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Electron cooling in decaying low-pressure plasmas
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A simple analytical fluid dynamic model is developed for evaporative electron cooling in a low-pressure
decaying plasma and compared to a two-dimensional simulation and experimental data for the particular case
of argon. Measured electron temperature and density developments are fully reproduced by the ab initio model
and the simulation. Further, it is shown that in the late afterglow thermalization of electrons occurs by coupling
to the ion fluid via Coulomb collisions at sufficiently high electron densities and not by coupling to the neutral
background.
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I. INTRODUCTION

Diffusional or evaporative cooling—the diffusional losses
of predominantly high-energy particles—is a ubiquitous phe-
nomenon ranging from star escape in globular clusters [1]
to very effective cooling of trapped atoms, permitting Bose-
Einstein condensation [2–4], and last but not least, evaporation
of fluids, of course. In low-pressure plasmas it was first
observed in the 1950s [5] as an efficient means to cool electrons
in the afterglow. Naturally, the process is particularly important
for pulsed plasma applications where the cold afterglow has
recently moved again into the focus of current research [6,7].
In contrast to the importance of the process, only little work
was done on the theoretical description, including numerical
integration of the Boltzmann equation [7] and fluid modeling
[8] based on some ad hoc assumptions.

Generally, there is a close connection to the familiar
energy, momentum, and particle balance governing stationary
plasmas. However, the rather cold electron temperature leads
to new effects that make the situation rather distinct. While
evaporation of a liquid provides the analogy for cooling
of a plasma by electron loss to the wall, some remarkable
differences exist. In a decaying plasma, the “work function”
that energetic electrons have to overcome when escaping
from the system (evaporation) is a function of the electron
temperature. Furthermore, the diffusional transport from the
bulk to the boundary depends on the electron and the ion
temperature. Moreover, thermalization of the electrons occurs
by Coulomb collisions with the ions and not by elastic
collisions with the neutrals. The physics of this process is
investigated by an analytical model, which provides a simple
quantitative prediction of the energy and particle decay rates.
This model is compared to a substantially more complex
two-dimensional (2D) simulation which avoids the necessary
simplification made in the analytical model. Both model and
simulation are compared to an experiment where electron
temperature and density are measured temporally resolved.
The paper is structured accordingly.

*Yusuf.Celik@rub.de

II. ANALYTICAL MODEL

Calculation of the electron mean energy in the afterglow
starts with the second moment of the Boltzmann equation:

∂

∂t
(ne〈ε〉) + �∇ · (ne〈ε�v〉)

= −�j · �∇� − 2
me

mi
νne

(
〈ε〉 − 3

2
kTg

)
. (1)

Here, ne,ε are the electron density and energy, �j the electron
current density, � the electrostatic potential, me,i the electron
and ion mass (equal to the neutral mass), and 3/2 kTg the mean
energy of the background gas or ion particles. Since ions and
neutrals exchange energy very efficiently, they are assumed
to be equithermal at all times. The brackets stand for an
averaging over the electron energy distribution function (eedf).
The energy flux density ne〈ε�v〉, �v being the particle velocity,
consists of a convective part and a conductive part, i.e., the heat
flux �q. On the right-hand side only thermalizing collisions are
taken into account. Inelastic collisions (ionization, excitation)
become negligible on a time scale very short compared to
the electron cooling time. ν = νei + νen is the sum of the
electron-ion and electron-neutral collision frequencies.

Major assumptions in the analytical model are (a) a
Maxwellian eedf and (b) a spatially homogeneous tempera-
ture Te. Rapid thermalization via electron-electron Coulomb
collisions at low temperatures and relatively high densities
motivates (a). In fact, temporally resolved measurements
performed under similar conditions [8,9] show that an ini-
tial Druyvesteyn-like distribution relaxes to a Maxwell-like
distribution within the characteristic time for cooling τε (to
be defined below). A perturbative approach to (1) shows that
the electron temperature becomes homogeneous on the time
scale of the electron diffusion time, which is much shorter than
both the ambipolar diffusion time and the energy decay time.
This argument is confirmed by the simulation allowing for
gradients. Then 〈ε〉 = 3/2 kTe, ne〈ε�v〉 = 5/2 kTene �u, �∇Te =
0, and �q = 0 with �u = 〈�v〉.

Homogeneity of Te allows volume averaging of (1):

kṪe

kTe
= − 2

3

A

V

1

〈ne〉V

〈
(�σ · ��e)

(
1 + eδ�

kTe

)〉
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− 〈
〉V

kTe
. (2)
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The dot represents the temporal derivative, �σ is the nor-
mal vector pointing outward to the walls, and 〈
〉V =
2(me/mi)〈ν〉Vk(Te − Tg) is the collisional contribution, with k

being the Boltzmann constant and Tg the gas temperature. The
volume integral is carried out by making use of the continuity
equation. This eventually leads to an averaging of the potential
in the bulk weighted by the time derivative of the electron
density distribution. As a very good approximation, in this
step the value for the potential is replaced by the maximum in
the center (see Appendix A). The subscripts A and V indicate
surface and volume averaging. For equipotential (conducting)
walls the potential difference between the center and the wall
δ� is constant and the surface averaging applies only to
(�σ · ��e).

Globally the charge particle fluxes balance: 〈�σ · ��e〉A =
〈�σ · ��i〉A. The local ion flux at the wall equals the ambipolar
diffusion flux at the edge with the ambipolar diffusion constant
Da = (kTe + kTi)/miνin, where νin denotes the ion-neutral
collision frequency. It is assumed that the plasma is in the
fundamental diffusion mode n(0)

e at all times:

〈�σ · ��e〉A

〈ne〉V
= 〈�σ · ��i〉A

〈ne〉V
= −Da

〈�σ · �∇n(0)
e

〉
A

〈n(0)
e 〉V

. (3)

In the analytical model, a cube geometry with an edge length
L and a classical cosine diffusion profile are assumed:

ne(�r,t) = nc(t) cos
(
π

x

L

)
cos

(
π

y

L

)
cos

(
π

z

L

)
, (4)

where nc is the maximum center electron density. Then
〈ne〉V = nc8/π3 and 〈�σ · ��e〉A = 4ncDa/Lπ .

The potential difference between the center and the walls
δ� is determined by the global charged particle flux balance
which is evaluated by using the Boltzmann factor nw =
nc exp(−δ�/kTe) and the thermal flux �σ · ��e = vthnw/4 for
electrons at the walls, where vth = √

8kTe/πme represents the
thermal velocity and nw the electron density at the wall.

Inserting these results in Eq. (2), the electron temperature
equation is derived:

kṪe

kTe
= −2Da

(π

L

)2
[

2 + ln

(
Lvth

16Da

)
± cw

]
− 〈
〉V

kTe
. (5)

The positive sign in front of cw = ln(π ) − 1 � 1 corresponds
to the above case of conducting walls. Carrying out a similar
calculation for dielectric walls (local flux balance) gives the
negative sign. The calculation is provided in Appendix B.

Expanding the first term by D(0)
a —the initial diffusion

constant with kT (0)
e —the cooling time constant τε can be

identified as

1

τε

= 2D(0)
a

(π

L

)2
[

2 + ln

(
Lv

(0)

th

16D
(0)
a

)]
. (6)

In the logarithm, kTe is approximated by its initial value
kT (0)

e , which is justified over a wide range due to the weak
functional dependence. Furthermore, the small difference
between dielectric and conducting walls is neglected. Using
typical experimental conditions νin = 1.53 × 105 s−1 [10] at
a neutral gas pressure of 1 Pa, kT (0)

e = 3.2 eV, and an edge
length of L = 0.5 m, one calculates an electron energy decay
time of τε = 30 μs.

Normalizing the time and the electron temperature [τ =
t/τε, �(τ ) = kTe/kT (0)

e ] and using kT (0)
e � kT (0)

i ,kTg, Eq. (5)
takes a simple form,

�̇ = −�2 − β� − α0n

�3/2
(� − β), (7)

with the initial condition �(0) = 1. The parameters are

α0 = Cei

(π

4

)3 n(0)
c ln � τε(
kT

(0)
e

)3/2 , β = kTg

kT
(0)

e
� 1. (8)

n(τ ) = nc(τ )/ n(0)
c is the electron center density normalized

to its initial value, ln � ≈ 6 is the Coulomb logarithm, and
Cei = 7.4 × 10−17 eV3/2 m3 s−1 [11]. Under our experimental
conditions typical values of α0 are of the order of 10−4.
Comparison of the thermalizing rates leads to the conclusion
that Coulomb collisions dominate elastic collisions at room
temperature if νen/ne < 10−9 m3 s−1. For argon at a plasma
density of 1017 m−3, this is fulfilled for pressures up to 100 Pa.

For 1 > � > β, the collisional term can be neglected. The
resulting Bernoulli differential equation has the solution

β

�
= (1 + β)eβτ − 1. (9)

For βτ � 1, the exponential can be expanded, leading to � =
(1 + τ )−1 with β � 1. This hyperbolic regime corresponds to
the electron-temperature-dominated diffusional decay (�̇ ≈
−�2). In case that βτ � 1, the electron temperature exhibits
an exponential decrease corresponding to an ion-temperature-
dominated diffusional decay (�̇ ≈ −β�).

The diffusive density decay is calculated using the diffu-
sional density profile and the continuity equation:

ṅ = −γ (� + β)n. (10)

The constant γ is defined by the ambipolar diffusional time
constant in the stationary case τ

(0)

d :

γ = τε

τ
(0)
d

= τε

D(0)
a

l2
d

. (11)

The diffusional length ld is calculated from the above cosine
profile as ld = L/(

√
3π ) = 0.092 m. Note that 1/γ is 2/3 of

the term in the square brackets in (6), which is only weakly
dependent on the initial electron temperature. Here γ = 0.17.

Taking (9) into account, the solution of Eq. (10) is n = �γ .
Since γ � 1, it becomes apparent that the electron temperature
decreases faster than the density.

When the electron temperature approaches the gas temper-
ature, thermalizing Coulomb collisions become significant and
the temperature decay slows down substantially. Assuming an
adiabatic variation with density (�̇ ≈ 0) in Eq. (7) one obtains

α0n = −�5/2 �/β + 1

�/β − 1
. (12)

When � � β this equation reduces to n ≈ �5/2/α0. In
contrast to the above behavior, now the density decays much
faster than the temperature. In this sense, evaporation cooling
of electrons is only efficient above the gas temperature.
Similarly, the continuity equation reduces to ṅ ≈ −γβn, with
the solution n ∝ exp(−γβ�τ ) where �τ = (τ − τβ). As a
rough estimation, an extension of these solutions to � ≈ β is
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assumed. Then for � < β,

β

�
≈ exp

(
2

5
γβ�τ

)
. (13)

The time τβ can be estimated from Eq. (9) as τβ = ln(2)/β ≈
1/β. Therefore, for low temperatures, the decay should behave
approximately exponentially with a characteristic decay time
of 5/2 miνinl

2
d/kTi, i.e., 5/2 times larger than the diffusional

decay time at the ion temperature.

III. SIMULATION

The numerical 2D simulation in cylindrical geometry is
based on Eq. (1), and the ambipolar diffusion equation for the
charged particle density n+. The diffusion equation is

∂n+
∂t

+ �∇ · (−Da �∇n+) = δn+
δt

. (14)

The model further includes the continuity equation for the
densities of the excited argon atoms in the two metastable
states—1s3 and 1s5 in Paschen notation, denoted as N3 and
N5, respectively:

∂N3,5

∂t
+ �∇ · (−D3,5 �∇N3,5) = δN3,5

δt
. (15)

The source and sink terms on the right-hand side include:
for the diffusion equation (14) ionization from the ground
state and from the two metastable states, for the metastable
atom balance (15) excitation and deexcitation from and to
the ground state, and coupling between the first four levels
of the argon atom by electron impact, and for the electron
energy balance (1) losses due to ionization, energy gain and
losses due to collisions, as well as work in the ambipolar
field. Further, an external heating term is added to Eq. (1) to
account for (pulsed) inductive power input. Penning ionization
is also included in the energy and particle balances. In Table I
the processes included in the simulation are summarized. The
corresponding rate constants are obtained by integrating the
cross sections [12] over a Maxwellian distribution function.
The rate constants for the reverse processes are obtained
by detailed balance. The mobility coefficient is taken from
[10]. In contrast to the analytical model, the gas temperature
(Tg = Ti) is not homogeneous but the profile is calculated
self-consistently for the steady state and then kept constant in

the afterglow. The simulation also includes possible heating by
superelastic collisions with metastables [13]. It is found that
this contribution does not play a role under our conditions.
Sheaths are not explicitly included but are considered as a
boundary condition for the energy balance equation by the
floating potential δ�sh:

�σ · (ne〈ε�v〉) =
(

5

2
kTe + eδ�sh

)
n+uB. (16)

The boundary condition for the diffusion equation is the Bohm
flux [14]. Furthermore, the diffusional flux of metastables at
the boundary is equal to one half of their thermal flux:

−D3,5(�σ · �∇N3,5) = 1
2 vthN3,5. (17)

The simulation is realized with COMSOL by first obtaining
the steady-state solution and then solving the time-dependent
problem where the external heating is switched off. Conditions
are identical to the experiments.

IV. RESULTS AND DISCUSSION

To verify the model an experiment was carried out in an
inductively coupled plasma at 1 Pa neutral gas pressure and
1 kW applied radio-frequency (rf) power [21]. The cylindrical
discharge vessel is approximately 0.5 m in height and in
diameter, resulting in the same surface to volume ratio as a
cube with L = 0.5 m. The rf (13.56 MHz) power is modulated
at 5–20 Hz, duty cycle 85%, and applied to a flat coil antenna.
The line-integrated electron density is measured by a 26.5 GHz
microwave interferometer [22]. In the stationary discharge,
Langmuir probe and absorption spectroscopic measurements
are carried out to obtain the center electron density and
the line-integrated gas temperature [21]. Time-resolved ion
velocity distribution functions (ivdfs) are measured at the
chamber bottom via a retarding field energy analyzer [23].

Measured ivdfs at different times upon pulse termination
are shown in the inset of Fig. 1. Since the sheaths are colli-
sionless, a monoenergetic ion distribution is found throughout.
This allows deduction of the electron temperature from the
peak energy Eion by kTe = 2Eion/[1 + ln(mi/2πme)]. In the
stationary case, very good agreement between this method
and Langmuir probe measurements is found. In the main part
of the figure the inverse of the normalized temperature is
shown as a function of time. Very good agreement between

TABLE I. Reactions included in the numerical simulation. The index 0 represents the ground state, whereas the other indices stand for the
resonant (Ar2,4) and metastable (Ar3,5) states.

No Reaction Description Ref.

1 e + Ar0 → e + e + Ar+ Ion formation (electron impact) [15]
2 e + Ar0 ⇀↽ e + Ar3,5 Metastable formation (electron impact) [12]
3 e + Ar3,5 → e + e + Ar+ Stepwise ionization (electron impact) [16]
4 e + Ar3,5 → Ar2,4 Collisional transfer [12]
5 e + Ar3 ⇀↽ e + Ar5 Collisional transfer, superelastic collisions [12]
6 e + Ar0 → e + Ar(exc) Total excitation (energy) [17]
7 e + Ar0 → e + Ar0 Elastic collisions (energy) [18]
8 Ar3,5 + Ar3,5 → Ar0 + Ar+ + e Penning ionization [19]
9 e + Ar+ → e + Ar+ Elastic collisions [20]
10 Ar0 + Ar+ → Ar0 + Ar+ Elastic collisions [10]
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FIG. 1. Measured (squares) and simulated (dashed and dash-
dotted line) temporal evolution of the inverse normalized temperature.
The dash-dotted line represents simulation results including free-
diffusional (FD) cooling with and without elastic collisions (ECs)
as the curves for FD and FD + EC are identical. Accounting
additionally for Coulomb collisions (CC) results in the dashed curve.
The solid line represents an ab initio calculation according to Eq. (9)
with β = 0.017 and τε = 30 μs (T (0)

e = 3.2 eV and T (0)
g = 0.055 eV

measured). The simulation gives 〈β〉V = 0.018 5 and τε = 36 μs. The
inset shows measured ivdfs as a function of time.

the experiment, the ab initio calculation, and the simulation
is found throughout. Differences between the simulation on
the one hand and the analytical model and the experiment on
the other hand are mainly due to the gas temperature profile
and uncertainties in the collision parameters, especially νin.
Elastic collisions play a negligible role, but Coulomb collisions
slightly enhance cooling, especially at later times, since the
temperature of the electrons is above the ion temperature.

Figure 2 shows a remarkable agreement between the
measured, the ab initio calculated, and the simulated tem-
poral development of the normalized line-integrated electron
density. This measurement shows that within 500 μs the

FIG. 2. Temporal development of the electron density normalized
to the initial density obtained from the measurement (solid line),
the simulation (dash-dotted line), and the ab initio calculation
(dashed line, γ = 0.17) for the same conditions as in Fig. 1. The
measured initial center electron density amounts to 4 × 1017 m−3.
The simulation provides γ = 0.17.

FIG. 3. Simulated (solid line) and ab initio calculated result for
the inverse temperature decay in normalized (bottom and left scale)
and natural (top and right scale) quantities on a semilogarithmic
scale.

density decays only by a factor of approximately 2, while
the temperature decay is about an order of magnitude higher,
as predicted.

So far, experimental evidence of evaporation cooling in
a decaying plasma is provided and all predicted trends of
the model are confirmed by the measurements. In Fig. 3
simulation results are shown for time domains where we do
not have diagnostic access. A rather drastic change of the
cooling rate becomes obvious when the electron temperature
approaches the gas (ion) temperature. Thermalization occurs
at earlier times than predicted by τβ , since Coulomb collisions
have a small but noticeable effect already at temperatures
above the gas temperature, and τε is not strictly a constant
but decreases with temperature. The simulated temperature
decay is clearly exponential, as demonstrated by the fit with
a time constant of 15 ms. The value calculated by Eq. (13)
using spatially averaged values from the simulation (〈Tg〉V =
0.047 eV, and 〈νin〉V = 0.9 × 105 s−1) is 17 ms, which is
very close, especially in light of the approximations made
in the derivation. The hypothetical final temperature is of
course set by elastic collisions and follows from Eq. (5) as
kT (f)

e = 2me〈νin〉V〈νen〉Vl2
dγ = 2.3 × 10−4 eV (2.7 K), also in

good agreement with simulation. However, then only very few
charges remain. It is interesting to note that with the above
scaling the plasma coupling parameter g = 1/(neλ

3
D) [11] is

proportional to T
−1/4

e . Therefore, it cannot rise much above
the value reached at Te = Tg, which is g = 0.1 in our case.

V. CONCLUSION

In summary, the analytical model, simulation, and experi-
ment agree very well and a detailed insight into the physics
providing quantitative description of electron evaporation
cooling is presented together with the temporal evolution of
electron temperature and density. It is found that in the late
afterglow electrons thermalize primarily through Coulomb
collisions with ions rather than elastic collisions with the
neutrals. Evaporation is efficient only before thermalization.
At lower temperatures the particle loss rate exceeds the cooling
rate. Adoption of the model to other geometries is easy, and
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extension to expanding plasmas, e.g., after short-pulse laser
ionization, should be straightforward.
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APPENDIX A

The validity of the following approximation is briefly
discussed: 〈

e�

kTe

�∇ · ��e

〉
V

≈ e�c

kTe
〈 �∇ · ��e〉V. (A1)

In this equation �c is the potential in the plasma center. Using
the continuity equation

∂ne

∂t
= −�∇ · ��e (A2)

and the Boltzmann relation

e�

kTe
= e�c

kTe
+ ln

(
ne

nc

)
, (A3)

one obtains〈
e�

kTe

�∇ · ��e

〉
V

= −e�c

kTe

∂

∂t
〈ne〉V − ∂

∂t

〈
ne ln

(
ne

nc

)〉
V

. (A4)

Since the ratio ne/nc does not depend on time, this yields〈
e�

kTe

�∇ · ��e

〉
V

= −∂nc

∂t

[
e�c

kTe

〈
ne

nc

〉
V

+
〈
ne

nc
ln

(
ne

nc

)〉
V

]
.

(A5)

Relation (A1) follows from the above when the second term
in the brackets on the right-hand side is neglected. This is
justified since the maximal value of expressions of the type
|x ln(x)| for x ∈ [0,1] is 1/e ≈ 0.37, while the function is
zero at both ends of the interval. At the same time the ratio
e�c/kTe is well above 4, depending on the gas and the
plasma dimensions. The relation between the two terms in the
brackets is further elucidated in the one-dimensional case in
Fig. 4.

It should also be noted that the approximation (A1) remains
valid also for stationary discharges. In this case the justification
follows the same line of reasoning with the exception that one
has to replace −∂/∂t with the ionization frequency νiz.

APPENDIX B

In this discussion, the calculation of the following expres-
sion,

G =
〈
(�σ · ��e)

(
1 + eδ�

kTe

)〉
A

, (B1)

is presented for the case of conducting and dielectric
walls (with the normal vector �σ pointing outward). This

FIG. 4. (Color online) Comparison of the two functional depen-
dencies on the distance of the two terms in (A5) for the case of
e�c/kTe = 5. The terms are proportional to the surface below the
corresponding curves.

is the important step in obtaining Eq. (5) from Eq. (2).
For the calculation, the three-dimensional diffusion elec-
tron density profile (4) is used together with the boundary
condition (3).

Generally, the potential difference δ� between the center
and the walls can vary across the walls. However, in the case
of conducting walls, the walls represent equipotential surfaces
and δ� = const. Then the surface averaging extends over the
electron flux only:

G = 〈�σ · ��e〉A

(
1 + eδ�

kTe

)
. (B2)

Furthermore, the flux balance of charged particles is global:
〈�σ · ��e〉A = 〈�σ · ��i〉A. The surface-averaged ion flux is given
by the Bohm flux 〈�σ · ��i〉A = uB〈nB〉A, where uB is constant
due to the homogeneous electron temperature. Using Eq. (3)
the surface-averaged Bohm flux is calculated to be

〈�σ · ��e〉A = uB〈nB〉A = 4

π

Danc

L
. (B3)

On the other hand, the electron flux to the walls is
determined by the thermal flux:

〈�σ · ��e〉A = 1
4 vth〈nw〉A. (B4)

The electron density on the walls nw is given by the Boltzmann
factor and is constant for equipotential (metal) walls:

nw = nc exp

(
− δ�

kTe

)
= const. (B5)

Combining (B3), (B4), and (B5) results in

eδ�

kTe
= ln

(
πLvth

16Da

)
= ln

(
Lvth

16Da

)
+ ln (π ) . (B6)
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This leads to the following expression for G in the case of
conducting walls:

G = 4

π

Danc

L

[
2 + ln

(
Lvth

16Da

)
+ cw

]
, (B7)

with cw = ln(π ) − 1.
Now the case of insulating dielectric walls is considered. In

this case no conductive flux exists along the walls and the flux
balance is required locally: �σ · ��e = �σ · ��i. Then the potential
difference �B − �w between the Bohm point and the walls,
i.e., the floating potential, is homogeneous:

−e (�B − �w)

kTe
= ln

(
nw

nB

)
= ln

(
4uB

vth

)
= const. (B8)

Therefore, δ� can no longer be constant and is also subject
to the surface averaging. Decomposing δ� into the potential
difference between the plasma center and the sheath edge (the
Bohm point) and the potential difference between the Bohm
point and the wall,

δ� = (�c − �w) = (�c − �B) + (�B − �w) , (B9)

allows (B1) to be rewritten as

G = 〈�σ · ��e〉A

[
1 + e (�B − �w)

kTe

]

+
〈
(�σ · ��e)

[
e (�c − �B)

kTe

]〉
A

. (B10)

Using the Boltzmann relation and the local flux balance, the
second term on the right-hand side becomes〈

(�σ · ��e)

[
e (�c − �B)

kTe

]〉
A

= uB

〈
nB ln

(
nc

nB

)〉
A

= ncuB

〈
nB

nc
ln

(
nc

nB

)〉
A

. (B11)

Using the boundary condition (3) with the density profile (4) to
determine the Bohm density nB leads to six identical integrals
of the type

I =
∫ L/2

−L/2

∫ L/2

−L/2
cos

(
π

x

L

)
cos

(
π

y

L

)

× ln
[
cos

(
π

x

L

)
cos

(
π

y

L

)]
dxdy = 8L2

π2
[ln (2) − 1] .

(B12)

Finally one obtains〈
(�σ · ��e)

[
e (�c − �B)

kTe

]〉
A

= nc
4Da

πL

[
ln

(
4πDa

uBL

)
− 2

]
.

(B13)

Substituting the above result together with (B3) and (B8) in
(B10) produces the result for dielectric walls:

G = 4

π

Danc

L

[
2 + ln

(
Lvth

16Da

)
− cw

]
. (B14)
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