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A simple one-dimensional lattice model is suggested to describe the experimentally observed plateau in
force-stretching diagrams for some macromolecules. This chain model involves the nearest-neighbor interaction
of a Morse-like potential (required to have a saturation branch) and a harmonic second-neighbor coupling. Under
an external stretching applied to the chain ends, the intersite Morse-like potential results in the appearance
of a double-well potential within each chain monomer, whereas the interaction between the second neighbors
provides a homogeneous bistable (degenerate) ground state, at least within a certain part of the chain. As a result,
different conformational changes occur in the chain under the external forcing. The transition regions between
these conformations are described as topological solitons. With a strong second-neighbor interaction, the solitons
describe the transition between the bistable ground states. However, the key point of the model is the appearance
of a heterogenous structure, when the second-neighbor coupling is sufficiently weak. In this case, a part of the
chain has short bonds with a single-well potential, whereas the complementary part admits strongly stretched
bonds with a double-well potential. This case allows us to explain the existence of a plateau in the force-extension
diagram for DNA and α-helix protein. Finally, the soliton dynamics are studied in detail.
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I. INTRODUCTION

In the past decade new methods appeared which made it
possible to stretch a single molecule and measure a stretching
force with high precision. In these experiments one end of
the molecule is attached to the surface, whereas another one
is attached to a latex bead which is pulled by optical or
magnetic tweezers [1–4]. The main result of these experiments
is a force-extension diagram. Complex behavior has been
revealed by elasticity studies of individual double-stranded
DNA molecules. The force-extension diagram appeared here
to have an unexpected structure—there exists a large interval of
extensions at which the lengthening of a molecular chain is not
accompanied by growth of its tension [5]. In this case, a plateau
appears on the force-extension diagram. This behavior can be
explained by only some structural changes of the chain under
its stretching. In this regard, it was suggested that in the plateau
region, the transition of DNA double helix from the canonical
B form into some new structure takes place. Therefore various
models for the structure of the so-called S form of DNA have
been proposed, but so far its nature remains obscured. Single
molecule stretching experiments have been carried out also for
polypeptide molecules [6–8]. Similar diagrams with a typical
force-extension plateau have been observed experimentally for
synthetical α helices [7] and myosin molecules [6]. All these
studies raise the question on the conformational changes of
molecular chains under their stretching.

It is shown in this paper that within a simple one-
dimensional chain model with nearest-neighbor interaction in
the form of a Morse-like potential and the second-neighbor
harmonic interaction, only a soft anharmonicity of the in-
termolecular interaction can lead to essential conformational

changes of the chain under its stretching, when one part of
chain bonds appears to be weakly stretched, whereas the other
one is strongly stretched. Of course, in the framework of this
model it is impossible to explain rigorously the structural
changes of the DNA double helix and α helix of protein under
their stretching (for this purpose more sophisticated models
that account for molecular structure have to be elaborated). Our
aim here is to describe only on a qualitative level all possible
conformational changes of the chain under its stretching. These
changes are caused by soft anharmonicity of the nearest-
neighbor intermolecular interaction (more precisely, by the
presence of a point of inflection in the interaction potential).
There can be no doubt that the interactions of this type are
present in strands of DNA and α helices of protein, and just the
nonuniform stretching of bonds explains the structural changes
of helical molecules resulting in the appearance of a plateau
in the force-extension diagram.

The appearance of bistability under the chain stretching,
when the whole chain or its part can be found in different
ground states, has to cause the formation of topological
defects (solitons) that describe the transition regions between
these different conformations (ground states) in the chain. We
will show that these defects are topological solitons that can
propagate along the chain with subsonic velocities. At the end
of this paper, some examples of extended macromolecules
will be considered, where the anomalous behavior related to
the appearance of bistability can be expected.

The effect of appearance of bistable states caused by lattice
stretching has been first studied by Manevitch et al. [9]
for modeling the mechanodestruction of a polymer chain.
As a simple model, the anharmonic chain with the nearest-
neighbor coupling in the form of the Morse potential has been
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FIG. 1. (Color online) (a) Single-well and (b)–(d) double-well
potentials for a central particle interacting with its fixed neighbors
via interatomic Morse-like potential V (r) and formed as the sum
V (r) + V (2R − r). (a) Distance 2R between the lateral fixed particles
does not exceed 2R0, where R0 is a point of inflection of V (r). (b)
Unstable equilibrium position of the central particle. (c) Left and (d)
right stable equilibria of the central particle.

chosen. Under lengthening this chain by applying an external
force to its ends, the formation of an effective double-well
potential in the chain bonds has been shown. The idea of this
conformational transition can be explained in simple terms as
follows. Consider three coupled particles as shown in Fig. 1,
where the two lateral particles are fixed and the central particle
interacts with its neighbors through a Morse-like potential
V (r) with a minimum at R = r0 and a constant asymptote
ε = limr→∞ V (r). The potential of this type has a point of
inflection at r = R0 > r0. The Morse potential

V (r) = ε[e−β(r−r0) − 1]2, 0 < r < ∞, (1)

given in dimensionless units, with any parameter β > 0, can be
chosen as a particular example where R0 = r0 + β−1 ln 2. The
total potential for the middle particle is V (r) + V (2R − r),
where 2R is the distance between the lateral particles. Using
the new variable u = R − r , this potential can be written in a
more convenient symmetric form as follows:

W (u)
.= V (R − u) + V (R + u) = εe−2β(R−r0)

×{[2 cosh(βu) − eβ(R−r0)]2 + e2β(R−r0) − 2}. (2)

The potential W (u) has only one minimum u = 0 if R � R0

as demonstrated by Fig. 1(a), and one maximum u = 0 and
the two minima u = ±u0 if R > R0 [see Figs. 1(b)–1(d)].
For the potential (1), u0(R) = β−1arccosh[eβ(R−r0)/2] > 0,
being the solution of the equation

cosh(βu0) = eβ(R−r0)/2. (3)

The three-particle system illustrated by Fig. 1 can be
extended to a finite chain consisting of 2N + 1 particles (or
N monomers), where the terminal particles are fixed and
the total chain length is L = 2NR. If R > R0, double-well
potentials can be formed inside the chain. In this case, many
ground states of the chain are possible resulting in different
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FIG. 2. (Color online) Equilibria in monoatomic chain with fixed
terminal particles, where except for the nearest-neighbor interactions,
also a coupling between the second neighbors is involved: (a) Stable
(ground) state of the stretched chain with period R � R0, where each
atom is found in a single-well potential. (b) Unstable state of the
chain, where all atoms with odd number are located at the top of a
double-well potential. (c) Left and (d) right degenerate ground states
of the stretched chain.

irregular chain conformations. Therefore the model studied in
Ref. [9] has to be modified in such a way that a sufficiently
stretched chain would admit homogeneous ground states with
periodic structure. To this end, we involve additionally a
stabilizing second-neighbor interaction and, as a result, the
ground states with alternating lengths of chain bonds are
possible.

It is sufficient to impose a harmonic coupling between the
second neighbors as shown schematically in Fig. 2. Let K

be a (dimensionless) stiffness constant of the second-neighbor
interaction with x0,x1, . . . ,x2N being positions of the chain
atoms. Then the total potential energy of the N -monomer
system with fixed terminal atoms can be written as

EN = 1

2

2N−1∑
n=0

V (xn+1 − xn) + K(x1 − x0 − r0)2

+
2N−2∑
n=0

1

2
K(xn+2 − xn − 2r0)2

+ 1

2
K(x2N − x2N−1 − r0)2. (4)

It is expected that a sufficiently strong stretching of the
chain results in a dimerization of the chain, for which the even
atoms are found in equilibria xn = nR with n = 0,2, . . . ,2N .
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Inserting these values into the energy (4), we find

EN = N [V (r) + V (2R − r)] + 4(N − 1)K(R − r0)2

+ 1
2K(r − r0)2 + 1

2K(2R − r − r0)2. (5)

Differentiating Eq. (5) with respect to r , we find the following
equation for equilibria:

V ′(r) − V ′(2R − r) = (2K/N)(R − r). (6)

Using the variable u = R − r , Eq. (6) becomes W ′(u) =
−2Ku/N . The trivial solution u = 0 describes equilibria of
odd atoms (stable if R � R0 and unstable if R > R0). The
two stable equilibria with u = ±u0 appear when R > R0 and
N � 1. For a long chain (N → ∞), the role of boundary
conditions can be neglected, so that Eq. (6) for the equilibrium
positions ±u0 in the case of the Morse potential (1) takes the
form of Eq. (3), so that the two stable minima exist if the
inequality R > R0 is fulfilled.

To simplify the problem with fixed chain ends, it is
convenient to use the cyclic boundary conditions by putting

x2N = x0 + 2NR and x2N+1 = x1 + 2NR. (7)

Then, if we fix the whole chain by setting x0 ≡ 0, so that
x1 = ±u0, the equilibrium positions are

x0
n =

{
nR if n = 0,2, . . . ,2N,

nR ± u0 if n = 1,3, . . . ,2N + 1,
(8)

The subscripts “+” and “−” denote the two degenerate ground
states in the dimerized chain, respectively. Schematically, these
states can be represented asX–X——X–X——X · · ·X–X—
—X–X——X and X——X–X——X–X · · · X——X–X—
—X–X, where the terminal X’s are fixed and all the bulk atoms
are found either in the left well or the right well, respectively.
Obviously, the domain walls (topological kinks and antikinks)
that separate these two ground states can be excited. However,
this is true if the second-neighbor interaction is sufficiently
strong, at least for the model suggested in this paper. As shown
below, the situation appears more complicated for a weak
second-neighbor coupling, the case being of experimental
relevance for some macromolecules. More precisely, the
existence of a plateau in the force-stretching diagrams for the
DNA double helix [1–5] as well as for α helices of protein [10]
can qualitatively be explained within the framework of our
model.

The paper is organized as follows. In the next section,
we present the equations of motion for a stretched nonlin-
ear monoatomic chain and discuss the spectrum of small-
amplitude oscillations. The analysis of switching a bistable
ground state of the chain is given in Sec. III. In Sec. IV, we
find the profiles of kink and antikink solutions and study their
dynamical properties. The next section is devoted to realistic
systems, where the topological soliton solutions obtained in the
previous section are studied in detail. Conclusions are given
in Sec. VI.

II. A MODEL AND ITS LINEARIZED VERSION

With the notations introduced in the previous section, the
(dimensionless) Hamiltonian for the monoatomic chain model
with the cyclic boundary conditions (7) can be written in the

form

H =
2N−1∑
n=0

[
1

2
mẋ2

n + V (xn+1 − xn)

+ 1

2
K(xn+2 − xn − 2r0)2

]
, (9)

where m is a chain particle mass and the dot denotes the
differentiation over time t . Here the strings connecting the
second neighbors are assumed to be undistorted at length 2r0.
The corresponding equations of motion are

mẍn = [V ′(xn+1 − xn) − V ′(xn − xn−1)]

+K(xn+2 − 2xn + xn−2), (10)

where n = 0,1, . . . ,2N − 1.
The linearized version of Eqs. (10) is obtained by putting

xn(t) = x0
n + vn(t),n = 0,1, . . . ,2N + 1, where the equilibria

x0
n’s are defined by Eqs. (8). As a result, we find

mv̈n = [k±(vn+1 − vn) − k∓(vn − vn−1)]

+K(vn+2 − 2vn + vn−2), (11)

where k± = V ′′(R ± u0). The upper subscript at the stiffness
coefficient belongs to the particles with even (odd) n’s and
the lower one to those with odd (even) n’s for the case when
all the odd particles are found in the right (left) well of the
double-well potential.

Under stretching R � R0, the displacement u0 becomes
zero and therefore we have the stiffness constant k = k− =
k+ = V ′′(R). With the stretching of the chain, the stiffness
k(R) decreases monotonically and at R = R0 it reaches
zero (Fig. 3, curve 1). At further lengthening, the chain
becomes bistable and the distance 2u0 increases monotonically
with the growth of R. The stiffness of the short bonds
k− = εV ′′(R − u0) > 0 increases monotonically (Fig. 3, curve
3) and the stiffness of the long bonds becomes negative,
k+ = V ′′(R + u0) < 0 (curve 2), but their sum is always
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FIG. 3. (Color online) Stiffness k = V ′′(R ± u0) as a function of
lattice constant R calculated for potential (4) with ε = 1, β = 1, and
r0 = 1: k = k± for R � R0 (curve 1), k = k+ (curve 2), and k = k−
(curve 3) for R > R0. Critical stiffness k = kc = −k−k+/2(k− + k+)
is given by curve 4.
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positive, k− + k+ > 0. Explicitly, for the potential (1) we get

k± = ∓εβ2e∓βu0 sinh(βu0) cosh−2(βu0), (12)

so that in this case k− + k+ = 2εβ2 tanh2(βu0) > 0.
The dispersion law is obtained if we insert the small-

amplitude waves

vn(t) = Aei(qnR−ωt) and vn+1(t) = Bei(qnR−ωt) (13)

into Eqs. (11) with n = 0,2, . . . ,2N . Here ω is the frequency
and the wave number q ∈ [0,π/2R). As a result, we find
the dispersion law that admits two branches of the spectrum
(acoustic and optical):

mω2
± = k− + k+ + 2K[1 − cos(2qR)]

±
√

k2− + k2+ + 2k−k+ cos(2qR) . (14)

The dispersion curves for R � R0 are present in Fig. 4(a).
For R < R0 the curve ω−(q) is the continuation of the
curve ω+(q). They can be considered as a single acoustic
branch. In the limit R → R0 − 0, the curves ω−(q) and ω+(q)
merge together into a single curve ω2 = 2K[1 − cos(2qR)].
At further increase of R, this curve splits into two disconnected
curves ω−(q) and ω+(q) [Fig. 4(b), curves 4 and 5], where the
first curve corresponds to acoustic oscillations and the second
one to optical oscillations of the stretched chain.

At stretching R < R0, the uniformly stretched state is
always stable, since all the coupling constants k−, k+, and
K are positive. The situation changes when R > R0 because
here one of the coupling constants, k+, is negative and now the
stability of the alternating state of the stretched chain depends
on the stiffness constant K . For the stability it is necessary that
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FIG. 4. (Color online) Linear spectra ω = ω±(2qR) calculated
(at m = 1) in the case of potential (1) with ε = 1, β = 1, r0 = 1, and
K = 0.5 for (a) R = r0 (curves 1 and 2), R = R0 (curve 3), and (b)
R = 2 > R0 (curves 4 and 5). Curves 1, 3, and 4 relate to ω−(2qR)
and curves 2, 3, and 5 relate to ω+(2qR).

the inequality

k− + k+ + 2K[1 − cos(2qR)]

−
√

k2− + k2+ + 2k−k+ cos(2qR) > 0 (15)

has to be fulfilled for all values of the wave number q > 0. It
is easy to show that this condition holds only if

K > kc(R)
.= −k−k+/2(k− + k+). (16)

The dependence of the critical value of the stiffness of the
second-neighbor interaction on R is given in Fig. 3 (curve 4).
For all R this value is positive; it monotonically decreases with
increase of the chain stretching R. Its maximum reaches in the
limit R → R0 + 0 when u → u0 + 0. Using Eq. (12), for the
particular case (1) we obtain

kc(R) = εβ2

4
cosh−2(βu0), (17)

where the dependence of u0 on R is given by Eq. (3). Next,
we find the limiting value k0

.= limR→R0+0 kc(R) = εβ2/4 =
V ′′(r0)/8 and therefore the stability condition of the alternating
states of the stretched chain takes the following simple form:

K > k0 = V ′′(r0)/8. (18)

This relation of coupling constants for the interactions of the
first and the second neighbors is a necessary and sufficient
condition for the existence of stable stretched alternating states
of the chain.

The velocity of long-wave acoustic phonons v0 =
limq→0 ω(q)/q can be calculated from the spectra (14) for
different values of R. As a result, we obtain

v0 =
{

2R
√

(k/4 + K)/m if R � R0,

2R
√

(K − kc)/m if R > R0.
(19)

Note that the condition (16) ensures the positivity of the
expression under the radicals in (19).

III. TRANSITION TO THE BISTABILITY OF THE
GROUND STATE UNDER STRETCHING THE CHAIN

In order to understand how the ground state of the chain
changes under its stretching, we consider the dependence
of the ground energy E of the homogeneous chain state
on the lattice spacing R. For the uniformly stretched chain
state, when xn+1 − xn = R, 0 < R < ∞, n = 0,1, . . . ,2N ,
the deformation energy of one chain unit is

E1(R) = V (R) + 2K(R − r0)2

= ε[e−β(R−r0) − 1]2 + 2K(R − r0)2. (20)

On the other hand, when we consider the ground state with
the alternating bond lengths R − u0 and R + u0 (R > R0), the
deformation energy of one chain unit becomes

E2(R) = W (u0)/2 + 2K(R − r0)2

= ε

2
[1 − 2e−2β(R−r0)] + 2K(R − r0)2. (21)

For comparison the form of the functions E1(R)
and E2(R) is depicted in Fig. 5. The function E1(R)
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FIG. 5. (Color online) Dependence of energy E and its derivative
dE/dR of uniformly stretched state of the chain with equal bonds
E = E1 (curves 1 and 4) and that with alternating bonds E = E2

(curves 2 and 5) on lattice spacing R for (a) and (c), line 6, K = 0.05;
and (b) and (c), line 7, K = 0.3 (β = 1, ε = 1, r0 = 1, K0 = 0.25,
and R0 = 1 + ln 2 = 1.693). Lines 3 and 6 give convex neighborhood
of function E(R).

has a minimum at R = r0, increasing for R > r0. At
R = R0 both these functions are smoothly “sewed” to-
gether because E1(R0) = E2(R0) = ε/4 + 2K(R0 − r0)2 and
E′

1(R0) = E′
2(R0) = εβ/2 + 4K(R0 − r0). However, for R >

R0 the function E2(R) steps aside smoothly and continues fur-
ther below E1(R). Therefore the energy of the homogeneously
stretched (with any R) ground state of the chain is given by
the smoothly sewed function E(R) = E1(R) for R � R0 and
E(R) = E2(R) for R � R0. At R = R0 the second derivative
E′′

2 (R0) = 4K − εβ2 is positive if K > K0 and negative if
K < K0. Therefore E(R) is a strongly concave function (for
all R) only if K > K0 [see Fig. 13(b)]. In this case, the ground
state of the chain is always the homogeneous conformation
with equal bond lengths for R � R0 and that with alternating
bonds for R > R0. The inequality (18) ensures the stability of
the uniformly stretched state of the chain.

For K < K0 a local convexity in the E(R) behavior, as
illustrated in Fig. 5(a) by curve 2, appears in a neighborhood
of R0, i.e., on some interval R1 < R < R2 with R1 < R0 and
R2 > R0. This means that the homogeneous state given by the
energy E2(R), R1 < R < R2, with the alternating bond lengths
R − u0(R) and R + u0(R), in fact is unstable. Instead, a
heterogeneous conformation, where some part of the chain has

equal bonds and the other one alternating bonds, appears more
stable. In this case, the chain energy behavior can be obtained
by connecting the two points {R1,E(R1)} and {R2,E(R2)} by
a line [see Fig. 5(a), line 3]. In other words, moving along
this line, the heterogeneous state with one part of the chain
being in a weakly stretched state with equal bonds and the
spacing R1, and the other part in a strongly stretched state
with alternating bond lengths R2 − u0(R2), R2 + u0(R2) and
the spacing R2 appears more energetically favorable. In this
case, the heterogeneous stretching (lengthening) of the whole
chain occurs due to the increase of the portion of strongly
stretched bonds. This scenario of the heterogeneous stretching
results in the appearance of the stationary region (plateau)
in the force-stretching diagram under the chain lengthening
(R1 < R < R2) as illustrated by line 6 in Fig. 5(c).

IV. DYNAMIC HETEROGENEITY AND TOPOLOGICAL
SOLITONS

Since the nonlinear lattice model introduced in the previous
section admits the heterogeneous structure that appears to
be energetically favorable, the existence of freely moving
topological defects is expected. The corresponding soliton
solutions can be found numerically using the steepest-descent
method. To this end, it is convenient to use the following
variables: coordinates un = xn/r0, energyH = H/ε, and time
τ = r−1

0

√
ε/m t . Then the dimensionless Hamiltonian of the

cyclic chain takes the form

H =
2N−1∑
n=0

[
1

2

(
dun

dτ

)2

+ V(un+1 − un)

+1

2
κ(un+2 − un − 2)2

]
, (22)

whereV(un+1 − un) = ε−1V (xn+1 − xn) and κ = Kr2
0 /ε. Ac-

cording to Eqs. (7), the chain tension is given through the
boundary conditions:

u2N ≡ u0 + 2Na and u2N+1 ≡ u1 + 2Na, (23)

where the lattice spacing of the stretched chain is a = R/r0 �
1.

The system of equations

d2un

dτ 2
= V ′(un+1 − un) − V ′(un − un−1)

+ κ(un+2 − 2un + un−2), (24)

where n = 0,1, . . . ,2N − 1, corresponds to the Hamiltonian
function (22) with the boundary conditions (23) and u−1 ≡
u2N−1 − 2Na and u−2 ≡ u2N−2 − 2Na. For the relative dis-
placements rn = un+1 − un, the equations of motion (24)
become

d2rn

dτ 2
= V ′(rn+1) − 2V ′(rn) + V ′(rn−1)

+ κ(rn+2 − 2rn + rn−2). (25)

For numerics we choose the following values of the
parameters: ε = 1, β = 1, and r0 = 1. Then for κ > κ0 = 1/4,
the ground state will always be uniformly stretched because
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the stability condition of the alternating states (18) is fulfilled.
Consider the chain with the lattice spacing a > a0 = R0/r0 =
1 + (βr0)−1 ln 2 and κ > κ0. Then the chain has the following
two ground states with equal energy: r2n−1 = a ∓ δ and
r2n = a ± δ,n = 1, . . . ,N/2, where δ = u0/r0. We look for
traveling wave solutions of the equations of motion (25) that
describe the smooth transition of the chain from one ground
state to the other one, i.e., we put

r2n−1(τ ) = r1(2na − sτ ), r2n(τ ) = r2(2na − sτ ), (26)

where s is a dimensionless traveling wave velocity. The
numerical method for finding the soliton solutions of the
equations of motion (25) is described in detail in Refs. [11,12].

Let {rn}2N
n=1 be a soliton solution of the system equations of

motion (25). Then it is possible to find the soliton energy

E = 1

2

N∑
n=1

{
V(r2n−1) + V(r2n) + 1

2
κ(1 + s̄2)

× [(r2n−1 + r2n − 2)2 + (r2n + r2n+1 − 2)2]

}
, (27)

where s̄ = s/2a
√

κ is the reduced velocity and

D = 1 + 2

[
N/2∑
n=1

(
n + 1

2
− n̄

)
pn

]1/2

(28)

is its diameter. Here, the soliton center n̄ is given by

n̄ =
N/2∑
n=1

(
n + 1

2

)
pn, (29)

and the sequence

pn = (r2n+1 − r2n−1)/S,S =
N/2∑
n=1

(r2n+1 − r2n−1), (30)

determines the distribution of deformation along the chain.
The shape of the topological soliton is presented in Fig. 6.

Panel (a) shows that the lengths of odd bonds r2n−1 have the
kink shape, whereas the lengths of even bonds r2n have the
antikink shape (and vice versa for the antikink). Next, as shown
in panel (b), the local compression of the chain takes place in
the region of soliton localization.

The energy of formation of the kink-antikink pair can be
defined as the difference 
E = E − E0, where E is the energy
of the stationary kink-antikink pair in the cyclic chain and
E0 is the energy of the ground state of the chain at a given
lattice spacing a > a0. As shown in Fig. 7(a), the formation
energy monotonically increases with the growth of the lattice
spacing. Nearby the critical value of the lattice spacing a0, the
energy of formation becomes infinitesimal. When a → a0 + 0,
the energy 
E → 0 and the soliton diameter D → ∞. With
increasing a, the soliton diameter monotonically decreases
down to the value D = 3.4 [see Fig. 7(b)].

Consider the dependence of the energy and the diameter
of the soliton on its velocity. We choose the values β = 1,
r0 = 1, a = 1.7 > a0 = 1 + ln 2 = 1.693, and κ > κ0 = 1/4.
It follows from Eq. (19) that the reduced dimensionless
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1.6

1.7

1.8

(a)

r 2n
−

1,  
  r

2n

50 100 150 200 250

3.392

3.396

3.4

ρ n (b)

FIG. 6. (Color online) Stationary topological soliton (s = 0)
in stretched chain at a = 1.7, β = 1, r0 = 1, κ = 1, N = 500.
Dependence of (a) relative displacements r2n−1 ¨r2n (solid and dashed
lines) and (b) local compression ρn = r2n−1 + r2n on the number of
the chain site are shown.

velocity of sound is

s̄0 = s0/2a
√

κ =
√

1 + κ−κ+
2κ(κ− + κ+)

, (31)

where κ± = V ′′(a ± δ). The numerical analysis has shown that
the system of discrete equations (25) has a soliton solution only
in the subsonic region: s̄ < s̄0, κ > κ0, being a typical situation
for topological solitons (kinks). For our model, the region
of the existence of topological solitons in the space of the
parameters κ , s̄ is shown in Fig. 8. The region of the existence
of solitons is separated from the region of their absence by

1.6 2 2.4 2.8 3.2

0

2

4

6

(a)

E

1.6 2 2.4 2.8 3.2
0

10

20

30

D

(b)

a

FIG. 7. (Color online) Dependence of the energy of formation of
soliton-antisoliton pair E (a) and the diameter of topological soliton
D (b) on the value of lattice spacing a of stretched cyclic chain
consisting of N = 500 sites (β = 1, r0 = 1, κ = 1, and a0 = 1.693).
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0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

(a)

(b)

s−

κ

FIG. 8. Region of existence of topological solitons in the space
of parameters s̄, κ (a) and region of parameter values at which soliton
solutions are absent (b). The line which splits these regions is given
by Eq. (31). Lattice spacing is a = 1.7 and β = 1, r0 = 1.

curve (31), which determines the dependence of the reduced
velocity of sound s̄0 on the dimensionless stiffness κ .

The dependence of the energy and the diameter of the
topological soliton on its velocity is given in Fig. 9. As follows
from this figure, the soliton energy monotonically increases
with the growth the velocity. The energy tends to infinity at the
velocity of long-wave acoustic phonons. The soliton diameter
nonmonotonically depends on its velocity. For small values the
velocity increase results in negligible decrease of the diameter,
which nearby the right edge of the velocity spectrum turns into
the fast monotonic growth.
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s

FIG. 9. (Color online) Dependence of energy E and diameter D

on reduced velocity s̄ at β = 1, r0 = 1, κ = 1, and a = 1.7.

FIG. 10. Uniform motion of kink-antikink pair in stretched chain.
Dependence of chain distribution of odd r2n−1 (a) and even r2n (b)
bond lengths on time τ . Parameter values: β = 1, r0 = 1, κ = 1, a =
1.7 (lattice spacing of stretched chain), s̄ = s/2a

√
κ = 0.5 (reduced

soliton velocity).

Consider the dynamics of a kink-antikink pair in a cyclic
chain consisting of N sites. To this end, we integrate the system
of the equations of motion (25) with the initial conditions

rn(0) = r0
n, for n = 1,2, . . . ,2N ;

r ′
2n−1(0) = −s

(
r0

2n+1 − r0
2n−3

)
/4a,

(32)
r ′

2n(0) = −s
(
r0

2n+2 − r0
2n−2

)
/4a,

for n = 1,2, . . . ,N,

where s is a soliton velocity and {r0
n}2N

n=1 is a topological soliton
solution with velocity s.

The numerical integration of the system (25) with the initial
conditions (32) has shown that the topological solitons in
the stretched chain are dynamically stable for all admissible
velocities s < s0. As illustrated by Fig. 10, the solitons move
along the chain with a constant velocity without phonon
radiation, completely retaining their initial shape.

Consider now the interaction of the solitons with opposite
polarity under their collision. To this end, we integrate the
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FIG. 11. Annihilation of two topological solitons with opposite
polarity under collision in stretched chain. Dependence of the chain
distribution odd r2n−1 (a) and even r2n (b) bond lengths is shown.
Parameter values: β = 1, r0 = 1, κ = 1, a = 1.7 (lattice spacing of
stretched chain), s̄ = s/2a

√
κ = 0.5 (reduced soliton velocity).

system (25) with the initial conditions

rn(0) = r0
n, for n = 1,2, . . . ,2N ;

r ′
2n−1(0) = −s

(
r0

2n+1 − r0
2n−3

)
/4a,

r ′
2n(0) = −s

(
r0

2n+2 − r0
2n−2

)
/4a,

for n = 1,2, . . . ,N/2; (33)

r ′
2n−1(0) = s

(
r0

2n+1 − r0
2n−3

)
/4a,

r ′
2n(0) = s

(
r0

2n+2 − r0
2n−2

)
/4a, for

n = N/2 + 1,N/2 + 2, . . . ,N.

The numerical integration has shown that this interaction is
inelastic. Thus, at the velocity s̄ = 0.5, the collision results
in the annihilation of solitons with opposite polarity. The
collision is accompanied by intensive phonon radiation and
leads to the appearance a breatherlike localized oscillation
(see Fig. 11).

For κ < κ0 the chain can be found in the ground state
of three types, depending on the lattice spacing a. Under
weak stretching a � a1 (1 < a1 < a0), the ground state is
a uniformly stretched chain with equal bonds. At middle
stretching a1 < a < a2 (a2 > a0), a part of the chain is found
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FIG. 12. Nonuniform stationary state of stretched cyclic chain
with a > a0 and κ < κ0 (β = 1, r0 = 1, a = 1.7, κ = 0.2). Insets
show that the edges of strongly stretched region of the chain have
soliton shape (bond lengths r2n−1, r2n smoothly depend on n).

in a weakly stretched homogeneous state with equal bonds
and the spacing a = a1, whereas the complementary part in a
strongly stretched state with alternating bonds and the spacing
a = a2. For a � a2 the whole chain is found in a homogeneous
state with alternating bonds.

The numerical analysis confirms the existence of these
three types of chain states. Thus, at β = 1, r0 = 1, κ = 0.2,
the critical values of the lattice spacing are a0 = 1 + ln 2 =
1.6931, a1 = 1.6833, a2 = 1.8655. At a = 1.7 the main part
of the chain is found in the uniform state with equal bond
lengths a1 < a0, whereas the other part turns into the strongly
stretched alternating state with period a2 > a0 (see Fig. 12).
This behavior of the chain under stretching can be explained
by the nonconvexity of the function E(a) (see Sec. III).

Figure 12 also illustrates that the edges of the strongly
stretched region of the chain with the alternating structure
have the form of smooth stairs describing a smooth transition
of the chain from the state with equal bonds to the state
with alternating weakly and strongly stretched bonds. The
numerical simulations have shown that the strongly stretched
region can propagate along the chain with a subsonic velocity
completely retaining its shape (see Fig. 13). Therefore this
transition region of the chain is a soliton describing the
transition of only a part of the chain into the state with
alternating bonds. As follows from this figure, the collision
of these solitons does not result in their destruction, but it is
accompanied by phonon radiation.

V. EXAMPLES OF MOLECULAR CHAINS WHERE THE
EXISTENCE OF STRETCHING SOLITONS IS POSSIBLE

We have studied the simplified one-dimensional lattice
model. Nevertheless, this study allows us to define a family
of molecular systems with quasi-one-dimensional structure in
which the effects related to the appearance of bistability under
stretching are expected.

The stability condition of alternating states of the stretched
chain (18) imposes an important constraint—the coupling con-
stants of the first and the second neighbors have to be related
through this inequality. This condition of commensurability
of the energies of interaction cannot obviously be realized in
the chains, where the nearest neighbors are coupled by strong
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FIG. 13. Inelastic collision of two strongly stretched regions in
cyclic chain with a > a0 and κ < κ0 (β = 1, r0 = 1, a = 1.7, κ =
0.2, velocity is s̄ = 0.25). Dependence of chain distribution of odd
r2n−1 (a) and even r2n (b) bond lengths on time τ is present.

valent bonds, while the second neighbors by weak van der
Waals interactions.

Note that the condition (18) provides the stability of a
stretched chain only with respect to its longitudinal defor-
mations. In the three-dimensional space, the instability of a
stretched chain can be caused by other (orientational, bending,
twisting, etc.) deformations. Therefore the commensurability
condition in this case is not sufficient.

Consider a zigzaglike chain of hydrogen bonds as the first
example. Hydrogen fluorides HF, chlorides HCl, HBr, and HI
(HX) at low temperatures have a crystalline structure formed
by planar zigzaglike chains of hydrogen bonds [13–16]. Con-
sider an isolated hydrogen-bonded chain (HX· · ·)∞ consisting
of two-atom molecules of fluoride HF and chloride HCl.

The interaction of two-atom polar molecules HX is usually
described by the 12-6-1 potential [17]

U =
3∑

i1=1

3∑
i2=1

qi1qi2

ri1i2

+ 4ε

[(σ

r

)12
−

(σ

r

)6
]

, (34)

with the seven free parameters: two Lennard-Jones parameters
ε and σ , three charges q1, q2, and q3 (q1 + q2 + q3 = 0), lying
on the line of valent bonds, and three distances r1, r2, and r3,

which assign the charge positions. Here ri1i2 is the distance
between the charge qi1 of the first molecule HX and the charge
qi2 of the second molecule given in terms of r1, r2, and r3.

The values of the parameters for potential (34) can easily
be found using the data of the crystalline structure of (HX)x
and ab initio calculations of the dimer (HX)2 [18]. We get

q1 = −0.6397e, q2 = 0.6159e, q3 = 0.0238e,

r1 = 0.25 Å, r2 = 0.9075 Å, r3 = −1.575 Å,

ε = 0.007 98 eV, σ = 2.837 Å (35)

for hydrogen fluoride HF and

q1 = −0.3147e, q2 = −0.7974e, q3 = 0.4827e,

r1 = 1.296 Å, r2 = −0.275 Å, r3 = −0.838 Å,

ε = 0.0298 eV, σ = 3.602 Å (36)

for hydrogen chloride HCl, where e is the electron charge.
In the plane of the zigzaglike chain (· · ·HX· · ·)∞, the

position of each molecule HX is given by the coordinates
x and y of the center of the heavy molecule X and the angle φ,
which shows the direction (orientation) of the molecule HX.
The detailed description of the quantum-mechanical model of
this zigzaglike structure is given in [19]. For hydrogen fluoride,
the zigzag angle is α = 119.5◦, the longitudinal lattice spacing
is lx = 2.167 Å, the distance between the nearest molecules
is ρ0 = 2.509 Å, the direction of each chain molecule differs
from the zigzag line only by the angle ϕ0 = 01.21◦. (The
parameters for hydrogen chloride are α = 93.6◦, lx = 2.692 Å,
ρ0 = 3.694 Å, ϕ0 = 0.95◦.) In equilibrium, the energy of
interaction of the nearest molecules is E1 = 0.2339 eV and
the energy of interaction of the second-neighboring molecules
is E2 = 0.0312 eV (E1 = 0.0890 eV, E2 = 0.0165 eV).

Here the commensurability condition (18) of the energy of
interaction of the first and second neighbors is fulfilled. Thus
for the chain of molecules of hydrogen fluoride E2/E1 =
0.133 > 1/8 and for hydrogen chloride E2/E1 = 0.185 >

1/8. However, the analysis of spectrum behavior under the
chain stretching has shown that the stability of a uniformly
stretched state of the chain disappears before reaching the
point of inflection of the effective potential of longitudinal
stretching. In the case of HF, for the point of inflection the
longitudinal lattice spacing of the zigzag is a0 = 2.67 Å, while
the stability of the chain disappears already at the longitudinal
lattice spacing a1 = 2.625 Å (for HCl a0 = 3.60 Å, a1 =
3.48 Å). For the longitudinal spacing of the zigzag a � a1,
the chain becomes unstable with respect to the bending
long-wave phonons, i.e., the bending instability of the chain
takes place. Note that as regards the rest of the (longitudinal
and orientational) phonons, the chain remains stable under the
stretching a > a0). Thus the bending instability of zigzaglike
chains does not admit the existence of the topological solitons
of stretching. The maximum possible stretching of the chain
can be defined as the ratio a1/lx . For the chain (· · ·HF· · ·)∞ the
maximum stretching is 21%, while for the chain (· · ·HCl· · ·)∞
it is 29%.

The similar bending instability of the chain is observed
under stretching the transzigzag of the polyethylene macro-
molecule (—CH2—)n. The analysis of the linear dynamics
of the planar zigzag of the chain within the model studied

046601-9



P. L. CHRISTIANSEN, A. V. SAVIN, AND A. V. ZOLOTARYUK PHYSICAL REVIEW E 85, 046601 (2012)

in Refs. [19,20] has shown that the strained chain is stable
under stretching (the longitudinal lattice spacing of the zigzag)
a � a0, where the critical value a0 = 1.745 Å corresponds to
the point of inflection of the effective potential of longitudi-
nal stretching. However, under stretching a > a0 the chain
becomes unstable with respect to the bending oscillations
of the chain. Here the maximum possible stretching of the
chain is 37% (in equilibrium the longitudinal lattice spacing
of the zigzag is lx = 1.276 Å). Here the bending instability is
caused by the fact that the interaction of the second neighbors
in the transzigzag occurs only because of the deformation
of the valent angles CCC and it does not depend directly
on the distance between them. The bending of the chain
does not allow to break it without deforming the valent
angles.

Thus, in a zigzaglike polyethylene macromolecule, the
energy of interaction of the second neighbors is of the same
order as the energy of interaction of the first neighbors,
but the formation of bistable ground states is impossible due
to the bending instability of the strongly stretched chain. For
the absence of this instability the angles of a polymer chain
have to possess a sufficiently strong nonvalent interaction of
the second neighbors. The molecular groups of polyethylene
CH2 do not possess the interaction of this type. However,
the radicals CHR with sufficiently long chains can provide
this interaction. The polyolefine macromolecules (—CH2—
CHR—)n: polypropylene (R = C3H7), polystyrene containing
benzol rings in radicals (R = C6H5) and polyvinylcarbazole
have the required stability structure. In these macromolecules
with strongly interacting side radical groups R under the strong
stretching of the chain, the topological solitons can exist.

The existence of the topological solitons of stretching
can be expected also in the DNA double helix. Here the
conformational interaction of neighboring sites of the sugar-
phosphate lattice plays the role of the first-neighbor coupling,
whereas the stacking interaction of the neighboring purine and
pyrimidine bases can be considered as the second-neighbor
interaction. The experiments on stretching a single DNA
molecule [1–4] exhibit the presence of a specific constant
region (plateau) in the force-stretching diagram [5]. At strength
about 65 pN the nontypical behavior is exhibited: the molecule
becomes elongated at constant force up to 1.7 of its contour
length. At further stretching the force again begins to grow.
A similar behavior under stretching exhibits also α helices of
protein [10].

Within our model this behavior will take place under a
weak second-neighbor interaction, when K < k0. Here, in a
certain interval of lengthening, the stretching occurs according
to the two-phase scenario, when one part of the chain is found

in a weakly and the other one in a strongly stretched state.
In the force-stretching diagram a constant region (plateau)
appears due to the stretching of the chain because of increasing
only the portion of its strongly stretched part. Obviously,
here the topological solitons describing the transition from the
weakly to the strongly stretched phases of the chain have to
exist.

VI. CONCLUSIONS

The study carried out in this paper shows under the
stretching of molecular chains the conformational changes
of these chains can occur that result in different ground
states. The transition regions between these states can be
described as topological solitons. In the simplest model with
the nearest-neighbor interaction of the Morse-like type and the
second-neighbor harmonic interaction, it is shown that under
the chain stretching the ground state is realized as a regular
configuration with alternating bonds (“long-short”). In this
case, the chain can be found in two degenerate ground states
admitting the existence of topological solitons that describe
the chain transition from the state “short-long bond” into
the state “long-short bond.” This situation is possible for the
molecular chains with sufficiently strong interaction of the
second neighbors. With weak interaction, the chain stretching
leads to the appearance of one region with weakly and the
other one with strongly stretched bonds. As a result of this
nonuniform stretching, the presence of a broad plateau in the
force-stretching diagram of DNA double helix and protein α

helix can be explained. The boundary between the weakly and
strongly stretched phases of the chain can also be described as
a topological soliton.

Finally, it should be noticed that the models with the second-
neighbor coupling being responsible for the stabilization of
homogeneous bistable ground states have been studied earlier
[19,21–24]. However, in these (diatomic) models, the effect
of switching or controlling bistability by external forcing has
not been considered. The bistability here has been attained
intrinsically due to the repulsive interaction in the heavy-ion
sublattice.
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