a1, . . . ,an), E(a1, . . . ,an) and
{ai}1�i�n constant parameters, such that det[ ∂2W

∂qi∂aj
] 	= 0, is said

to be a complete integral of Eq. (3) and allows one to solve
locally the equation of motions for XH . In fact, a solution of
Eq. (3) is the generating function of a canonical transformation
that maps the Darboux coordinates (q,p) into a new system
of Darboux coordinates (q̃,p̃), satisfying the finite equation of
motions

q̃k(t) = ∂E

∂ak

t + q̃k(0) k = 1, . . . ,n

(4)
p̃k = ak.

One can solve the following equation with respect to (q),

q̃k = ∂W

∂ak

(q; a1, . . . ,an),

and by taking into account Eq. (4), one can write down the finite
equations of motion in the original coordinates. In addition,
by solving with respect to {ai}1�i�n the following equations,

pk = ∂W

∂qk

(q; a1, . . . ,an) k = 1, . . . ,n, (5)

the function W provides the n involutive integrals p̃k ,

p̃k = ak = Hk(q,p) k = 1, . . . , (6)

whose Hamilton-Jacobi equations admit, by construction, the
same solution (W,E) as Eq. (3). If such integrals are globally
defined, then XH is Liouville integrable; we assume this
property throughout this work.

Most of the cases in which a complete integral is explicitly
found occur when W is an additively separated function of the
coordinates qi :

W (q; a1, . . . ,an) =
n∑

i=1

Wi(qi ; a1, . . . ,an). (7)

In such a case H is said to be separable and the coordinates
(q,p) are said to be separated coordinates with regard to H ,
in order to stress that the possibility of finding a separated
complete integral of Eq. (3) depends on the choice of the
coordinates.

One of the classical issues in the theory of separation
of variables (SoV) is to find criteria to decide if a given
Hamiltonian function H is separable in an assigned system
of canonical coordinates and, in the affirmative case, to find a
separated complete integral of the Hamilton-Jacobi equation.
In this regard, a prominent role is played by the test by
Levi-Civita [22]. It states that H is separable in a Darboux
chart (q,p) if and only if the following n(n − 1)/2 conditions,

0 = ∂H

∂qi

∂H

∂qj

∂2H

∂pi∂pj

+ ∂H

∂pi

∂H

∂pj

∂2H

∂qi∂qj

− ∂H

∂qi

∂H

∂pj

∂2H

∂pi∂qj

− ∂H

∂qj

∂H

∂pi

∂2H

∂pj∂qi

, (1 � i < j � n), (8)

are satisfied.
As we wish to study separable Hamiltonian systems that

are Liouville-integrable, in principle we can start with a set of
n independent Hamiltonian functions in involution with regard
to the Poisson brackets (1). In this framework, in the tradition

of the Italian school, an important result has been obtained by
Benenti in Ref. [23]. It gives a characterization of separated
coordinates in terms of Poisson bracket.

The Hamiltonian functions {Hi}1�i�n are separable in a
set of canonical coordinates (q,p) if and only if they are in
separable involution, i.e., if and only if they satisfy

{Hi,Hj }|k = ∂Hi

∂qk

∂Hj

∂pk

− ∂Hi

∂pk

∂Hj

∂qk

= 0, 1 � k � n, (9)

where no summation over k is understood. However, such a
theorem as well as the Levi-Civita test are not constructive,
since they do not help to find a complete integral of the
Hamilton-Jacobi equation (3). In contrast, a constructive
definition of SoV was given by Sklyanin [24] within the
framework of Lax systems.

Definition 1. The Hamiltonian functions {Hi}1�i�n are
separable in a set of canonical coordinates (q,p) if there exist
n equations

�i(qi,pi ; H1, . . . ,Hn) = 0 i = 1, . . . ,n (10)

such that det[ ∂�i

∂Hj
] 	= 0. They are said to be Sklyanin separation

equations for {Hi}1�i�n and allow one to construct a solution
(W,E) of the HJ equation (3). In fact, solving (10) with regard
to pk = ∂Wk

∂qk
, we get

W =
∑∫

pk(q ′
k; H1, . . . ,Hn)|Hi=ai

dq ′
k. (11)

However, the three above-mentioned criteria of separability
are not intrinsic since they require explicit knowledge of the
coordinates (q,p) in order to be applied. Recently, a new
geometric approach to SoV has been developed, based on the
bi-Hamiltonian theory [25,26] and on GL chains [27–29]. It
has succeeded in giving intrinsic and constructive criteria of
separability and has connected the classical theory of SoV with
the modern theory by Sklyanin. The bi-Hamiltonian theory of
SoV is formulated in phase spaces represented by manifolds
endowed with two geometric structures satisfying two suitable
compatibility conditions. Such structures are a symplectic
form ω and a Nijenhuis (or hereditary) operator N acting
on the tangent bundle of M . For this reason, such manifolds
have been called ωN manifolds. While the symplectic form
defines the algebra of Hamiltonian vector fields, the Nijenhuis
operator defines sets of distinguished coordinates that are
separated coordinates for a special class of Hamiltonian vector
fields, those belonging to GL chains, so called as they are
extensions of classical Lenard chains, widely known in the
soliton literature [30,31].

The main result of this paper is the following: We prove
that, given a generic integrable system on the cotangent
bundle of the Euclidean plane, the existence of a GL chain
ensures separation of variables on a ωN manifold. We will
study explicitly examples of many important physical systems,
like the Hénon-Heiles integrable models, the Smorodinsky-
Winternitz systems, and the Kepler potential. For all these
systems we will construct explicitly bi-Hamiltonian structures.
At the best of our knowledge, some of the structures we obtain
are new.

Other studies concerning the bi-Hamiltonian geometry of
specific integrable systems that we study in this paper, are
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available in the literature [32–37]. A detailed comparison be-
tween our results and other approaches is performed punctually
in the subsequent discussions of the physical examples. One
of the main features of our approach is that it provides at once
compatible Poisson structures and separated coordinates.

The paper is organized as follows. In Sec. II, the theory of
bi-Hamiltonian manifolds is reviewed. In Sec. III, the main
geometrical object of our theory, i.e., the GL chains, are
introduced. A general theorem on the separation of variables
for systems in T ∗E2 is proposed. In Sec. IV, the previous
theory is applied to the study of general classes of integrable
systems in the Euclidean plane. In Sec. V, the bi-Hamiltonian
geometry of the integrable Hénon-Heiles systems is obtained.
In Sec. VI, GL chains are constructed for the classical
Smorodinsky-Winternitz systems and in particular for the
Kepler potential. Some conclusions are drawn in Sec. VII.

II. BI-HAMILTONIAN MANIFOLDS AND ωN MANIFOLDS

Generally, a Poisson bracket (see, e.g., [38]) is defined
as a skew-symmetric composition law on C∞(M) which
satisfies only the first two equations of the system (2) and
not necessarily the third one. Equivalently, it can be defined
by a Poisson bi-vector field, i.e., a skew-symmetric linear map
P : T ∗M �→ T M such that

{F,G}P := 〈dF,PdG〉,
with a vanishing Schouten bracket,

0 = [P,P ]S(α,β) := LPβ(P )α + P (iPαdβ) α,β ∈ T ∗M
(12)

(L denotes the Lie derivative). In the special case of symplectic
manifolds, P := (ω�)−1 is a Poisson bi-vector. Generaliz-
ing (1), the vector field XG := P dG is said to be the
Hamiltonian vector field with Hamiltonian function G.

Bi-Hamiltonian manifolds were introduced by Magri [39]
as models of phase space for soliton equations.

Definition 2. A bi-Hamiltonian manifold (M,P0,P1) is a
manifold M endowed with two Poisson bivector fields such
that

0 = 2[P0,P1]S(α,β) := LP0β(P1)α + P1
(
iP0αdβ

)
+LP1β(P0)α + P0

(
iP1αdβ

)
. (13)

Such a condition assures that the linear combination P1 −
λP0 is a Poisson pencil, i.e., it is a Poisson bivector for each
λ ∈ C, and therefore the corresponding bracket {,}P1 − λ{,}P0

is a pencil of Poisson brackets. Condition (13) is known as the
compatibility condition between P0 and P1.

What happens if one of the Poisson tensors, say P0, is
invertible, and therefore its inverse is a symplectic operator
ω� := P −1

0 ? In this case, the bi-Hamiltonian manifold M turns
out to be an ωN manifold (see [40]). Indeed, the composed
operator N := P1P

−1
0 , thanks to the compatibility condition

between P0 and P1, is a Nijenhuis (or hereditary) operator
compatible with the symplectic form ω.

Definition 3. A ωN manifold (M,ω,N ) is a symplectic
manifold endowed with an endomorphism of the tangent
bundle of M , N : T M �→ T M which satisfies the following
conditions:

(i) Its Nijenhuis torsion vanishes identically, i.e., ∀X,Y ∈
T M ,

[NX,NY ] − N ([X,NY ] + [NX,Y ]) + N2[X,Y ] = 0. (14)

(ii) It is compatible with ω, i.e., the tensor P1 = N (ω�)−1 is
again a Poisson tensor and is compatible with P0 := (ω�)−1,
according to Definition 2.

In short, the condition (14) can be rephrased by saying that
the endomorphism N is a Nijenhuis (or hereditary or recursion)
operator.

The adjoint linear map with regard to the natural pairing
will be denoted by NT : T ∗M �→ T ∗M and will be defined by

〈NT α,X〉 = 〈α,NX〉.
The condition (14) on the endomorphism N , introduced

by Nijenhuis [41], has a relevant geometrical meaning: it
implies that the distributions of its eigenvectors are integrable
according to the Frobenius theorem. Consequently, under a
suitable completeness assumption to be introduced below, one
can select local coordinate charts, half of the coordinates being
just the eigenvalues of N , in which N takes a diagonal form.
We suppose that at each point x (or in a dense open subset) of
M , the Nijenhuis tensor field N admits n distinct eigenvalues
λi(x) (i = 1. . . . ,n) (maximally distinct). Since in a generic
ωN manifold the eigenspaces of N are even-dimensional,
belonging to the kernel of the skew symmetric tensor field
P1 − λP0, from the above assumption it follows that N (and
the adjoint tensor NT ) can be put in diagonal form. Also, the
eigenvalues λi(x) can be chosen as coordinate functions in a
neighborhood of x, if we assume that they are functionally
independent in x, i.e.,

dλ1(x) ∧ · · · ∧ dλn(x) 	= 0. (15)

Let x be a point of an ωN manifold. It will be called a
regular point if the eigenvalues of N are maximally distinct
and functionally independent in x.

From the semicontinuity of the rank function it follows that
there exists a suitable neighborhood of x whose points are
regular points. Then we have the following result, proven in
Refs. [42,43]. Let (M,ω,N ) be an ωN manifold. In a suitable
open neighborhood of a regular point, the n functions λi(x)
can be completed by quadratures with n functions μi(x) such
that the chart (λ,μ) is a Darboux chart for ω and, moreover,

NT dλi = λidλi NT dμi = λidμi. (16)

Then, in a Darboux chart (λ,μ) the Nijenhuis tensor N

takes a diagonal form and the coordinates (λ,μ) are said to
be Darboux-Nijenhuis (DN) coordinates. The Poisson tensor
P1 := N (ω�)−1 in DN coordinates takes the form

P1 =
[

0n �n

−�n 0n

]
, (17)

where �n = diag(λ1, . . . ,λn) and 0n is the n × n matrix
with zero entries. The Darboux-Nijenhuis coordinates are
just separation coordinates in the bi-Hamiltonian theory of
SoV. Hereafter, with an abuse of notation, we will identify an
operator P with its matrix in a suitable basis.
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Remark 1. It can be shown that the separated canonical
transformations

qi = fi(λi), pi = μi

f ′
i

, (18)

with fi a generic invertible smooth function of a single
coordinate λi preserve the property (16), i.e.,

NT dqi = λidqi, NT dpi = λidpi. (19)

From a geometrical point of view, we can say that coordinates
(λ,μ) and (q,p), related by transformations (18), are adapted
to the same coordinate web [44].

III. GENERALIZED LENARD CHAINS

After having introduced the geometrical structures which
define separation coordinates in the bi-Hamiltonian theory of
SoV, let us characterize the class of Hamiltonian functions
which are separable in DN coordinates. For the sake of
concreteness, we will do this in the case of a four-dimensional
manifold, warning that it has been generalized to an n-
dimensional manifold [26,27,29].

Theorem 4. Let (M,ω,N ) be a four-dimensional ωN

manifold and (λ1,λ2,μ1,μ2) a DN local chart. Let H be a
smooth function in M . The DN coordinates (λ1,λ2,μ1,μ2) are
separated variables for H if and only if there exist two smooth
functions f and g such that the one form

α = f dH + g NT dH (20)

is an exact one form, i.e., α is the differential of a function,
say H2:

α = dH2. (21)

In this case, the function H2 is an integral of motion in
involution with H1 := H and the same DN coordinates are
separated variables for H2 as well.

Proof. In the above-mentioned chart, N takes the diagonal
form

N = λ1

(
∂

∂λ1
⊗ dλ1 + ∂

∂μ1
⊗ dμ1

)

+ λ2

(
∂

∂λ2
⊗ dλ2 + ∂

∂μ2
⊗ dμ2

)
. (22)

Let us suppose that Eqs. (20) and (21) are fulfilled. Then, it
follows that

∂H2

∂λk

= f
∂H1

∂λk

+ g λk

∂H1

∂λk (23)
∂H2

∂μk

= f
∂H1

∂μk

+ g λk

∂H1

∂μk

with k = 1,2. Therefore

{H1,H2}|k = ∂H1

∂λk

∂H2

∂μk

− ∂H1

∂μk

∂H2

∂λk

(23)= 0, (24)

i.e., H1 and H2 are in separable involution according to
Benenti’s theorem [see formulas (9)], with regard to a DN
chart. Therefore, H2 is an integral of motion for XH .

Vice versa, let us suppose that (λ1,λ2,μ1,μ2) are separated
variables for H1 and H2 and let us consider the equation

f dH1 + gNT dH1 = dH2 (25)

in the unknown functions f and g. In the local chart
(λ1,λ2,μ1,μ2), Eq. (25) takes the form

f + gλ1 =
∂H2
∂λ1

∂H1
∂λ1

, f + gλ2 =
∂H2
∂λ2

∂H1
∂λ2

, (26)

f + gλ1 =
∂H2
∂μ1

∂H1
∂μ1

, f + gλ2 =
∂H2
∂μ2

∂H1
∂μ2

. (27)

We observe that the first equations (26) and (27) coincide,
so do the second equations (26) and (27), thanks to the
conditions (24). Thus the above system of four equations
reduces to two equations that admit the unique solution

f = 1

λ2 − λ1

(
λ2

∂H2
∂λ1

∂H1
∂λ1

− λ1

∂H2
∂λ2

∂H1
∂λ2

)
, (28)

g = 1

λ2 − λ1

(
−

∂H2
∂λ1

∂H1
∂λ1

+
∂H2
∂λ2

∂H1
∂λ2

)
. (29)

Then we will say that Hamiltonian functions related by
Eqs. (20) and (21) belong to a GL chain generated by (ω,N,H )
since, for (f = 0,g = 1), a GL chain reduces to a classical
Lenard chain.

Remark 2. We observe that if [f = −(λ1 + λ2),g = 1],
we get a quasi-bi-Hamiltonian (QBH) chain of Pfaffian type
[25,35] generated by the function H .

Theorem 4 suggests the following procedure in order to
classify Hamiltonian systems separable in DN coordinates:

(1) Choose a Darboux chart (q1,q2,p1,p2) in a four-
dimensional symplectic manifold M .

(2) Construct a ωN structure which has (q1,q2,p1,p2) as
DN coordinates.

(3) Search for Hamiltonian function H and for functions f

and g such that make the one form (20) exact.
This procedure can be considered as an inverse problem,

with respect to the direct approach that starts from a given
Hamiltonian and aims to find separation coordinates.

Let us observe that the above method provides the integral
of motion H2 together with a set of separated variables both
for H and H2.

IV. BI-HAMILTONIAN GEOMETRY IN T ∗ E2:
CONSTRUCTION OF GL CHAINS

In this section, we wish to apply the procedure previously
discussed to the study of the bi-Hamiltonian properties of
systems defined in the cotangent bundle of the Euclidean plane.
Although we recover well-known results, the motivation to
study this preliminary case is that it allows us to derive the
bi-Hamiltonian structures for systems separating in one coor-
dinate system in a transparent way. The results derived here
will be used in the following sections to classify multiseparable
systems and to derive their geometrical properties. Precisely,
we will study natural Hamiltonian functions

H = kinetic energy + potential energy,

and we will recover the most general form of the potential
that makes H separable in Cartesian, polar, and parabolic
coordinates in the Euclidean plane E2. Here M = T ∗E2.
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A. Classical separation of variables

1. Cartesian case

Let us consider the natural Hamiltonian function

H = 1
2

(
p2

x + p2
y

) + V (x,y), (30)

(x,y,px,py) being Cartesian coordinates and conjugated mo-
menta. According to the requirement (22), we choose the
Nijenhuis tensor Ncar : T (T ∗E2) → T (T ∗E2)

Ncar = diag(x,y,x,y).

The one-form (20) reads

α = f (x,y,px,py)dH + g(x,y,px,py)NT dH, (31)

and the closure condition dα = 0 provides a system of
nonlinear partial differential equations (PDEs) for f , g, and
V reported in the Appendix, formula (A1). By combining
Eqs. (A1), we deduce the interesting differential consequence:

(y − x)gVxy = 0. (32)

The case g = 0 is trivial, since it would imply dependence of α

only on dH . So, if g 	= 0 and x 	= y, Eq. (32) implies Vxy = 0,
i.e., that

H = 1
2

(
p2

x + p2
y

) + V1(x) + V2(y) (33)

is the most general Hamiltonian function in T ∗E2 that
separates in Cartesian coordinates. In order to get the most
general form of the integral of motion admitted by the
Hamiltonian (33), we solve the system (A1), observing that

k := p2
y

2
+ V2(y) (34)

is a particular solution, functionally independent of the
Hamiltonian (33). Then, we can write down the general
solution of the system (A1) as

f = x

x − y
F (h,k) +

∫
Fhdk + G(h),

g = − F

x − y
x 	= y,

where h := H and F = F (h,k), G = G(h) are arbitrary
smooth functions of their arguments. The resulting expression
for the integral of motion is given by a primitive function of
the one-form (31)

H2 :=
∫

F (h,k)dk +
∫

G(h)dh, (35)

which is independent of H1 := H as

dH1 ∧ dH2 = F dh ∧ dk = 0 ⇔ g = 0.

In particular, if G = 0 and F = 1 we get the energy associated
with the coordinate y,

H2 = k = p2
y

2
+ V2(y). (36)

Remark 3. Let us observe that g = 1, for any choice of f ,
does not solve Eqs. (A1). Therefore, neither Lenard chain nor
a QBH chain generated by (ω,Ncar,H ) can exist. The same
considerations apply to the polar and parabolic cases.

2. Polar case

Let us consider the natural Hamiltonian

H = 1

2

(
p2

r + p2
θ

r2

)
+ V (r,θ ), (37)

where (r,θ,pr,pθ ) denote polar coordinates and their con-
jugated momenta. A Nijenhuis operator that separates polar
coordinates is

Npol = diag(r,θ,r,θ ),

with

α = f (r,θ,pr,pθ )dH + g(r,θ,pr,pθ )NT dH. (38)

The closure condition for α provides the system (A2) reported
in the Appendix. By combining these equations we get the
consequence

g(θ − r)

(
Vrθ + 2

r
Vθ

)
= 0. (39)

The general solution of Eq. (39) (g 	= 0, r 	= θ ) is

V (r,θ ) = V1(r) + V2(θ )

r2
, (40)

which is the most general potential on E2 that separates in
polar coordinates. As in the Cartesian case, we note that

k := p2
θ

2
+ V2(θ ) (41)

is a particular solution of the system (A2), independent of the
Hamiltonian (37). Then we can state that the general solution
of the system (A2) is

f = r3

r − θ
F (h,k) +

∫
Fhdk + G(h),

g = − r2

r − θ
F (h,k),

where h := H and F = F (h,k), G = G(h) are arbitrary
smooth functions of their arguments. Therefore, the most
general expression of the integral of motion reads

H2 :=
∫

F (h,k)dk +
∫

G(h)dh, (42)

which is independent of H1 := H as

dH1 ∧ dH2 = F dh ∧ dk = 0 ⇔ g = 0.

As a particular case, if G = 0 and F = 1 we obtain the simple
expression of a generalized area integral

H2 = k = p2
θ

2
+ V2(θ ). (43)

3. Parabolic case

We will study the Hamiltonian

H = 1

2

p2
ξ + p2

η

ξ 2 + η2
+ V (ξ,η), (44)

where ξ,η are parabolic coordinates given by

x = 1
2 (ξ 2 − η2), y = ξη, ξ ∈ R, η � 0,
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and pξ ,pη their conjugated momenta. Let us take the Nijenhuis
tensor

Npar = diag(ξ,η,ξ,η), (45)

with

α = f (ξ,η,pξ ,pη)dH + g(ξ,η,pξ ,pη)NT dH. (46)

The closure condition for α provides the system (A3) of the
Appendix. By combining Eqs. (A3) we get the consequence

g(η − ξ )

(
Vξη + 2

ηVξ + ξVη

ξ 2 + η2

)
= 0. (47)

The general solution of (47) (g 	= 0, ξ 	= η) is

V (ξ,η) = V1(ξ ) + V2(η)

ξ 2 + η2
, (48)

which is the most general potential on E2 that separates in
parabolic coordinates. By following the same procedure as
in the previous two cases, we deduce the general solution of
system (A3),

f = −ξ 3 + η3

ξ − η
F (h,k) +

∫
Fhdk + G(h),

g = ξ 2 + η2

ξ − η
F (h,k) ξ 	= η ,

where

h := 1

ξ 2 + η2

(
p2

ξ + p2
η

2
+ V1(ξ ) + V2(η)

)

k := 1

ξ 2 + η2

(
η2p2

ξ − ξ 2p2
η

2
+ η2V1(ξ ) − ξ 2V2(η)

)
,

with F = F (h,k) and G = G(h) arbitrary smooth functions
of their arguments. Consequently, the most general integral
of motion admitted by a potential separable in parabolic
coordinates can be represented as

H2 :=
∫

F (h,k)dk +
∫

G(h)dh, (49)

which is independent of H1 := H as

dH1 ∧ dH2 = F dh ∧ dk = 0 ⇔ g = 0.

For G = 0 and F = 1 it follows that

H2 = k. (50)

V. INTEGRABLE CUBIC HÉNON-HEILES SYSTEMS

In this section, we discuss the bi-Hamiltonian geometry
of the integrable cubic Hénon-Heiles systems. We will show
that they are conveniently described by the previous theory,
and that they admit nontrivial, bi-Hamiltonian structures. The
approach we follow is not, like the above, an inverse one (i.e.,
from separation coordinates toward the Hamiltonian system).
Instead, we assume the explicit form of the Hamiltonians and
construct the Nijenhuis tensor fields and the corresponding
chains together with the separation variables.

For a nice review on integrable Hénon-Heiles systems,
see [45] and references therein. Besides, new integrable
perturbations of these systems have been recently obtained
in Ref. [46] by means of a Poisson algebra-type approach.

The family of cubic Hénon-Heiles systems is defined by
the Hamiltonian function

H := 1
2

(
p2

x + p2
y

) + 1
2 (c1x

2 + c2y
2) + axy2 − 1

3bx3, (51)

which is known to be integrable only in three cases:

(SK) b = −a c1 = c2 = c, (52)

(KdV) b = −6a c1,c2 arbitrary, (53)

(KK) b = −16a c1 = 16c2. (54)

They correspond, respectively, to stationary reduction of the
fifth order flow of Sawada-Kotera (SK), Korteweg de Vries
(KdV), Kaup-Kupershmidt (KK) soliton hierarchies [47]. In
these three cases an integral of the motion is known:

H
(SK)
2 = pxpy + 1

3
a(3x2y + y3) + cxy, (55)

H
(KdV)
2 = py(ypx − xpy) + 1

a

(
c2 − c1

4

)
p2

y + c2xy2

+ a

(
y2

4
+ ax2

)
y2 + c2

a

(
c2 − c1

4

)
y2, (56)

H
(KK)
2 = p4

y + p2
y(2c1y

2 + 4axy2) − 4

3
apxpyy

3

− 4

3
a2x2y4 + c1y

4 − 2

9
a2y6. (57)

The SK cases (52) and the KdV case (53) have long been
known to be separable in rotated Cartesian coordinates [48]
and parabolic coordinates [49], respectively. In contrast, only
recently has the KK case (54) been proved to be separable in
Ref. [50] by means of algebraic-geometric methods.

A. SK–Hénon-Heiles system

In order to construct the Nijenhuis tensor field for the SK
model (52), we shall discuss the general case of Hamiltonian
systems separating by means of linear transformations of the
plane. We have the following result.

Proposition 1. The most general Nijenhuis tensor field
associated with systems separating in the normal coordinates

χ1 = a1x + a2y, χ2 = a3x + a4y, a1a4 − a2a3 	= 0 (58)

with associated momenta

pχ1 = 1

a1a4 − a2a3
(a4px − a3py),

pχ2 = 1

a1a4 − a2a3
(−a2px + a1py), (59)

has the form

Nnorm = 1

a1a4 − a2a3

⎡
⎢⎣

n1,1 n1,2 0 0
n2,1 n2,2 0 0

0 0 n1,1 n2,1

0 0 n1,2 n2,2

⎤
⎥⎦ , (60)
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where

n1,1 = (
a2

1a4 − a2a
2
3

)
x + a2a4(a1 − a3)y,

n1,2 = a2a4[(a1 − a3)x + (a2 − a4)y)],
(61)

n2,1 = −a1a3[(a1 − a3)x + (a2 − a4)y],

n2,2 = a1a3(a4 − a2)x + (
a1a

2
4 − a2

2a3
)
y.

The case of the system (52) is obtained choosing a1 = a2 =
1/

√
2 and a3 = −a4 = 1/

√
2. The corresponding Nijenhuis

tensor field is given by

NSK = 1√
2

⎡
⎢⎣

x y 0 0
y x 0 0
0 0 x y
0 0 y x

⎤
⎥⎦ , (62)

and the GL chain generated by (ω,NSK,H (SK)) is defined by

f = −x

y
, g =

√
2

y
, y 	= 0, (63)

and produces the integral of motion (55).
We recall that in Ref. [34] a different bi-Hamiltonian

structure was proposed for the SK case (52). However, being
constant, it gives no information about separated variables.

B. KdV–Hénon-Heiles system

In the KdV case (53) we can put c1 = c2 = 0 without
loss of generality, c1 	= 0, c2 	= 0 corresponding to a shift
of the parabolic web along the y axis. By transforming the
Hamiltonian function (51) and (53) in parabolic coordinates
we find that it can be described by potential of type (48) with

V1(ξ ) = a

4
ξ 8, V2(η) = −a

4
η8.

The GL chain generated by (ω,Npar,H
(KdV)
|c1=c2=0

) provides the
integral (50) that, in Cartesian coordinates, coincides with (56).

Let us observe that the Nijenhuis tensor field introduced
for the first time in Refs. [32,35], in order to construct a QBH
formulation of the KdV–Henon-Heiles case, is nothing but

NKdV = diag(ξ 2,−η2,ξ 2,−η2). (64)

On the basis of Remark 1, we can state that it defines the same
parabolic web as (45). However, this result does not contradict
Remark 3, since the two Nijenhuis tensors (45) and (64) depend
on two different realizations of the same web.

C. KK–Hénon-Heiles system

In order to construct a Nijenhuis tensor field for the KK case
(with c1 = 0 and a = 1/4), there are (at least) two possible
procedures. The first one entails the use of a well-known
canonical transformation between the SK and KK cases that
has been introduced and studied in Refs. [34,50,51]. As we
have verified, this transformation directly maps the Nijenhuis
structure of the SK case into that of the KK one.

However, we prefer to follow here a different procedure.
Precisely, we will consider a mixed problem, in which the
Hamiltonian of the KK case and its independent integral are

H(KK) = 1
2

(
p2

x + p2
y

) + 1
4xy2 + 4

3x3, (65)

H(KK)
2 = p4

y + p2
yxy2 − 1

3pxpyy
3 − 1

12x2y4 − 1
72y6, (66)

and the Nijenhuis tensor field is to be determined. In our
context, the geometrical relevance of the KK system is that it
does not belong to the Stäckel class, i.e., it is not separable
in orthogonal coordinates in the plane: its first integral is
a fourth-order one. Moreover, we observe that, in contrast
to what occurs in all the other examples of this paper, the
tensor (67) is not a complete lift to the cotangent bundle (of the
configuration space) of a torsionless L endomorphism defined
on the configuration space [36,52].

Therefore, we must assume a general expression for the
Nijenhuis tensor field in terms of a matrix NKK ∈ M4×4,
instead of a diagonal form. Then one has to impose three
conditions: (i) that NKK be compatible with the canonical
symplectic structure ω; (ii) that NKK be torsionless; and
(iii) that NKK be compatible with the GL chain (partially
determined by H(KK) and H(KK)

2 ) we wish to construct. The
algebraic part of the condition (i) imposes to the Nijenhuis
tensor the form

NKK =

⎡
⎢⎣

n1,1 n1,2 0 n1,4

n2,1 n2,2 −n1,4 0
0 n3,2 n1,1 n2,1

−n3,2 0 n1,2 n2,2

⎤
⎥⎦ , (67)

where ni,j are arbitrary functions on T ∗E2. The remaining
requirements altogether determine a complicated system of
20 nonlinear partial differential equations plus four algebraic
equations (not reported here). In order to find a particular
solution of the determining system, a natural ansatz is to
suppose that the entries of NKK be rational functions of the
phase space variables.

By solving the systems of the 20 differential equations
[corresponding to conditions (i) and (ii)] we get the following
structure for the Nijenhuis tensor:

n1,1 = x, n1,2 = k1

φ(y)
+ k0pxpyφ

′(y),

n2,1 =
(

k0k
2
2x − 3x2

k1
+ 2

xk3

k1
+ k4

)
φ(y) − φ(y)

∫
dx2

φ(y)
,

n2,2 = −2x + k3 − k0k2pyφ(y) − k0p
2
yφ(y)2

2k1
,

n1,4 = k0pxφ(y),

n3,2 = py

[
1 +

(
k0k

2
2x − 3x2

k1
+ 2xk3

k1
+ k4 −

∫
dy

φ(y)

)

×φ′(y)

]
+ k1k2

φ(y)
, (68)

where φ(y) is an arbitrary function and k0, . . . ,k4 are arbitrary
real constants. The four algebraic determining equations
[condition (iii)], which are specific for the chain of the KK
model, restrict the previous solution and yield

φ(y) = 3

y
,

with

k0 = 1, k1 = 3
4 , k2 = 0, k3 = 0, k4 = 0.

Then we get the following structure for the GL chain of the
KK model:
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f = − 2
3

(
xy2 + 6p2

y

)
, (69)

g = − 4
3y2. (70)

The eigenvalues of (67)

λ1,2 = −1

2

(
x + 6

p2
y

y2

)
∓ 3

y2

√
H(KK)

2 ,

together with the conjugated momenta

μ1,2 =
(

−px + 6
pyx

y
+ 12

py
3

y3
± 12

py

y3

√
H(KK)

2

)
,

are separated coordinates for the KK–Hénon-Heiles system.
In fact, they allow the following Sklyanin separation equa-
tions (10) to be written:

μ2
1 = − 8

3λ3
1 + 2H(KK) +

√
H(KK)

2 , (71)

μ2
2 = − 8

3λ3
2 + 2H(KK) −

√
H(KK)

2 . (72)

We recall that the above separated coordinates coincide
with those introduced in Refs. [50,51], and the Nijenhuis tensor
field (67) coincides with a particular case of the one introduced
in Ref. [53], where it has been obtained by a completely
different method.

VI. MULTISEPARATION OF VARIABLES
AND SUPERINTEGRABLE SYSTEMS

In this section we use the bi-Hamiltonian structures con-
structed in the previous discussion to construct potentials
admitting more than a system of separation coordinates. In
fact, it can achieve that a Hamiltonian function belongs to GL
chains generated by different and incompatible bi-Hamiltonian
structures. In this case, we get a Hamiltonian system separable
in different coordinate systems or a multiseparable system
together with additional integrals of motion that, if they are
independent, assures superintegrability of the model. Thus,
we recover in a natural way the Smorodinsky-Winternitz
potentials (SWI, SWII, SWIII) in the plane, first discovered
in a quantum-mechanical context in Refs. [54,55] and studied
again in Refs. [56,57] from a group theoretical point of view.
These are the only potentials that are multi-separable in terms
of orthogonal coordinates in E2.

A. Cartesian and polar coordinates

Let us search for the most general potential V (x,y) that
admits SoV both in Cartesian and in polar coordinates. To
this end, let us write down Eq. (39) (with g 	= 0) in Cartesian
coordinates. It reads

1√
x2 + y2

[xy(Vxx − Vyy) − (x2 − y2)Vxy

+ 3yVx − 3xVy] = 0. (73)

Thus, the potential has to satisfy the system of two PDEs:

Vxy = 0, (74)

xy(Vxx − Vyy) − (x2 − y2)Vxy + 3yVx − 3xVy = 0. (75)

By substituting the solution of Eq. (74),

V (x,y) = V1(x) + V2(y), (76)

into Eq. (75) we get the separated equations

V ′′
1 + 3

x
V ′

1 = V ′′
2 + 3

y
V ′

2 = 4a, (77)

where a is an arbitrary constant. Their general solution is

V1(x) = 1

2
ax2 + c1

x2
, (78)

V2(y) = 1

2
ay2 + c2

y2
. (79)

Thus, the general solution of the system (74) and (75) is

V (x,y) = 1

2
a(x2 + y2) + c1

x2
+ c2

y2
, (80)

which is nothing but the SWI potential [55], the sum of an
isotropic elastic potential, and an anisotropic Rosochatius
potential. The Hamiltonian system with the SWI potential
inherits the integral of motion (36) from SoV in Cartesian
coordinates,

H
(car)=
2

p2
y

2
+ a

2
y2 + c2

y2
, (81)

and the integral (43) which, written in Cartesian coordinates
reads

H
(polK)
2 = 1

2
(xpy − ypx)2 + c1

(
y

x

)2

+ c2

(
x

y

)2

. (82)

A simple check shows that the Hamiltonian SWI, H
(car)
2 and

H
(polK)
2 , are independent. Consequently, the potential (80) is

superintegrable. Finally, we can state that the SWI Hamiltonian
function generates two GL chains, starting from the two
incompatible structures (ω,Ncar) and (ω,Npol). Indeed, it can
be checked that the two Poisson tensor fields

Pcar := Ncar(ω
�)−1, Ppol := Npol(ω

�)−1,

have nonvanishing Schouten brackets, i.e.,

[Pcar,Ppol]S 	= 0.

B. Cartesian and parabolic coordinates

By repeating the previous strategy, we find that the most
general potential V (x,y) that admits SoV both in Cartesian
and in parabolic coordinates reads

V (x,y) = a(4x2 + y2) + c1x + c2

y2
, (83)

which is nothing but the SWII potential [55].
The Hamiltonian system with the SWII potential inherits

the integral of motion (36) from SoV in Cartesian coordinates,

H
(car)
2 = p2

y

2
+ a

2
y2 + c2

y2
, (84)

and the integral (49) from SoV in parabolic coordinates which,
written in Cartesian coordinates, reads

H
(polK)
2 = py(ypx − xpy) + 2axy2 + c1

2
y2 − 2c2

x

y2
. (85)
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By checking the functional independence of the Hamiltonian
SWII, H (car)

2 and H
(par)
2 , we obtain again that the potential (83)

is superintegrable. Moreover, as in the previous case, we can
state that the SWII Hamiltonian function generates two GL
chains, starting from the two incompatible structures (ω,Ncar)
and (ω,Npar). Indeed, it can be checked that the Poisson tensor
field

Ppar := Npol(ω
�)−1

has nonvanishing Schouten brackets with Pcar,

[Pcar,Ppar]S 	= 0.

In Ref. [37] a bi-Hamiltonian formulation for SWI and
SWII has been proposed. The main difference with respect to
our approach is that since the two Poisson tensor fields obtained
in Ref. [37] are not compatible [as they do not satisfy (13)],
therefore, they do not define a Nijenhuis tensor field and do not
provide information about the separated variables admitted by
the systems.

C. Polar and parabolic coordinates

The most general potential V (r,θ ) that admits SoV both
in polar and in parabolic coordinates, written down in polar
coordinates, reads

V (r,θ ) = α

r
+ 1

r2

β + γ cosθ

sin2θ
, (86)

where

α = c2

2
β := 1

4

(
c3 − c1

2

)
γ := 1

4

(
c3 + c1

2

)
,

which is the SWIII potential [55].
The Hamiltonian system with the SWIII potential inherits

the integral of motion (43) from SoV in polar coordinates,

H
(polK)
2 = p2

θ

2
+ β + γ cosθ

sin2θ
, (87)

and the integral (50) from SoV in parabolic coordinates, which,
written down in polar coordinates, reads

H
(par)
2 = −pθ

(
pθcosθ

r
+ prsinθ

)
− αcosθ

+ 2
γ + 2βcosθ + γ cos2θ

rsin2θ
. (88)

As in the previous cases, the potential (87) is superintegrable.
Furthermore, also the SWIII Hamiltonian function generates
two GL chains, starting from the two incompatible structures
(ω,Npol) and (ω,Npar). Indeed, it can be checked that

[Ppol,Ppar]S 	= 0.

1. The Kepler model

The best known example of a Hamiltonian system separable
both in polar and in parabolic coordinates is the Kepler model:

HK := 1
2

(
p2

x + p2
y

) − a√
x2+y2

.

Here, we recover from the theory illustrated above a new
bi-Hamiltonian structure and a GL chain for this model.
Precisely, by exploiting the freedom in the choice of separated
coordinates discussed in Remark 1, we take as a Nijenhuis
tensor field that separates polar coordinates the following one,

NpolK = diag(r, tan θ,r, tan θ ),

that in Cartesian coordinates reads

NpolK =

⎡
⎢⎣

n1,1 n1,2 0 0
n1,2 n2,2 0 0

0 n3,2 n1,1 n1,2

−n3,2 0 n1,2 n2,2

⎤
⎥⎦ , (89)

where

n1,1 = y3

xr2
+ x2

r
, n1,2 = −y2

r2
+ xy

r
,

n2,2 = xy

r2
+ y2

r
, (90)

n3,2 =
(

y2

xr2
− y

r

)
px +

(−y

r2
+ x

r

)
py,

with r =
√

x2 + y2. The GL chain generated by (ω,NpolK,HK )
with

f = − x

y − xr
r, g = x

y − xr
r2,

provides as a second integral of motion the square of the
modulus of the angular momentum:

H
(polK)
2 = 1

2 (xpy − ypx)2.

Furthermore, let us take as a Nijenhuis tensor field that
generates the parabolic web the following tensor,

NparK = diag(ξ 2,−η2,ξ 2,−η2), (91)

which in Cartesian coordinates has the linear representation

NparK =

⎡
⎢⎣

2x y 0 0
y 0 0 0
0 py 2x y

−py 0 y 0

⎤
⎥⎦ . (92)

The GL chain generated by (ω,NparK,HK ) with

f = 2x, g = −1,

provides as a second integral of motion the x component of
the Laplace-Runge-Lenz vector

H
(parK)
2 = py(xpy − ypx) − a√

x2 + y2
x.

Surprisingly, the Kepler Nijenhuis tensor (91) coincides with
the Nijenhuis tensor (64), constructed by other authors for the
KdV–Henon-Heiles system. This is due to the fact that NparK

generates the same parabolic web in which both systems are
separable.

In Ref. [33] a different bi-Hamiltonian formulation for the
three-dimensional Kepler problem has been introduced. The
main motivation of the authors was to prove that the existence
of a recursion operator does not necessarily provide additional
conservation laws. The structures obtained in Ref. [33] are
expressed in terms of action-angle variables and give no
information about the separated variables.
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In Ref. [3] another recursion operator for the Kepler
potential has been proposed. However, the difference with
respect to our approach is that their recursion operator is not
compatible with the canonical symplectic structure.

VII. FUTURE PERSPECTIVES

In this work, we have proposed a general formalism for
treating the geometry of both integrable and superintegrable
systems on a bi-Hamiltonian setting. The present approach for
the sake of concreteness has been formulated in the Euclidean
plane. However, there is no theoretical restriction in extending
it to higher-dimensional cases. Also, it seems interesting to
include in the present analysis integrable and superintegrable
systems defined in curved spaces. It would be very interesting
to derive a quantum formulation of the present theory.
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APPENDIX

Here we report the explicit expressions of the systems of
differential equations quoted in Sec. III.

(a) Cartesian system.

py

(
fpx

+ ygpx

) − px

(
fpy

+ xgpy

) = 0,

px(fx + xgx + g) − (
fpx

+ xgpx

)
Vx = 0,

py(fx + ygx) − (
fpy

+ xgpy

)
Vx = 0, (A1)

px(fy + xgy) − (
fpx

+ ygpx

)
Vy = 0,

py(fy + ygy + g) − (
fpy

+ ygpy

)
Vy = 0,

(x − y)gVxy + (fy + xgy)Vx − (fx + ygx)Vy = 0.

(b) Polar system.
pθ

r2

(
fpr

+ θgpr

) − pr

(
fpθ

+ rgpθ

) = 0,

pr (fθ + rgθ ) − (
fpr

+ θgpr

)
Vθ = 0,

pθ

r2
(fθ + θgθ + g) − (fpθ

+ θgpθ
)Vθ = 0,

pr (fr + rgr + g) + p2
θ

r3

(
fpr

+ rgpr

) − (
fpr

+ rgpr

)
Vr = 0,

pθ

r2
(fr + θgr ) + pθ

r3
2g(r − θ ) + p2

θ

r3

(
fpθ

+ rgpθ

)
−(

fpθ
+ rgpθ

)
Vr = 0,

(θ − r)gVrθ + (fr + θgr )Vθ − (fθ + rgθ )Vr

+ p2
θ

r3
(fθ + rgθ ) = 0. (A2)

(c) Parabolic system.

pξ

(
fpη

+ ξgpη

) − pη(fpξ
+ ηgpξ

) = 0,

pξ

(fξ + ξgξ + g)

ξ 2 + η2
+

(
ξ

p2
ξ + p2

η

(ξ 2 + η2)2
−Vξ

)(
fpξ

+ξgpξ

) = 0,

2ξpη

(f + ξg)

(ξ 2 + η2)2
+ pη

(
f + ηg

ξ 2 + η2

)
ξ

+
(

ξ
p2

ξ + p2
η

(ξ 2 + η2)2
− Vξ

)

× (
fpη

+ ξgpη

) = 0,

2ηpξ

(f + ηg)

(ξ 2 + η2)2
+ pξ

(
f + ξg

ξ 2 + η2

)
η

+
(

η
p2

ξ + p2
η

(ξ 2 + η2)2
− Vη

)

×(
fpξ

+ ηgpξ

) = 0,

pη

(fη + ηgη + g)

(ξ 2 + η2)
+

(
η

p2
ξ + p2

η

(ξ 2 + η2)2
−Vη

)(
fpη

+ηgpη

)=0,

g(ξ − η)Vξη + (fη + ξgη)Vξ − (fξ + ηgξ )Vη + (
p2

ξ + p2
η

)
×

[
η

(
(f + ηg)

p2
ξ + p2

η

(ξ 2 + η2)2

)
ξ

−ξ

(
(f + ξg)

p2
ξ + p2

η

(ξ 2 + η2)2

)
η

]
= 0. (A3)
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and M. A. Rodrı́guez, Montréal, CRM Proceedings and Lecture
Notes, Vol. 37 (American Mathematical Society, Providence,
Rhode Island, 2004).

[2] A. S. Mischenko and A. T. Fomenko, Funct. Anal. Appl. 12, 133
(1978).

[3] G. G. Sparano and G. Vilasi, J. Geom. Phys. 36, 270 (2000).
[4] N. N. Nekhoroshev, Trans. Mosc. Math. Soc. 26, 180 (1972).
[5] J. Bertrand, C. R. Acad. Sci. Paris 77, 849 (1873).
[6] N. W. Evans, Phys. Rev. A 41, 5666 (1990).
[7] V. Fock, Z. Phys. 98, 145 (1935).
[8] V. Bargmann, Z. Phys. 99, 576 (1936).
[9] J. Jauch and E. Hill, Phys. Rev. 57, 641 (1940).

[10] M. A. Rodrı́guez, P. Tempesta, and P. Winternitz, Phys. Rev. E
78, 046608 (2008).

[11] M. A. Rodrı́guez, P. Tempesta, and P. Winternitz, J. Phys. Conf.
Series 175, 012013 (2009).

[12] E. G. Kalnins, J. M. Kress, and W. Miller, J. Math. Phys. 47,
093501 (2006).

[13] E. G. Kalnins, J. M. Kress, and W. Miller, J. Phys. A: Math.
Theor. 43, 265205 (2010).

[14] P. E. Verrier and N. W. Evans, J. Math. Phys. 49, 022902
(2008).

[15] N. W. Evans and P. E. Verrier, J. Math. Phys. 49, 092902
(2008).

[16] A. Ballesteros, A. Enciso, F. J. Herranz, and O. Ragnisco,
Physica D 237, 505 (2009).

[17] A. Ballesteros, A. Enciso, F. J. Herranz, and O. Ragnisco,
Commun. Math. Phys. 290, 1033 (2009).

[18] F. Tremblay, A. V. Turbiner, and P. Winternitz, J. Phys. A: Math.
Theor. 42, 242001 (2009).

046602-10

http://dx.doi.org/10.1007/BF01076258
http://dx.doi.org/10.1007/BF01076258
http://dx.doi.org/10.1016/S0393-0440(00)00026-7
http://dx.doi.org/10.1103/PhysRevA.41.5666
http://dx.doi.org/10.1007/BF01336904
http://dx.doi.org/10.1007/BF01338811
http://dx.doi.org/10.1103/PhysRev.57.641
http://dx.doi.org/10.1103/PhysRevE.78.046608
http://dx.doi.org/10.1103/PhysRevE.78.046608
http://dx.doi.org/10.1088/1742-6596/175/1/012013
http://dx.doi.org/10.1088/1742-6596/175/1/012013
http://dx.doi.org/10.1063/1.2337849
http://dx.doi.org/10.1063/1.2337849
http://dx.doi.org/10.1088/1751-8113/43/26/265205
http://dx.doi.org/10.1088/1751-8113/43/26/265205
http://dx.doi.org/10.1063/1.2840465
http://dx.doi.org/10.1063/1.2840465
http://dx.doi.org/10.1063/1.2988133
http://dx.doi.org/10.1063/1.2988133
http://dx.doi.org/10.1016/j.physd.2007.09.021
http://dx.doi.org/10.1007/s00220-009-0793-5
http://dx.doi.org/10.1088/1751-8113/42/24/242001
http://dx.doi.org/10.1088/1751-8113/42/24/242001


GENERALIZED LENARD CHAINS, SEPARATION OF . . . PHYSICAL REVIEW E 85, 046602 (2012)

[19] S. Post and P. Winternitz, J. Phys. A: Math. Theor. 43, 222001
(2010).
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