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Fluid-model analysis of electron swarms in a space-varying field:
Nonlocality and resonance phenomena
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The physically based, benchmarked fluid model developed by Robson et al. [R. E. Robson, R. D. White,
and Z. Lj. Petrovic, Rev. Mod. Phys. 77, 1303 (2005)] and extended to analyze electron swarms in a spatially
homogeneous electric field under conditions corresponding to the Franck-Hertz experiment [P. Nicoletopoulos
and R. E. Robson, Phys. Rev. Lett. 100, 124502 (2008)] is generalized to investigate the nonlocal response and
resonance phenomena associated with electrons subject to an externally prescribed, spatially varying electrostatic
field. Analytic expressions are first derived for the mean velocity, energy, and heat flux of electrons in a
harmonically varying field, and expressions are then given for fields with more general spatial dependences.
Numerical examples are given for both benchmark model cross sections and a real gas.
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I. INTRODUCTION

The need for physically based, benchmarked fluid modeling
of low-temperature plasmas and swarms was emphasized
in [1] as an alternative to the plethora of ad hoc empirical
models which plague plasma physics, and which have little
chance of leading to either a correct qualitative or quantitative
understanding of many naturally occurring or laboratory-based
phenomena. This model has been recently generalized and
applied to analysis of electron swarms in a spatially homoge-
neous electric field E0, under conditions corresponding to the
Franck-Hertz experiment [2]. The same periodic structures
observed in more rigorous Boltzmann equation treatments
were reproduced, though with greater computational economy
and yielding considerably more physical insight. This same
fluid model is further extended in the present article to
investigate the nonlocal response and resonance phenomena
associated with electrons subject to an externally prescribed,
spatially varying electrostatic field, a problem of much
greater complexity than dealt with in Ref. [2]. Our results
are consistent with more rigorous solutions of Boltzmann
equations for electron swarms in spatially varying fields, and
in addition, offer the physical insight which these purely
numerical treatments lack. This remark applies in particular
to the two-way synergy which develops between nonlocality
and resonances with the “natural” Franck-Hertz oscillatory
modes.

Although the response of single-species, electron swarms
to external fields is a significant problem in its own right, and
indeed, forms the scope of the present paper, it is worth noting
that the Boltzmann treatments referred to above have been
largely motivated by the need to better understand striations
in plasmas. A brief discussion of the phenomenon is warranted.

Striations are ubiquitous, spatially periodic electron struc-
tures in gaseous electronics [3–8], first reported by Abria over
150 years ago [3] and perhaps observed even earlier by Michael
Faraday. They are sometimes considered to have been the
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prime motivation for 19th-century scientists to study gas dis-
charges, which in turn laid the foundations of modern physics
in the famous experiments of Franck and Hertz of the early 20th
century [4]. Ironically, however, while tremendous advances
in science have resulted, the basic physics of striations remain
at best incompletely understood. One has to draw a sharp
distinction between striations in plasmas and those periodic
structures associated with the Franck-Hertz experiment [4],
which, like the closely related Holst-Oosterhuis luminous
layers [9,10] or the periodic structures observed in the steady-
state Townsend experiment [10], constitute the “natural”
or “free” oscillations originating from inelastic collisions
between electrons and gas atoms, and driven by an external,
spatially homogeneous field [11,12]. Such oscillations, which
have themselves only recently become well understood [2],
differ in origin qualitatively and quantitatively from striations
which derive from internal, self-consistent, spatially varying
fields in a plasma consisting of both electrons and ions.
Often these striations are modeled in terms of the “forced”
oscillations of an electron swarm in an externally prescribed,
spatially varying external field [6,13], which in some way is
hoped to mimic the internal field in a plasma. Regardless of
the validity of this idea, it is nevertheless true to say [1] that a
theoretical framework for electron swarms, be it kinetic or fluid
in nature, should be adaptable to the electron component of a
plasma and, when coupled with a similar kinetic or fluid-based
model of the ion component, should be capable of handling
the internal, space-charge fields responsible for formation of
striations. While a full kinetic theoretical treatment remains
a formidable task, a fluid approach offers the possibility of
a computationally economical, physically tenable analysis of
a plasma. Thus, although striations per se are not directly
within the scope of the present paper, the potential for wider
application of the electron fluid model presented here is clear.

In this investigation we present a discussion (Sec. II)
and fluid analysis (Sec. III) of the nonlocal response and
resonances of electron properties in a gas subject to an
externally prescribed spatially varying electrostatic field. By
considering the latter to be a small perturbation superimposed
upon a larger dc field, we obtain analytic expressions for the
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mean electron velocity, energy, and heat flux in a harmonically
varying field [Secs. III C 1–III C 3], and give formulas for fields
with more general spatial dependences [Sec. III D]. Illustrative
numerical examples are given, highlighting nonlocality and
resonance conditions.

II. NONLOCAL TRANSPORT, RESONANCES,
AND SYNERGIES

Before outlining the fluid approach in detail, it is useful to
discuss key physical phenomena from a physical perspective.

A. Nonlocal transport

Generally speaking, if the dimension l of the transfer
mechanism—mean free path in collisional transport, or eddy
size for turbulent transport [14]—is comparable with the scale
length λ of the spatial variations of an externally imposed
force fieldFz = −∂zϕ(z) (taking only one spatial dimension z

for simplicity), the response of the system may be nonlocal,
with the flux of some physical property at point z linked to the
gradient in concentration or potential ϕ at different points z′,
through a generalized transport relation

J (z) = −
∫ ∞

−∞
K(z − z′) ∂zϕ(z′)dz′, (1)

where K(z − z′) is a transport kernel [14,15]. On the other
hand, if l � λ, then K(z − z′) = Kδ(z − z′) and Eq. (1)
reduces to the familiar local transport relation, J (z) = −K∂zϕ,
where K is a constant transport coefficient. However, unusual,
sometimes counterintuitive phenomena, may arise due to
nonlocality, e.g., in boundary layer meteorology, the turbulent
flux of an atmospheric property can be directed up the gradient
(“countergradient” flow), from low to high concentrations, for
large eddy turbulent transport within a forest canopy [14]. In
partially ionized plasmas, the properties of the lighter electron
component are actually determined by the mean free path
for energy transfer lε, a somewhat larger quantity than l [see
Eq. (8) below]. Hence if the plasma is subject to a sinusoidal
electrostatic field Ez = −∂zϕ of wavelength λ ∼ lε > l,

electrons respond nonlocally while the heavier ion component,
for which there is little distinction between the two types of
mean free path, can be expected to respond locally.

B. Franck-Hertz oscillations

In the idealized form of the Franck-Hertz experiment, a
prescribed uniform electric field E0 drives a swarm of electrons
from a localized plane source (the cathode) through an atomic
gas of number density N . The quantized nature of the atoms
leads to a discrete loss of energy εi in inelastic collisions
(taking only one quantized level for simplicity), reflected in
spatial oscillations in macroscopic properties, which occur
only in a certain “window” of reduced fields E0 /N [2]. The
wavelength lFH ≈ εi/eE of this “natural” or “free” mode of
vibration can be measured indirectly, as an I-V characteristic
in the traditional form of the experiment [16], or directly using
the photon flux technique [10]. Note that no such periodicity is
expected to occur for ions because of their much greater mass.

C. Synergies

Whereas nonlocality may become important if the external
field wavelength is close to the electron mean free path for
energy exchange, i.e., λ ∼ lε, resonances can be expected [6]
if λ matches the natural frequency of oscillation of the system,
i.e., λ ∼ lFH . In the interesting case when the three length
scales are comparable,

λ ∼ lε ∼ lFH , (2)

there is clearly a possibility of a synergy between resonance
and nonlocal effects, something which has attracted consider-
able interest in recent times [7,13].

III. FLUID EQUATIONS: FORMULATION AND SOLUTION
FOR SPACE-VARYING FIELDS

A. General remarks on fluid equations

Physically based fluid equations (as distinct from the nu-
merous ad hoc models which plague plasma physics [1]) have
been formulated over many years for both ions and electrons
[17], with closure representing the main obstacle to practical
application. Recently a physically based, benchmarked heat
flux ansatz has enabled satisfactory closure of the electron
fluid equations [1]. We therefore begin by generalizing our
earlier fluid treatment of electron swarms in a constant electric
field [2] to space-dependent fields.

B. Electron fluid model

Consider for simplicity an infinite system of electrons
of charge–e whose properties vary along the zaxis only
and undergo neither ionization nor attachment. (The latter
condition will be relaxed in subsequent articles.) In the steady
state the equations of continuity, momentum, and energy
balance are

∂�z

∂z
= 0, (3a)

2

3

∂(nε)

∂z
= −neEz − n m νm(ε)vz, (3b)

− 1

νe

[
vz

∂ε

∂z
+ 2ε

3

∂vz

∂z
+ 1

n

∂Jz

∂z

]

= ε − 3

2
kBTg − 1

2
Mv2

z + 	(ε), (3c)

respectively, where the meaning of the symbols is as follows:
M and Tg are the molecular mass and temperature of the
gas; kB is Boltzmann’s constant; n, vz, and ε are the electron
number density, average velocity in the zdirection, and average
energy; �z and Jz are the electron particle and heat fluxes
in the zdirection; while the quantity 	 = ∑

i εi(�νi − ←−
νi)/νe

accounts for inelastic processes i with threshold energies εi ,
and average collision frequencies for inelastic and superelastic
collisions �νi ,

←−
νi , respectively. The latter may be neglected

if εi 	 kBTg , as is the case for a noble gas. For the same
reason all processes i may be considered as excitations of the
ground state of the neutral atoms. The average elastic collision
frequencies for momentum and energy transfer may be taken
as simply νm(ε) ≡ N (2ε/m)1/2σm(ε) and νe = (2m/M)νm,
respectively, where σm (ε) is the momentum transfer cross
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section evaluated at the average electron energy ε. However,
the connection between �νi and inelastic cross sections is not
so straightforward [2].

Equations (3a)–(3c) are closed using the established ansatz
for heat flux [1,2]:

Jz = −23

m

∂

∂z

[
nξ (ε)

νm(ε)

]
− (5 − 2p)

3

neEzε

mνm(ε)
− 5

3
�zε, (4)

in which

p = d ln νm/d ln ε, (5)

ξ = α0ε
2

[
1 + 	(ε)

ε

]−r

, (6)

where α0 and r are adjustable parameters [2].

1. Unperturbed state

Initially the electrons are uniformly distributed in −∞ <

z < ∞ and subject to a constant applied field, Ez = −E0. The
corresponding momentum and energy balance equations,

eE0 = mνm(ε0)v0, (7a)

ε0 = 3

2
kTg + 1

2
Mv2

0 − 	(ε0), (7b)

may be solved for the unperturbed mean velocity and energy,
v0 and ε0, as functions of E0/N for a given set of cross sections,
without any reference to a heat flux ansatz. It can then be shown
that ε0

eE0
= lε√

2
, where

lε ≡
√

M

2m
β

1

Nσm

(8)

is representative of the mean free path for energy transfer, and

β ≡
√

(1 − 2	(ε0)
Mv2

0
).

Equations (7a) and (7b) lead to the following expressions
for differential mobility and differential energy:

μd ≡ ∂v0

∂E0
= γ

γ + 2p

v0

E0
, εd ≡ ∂ε0

∂E0
= 2

γ + 2p

ε0

E0
,

(9)

where the parameter

γ ≡ (1 + 	′)ε0

ε0 + 	 − 3
2kBTg

(10)

plays a key role in the description of periodic structures. (The
quantity 	′ is the derivative of 	 with respect to the mean
energy ε.) It may be evaluated from Eq. (9) using experimental
drift velocity data according to the procedure outlined in [1],
obviating the need to assume an empirical form of 	, as has
hitherto been the case [2], and greatly enhancing the accuracy
of the fluid model.

2. Perturbed state

To facilitate physical understanding through analytic so-
lution/expressions, we consider the case where a small-
amplitude space-varying field E1(z) is now switched on, also
in the z direction, giving a total field

Ez = −E0 − E1(z), (11)

leading to a new steady state with perturbed mean velocity,

vz(z) = v0 + v1(z), (12)

where |v1(z)| � v0. Similarly, number density, mean energy,
and heat flux are perturbed from their spatially uniform values
n0, ε0, J0 by small amounts n1(z), ε1(z), J1(z), respectively.
However, the particle flux �z = n0v0 remains constant, by
virtue of Eq. (3a). The fluid equations (3a)–(3c) are then lin-
earized in these small quantities and solved for the prescribed
form of E1(z).

C. Solution of the fluid equations: Harmonic field

1. Sinusoidal perturbations

We first consider a sinusoidal field of wavelength λ and
wave number k = 2π /λ, with corresponding sinusoidal
perturbations in electron properties, i.e.,

E1(z) = E1 eikz, v1(z) = v1 eikz, etc. (13)

The linearized equations for the complex amplitudes n1,v1,
and ε1 are

n1

n0
= −v1

v0
, (14a)

(iκ + p) ε1
ε0

+ (1 − iκ) v1
v0

= E1
E0

, (14b)

3
2 iκ

[
ε1
ε0

+ 2v1
3v0

+ J1
�ε0

]
+ γ ε1

ε0
− 2v1

v0
= 0, (14c)

where

κ ≡ 2

3

ε0

eE0
k = 4π

3
√

2

lε

λ
(15)

is a dimensionless quantity whose magnitude characterizes
nonlocal effects. The heat flux perturbation is given by

J1

�zε0
= Q(iκ)

ε1

ε0
+ Q̄(iκ)

E1

E0
, (16)

where the “spectral heat fluxes” are defined as follows:

Q(iκ) = A + iBκ + C(iκ)

iκ − 1
(17)

and

Q̄(iκ) = (5 − 2p − 3α)iκ

3(iκ − 1)
, (18)

respectively. Other parameters were introduced in previous
work [1,2]:

A = 2p

3
, B = αp̄ − 5

3

(
1 + p − 2p2

5

)
,

(19)
C = −α(p̄ − p − 1),

and

p̄ = ε0ξ
′(ε0)

ξ (ε0)
, α = ξ (ε0)

ε2
0

. (20)
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Equations (14a)–(14c) and (16) may be solved simultaneously to give

v1(z) =
−1 − 3

2γ
iκ[1 + Q(iκ) + (p + iκ)Q̄(iκ)]

D(iκ)
μdE1e

ikz ≡ t̄(iκ)μdE1e
ikz, (21)

ε1(z) = −1 + [2 + 3Q̄(iκ)]iκ + 3
4κ2Q̄(iκ)

D(iκ)
εdE1e

ikz ≡ s̄(iκ)εdE1e
ikz, (22)

J1(z) = Q(iκ)(iκ − 2) + Q̄(iκ)[p(iκ − 2) + γ (iκ − 1) + iκ
2 (5iκ − 7)]

D(iκ)

�zεd

2
E1e

ikz, (23)

where

D(iκ) = −1 + iκ(p + γ )

2p + γ
+ iκ

2 (2p + γ )
[−7 + 3Q(iκ) (iκ − 1) + 5iκ]. (24)

The functions t̄(iκ), s̄(iκ), and h̄(iκ) are effectively defined
by (21)–(23). We focus on velocity perturbations and explore
the properties of the “transmission function” t̄(iκ).

The quantity D(iκ) in the denominator of the terms on
the right-hand side of (21)–(23) has appeared previously in
the fluid model of the uniform field E0, idealized Franck-
Hertz experiment [2], where spatial variations are produced
by a localized source (the cathode). In that case, the ar-
gument of D has both real and imaginary parts κr and
κi , respectively, which are determined by the solvability
condition

D(iκi + κr ) = 0. (25)

Furthermore, it can be shown [2] that there is a range
(“window”) of E0/N for which the real part κr of the solution
of (25) is small and negative, and at the same time the imag-
inary part of the zero has the property 3

2
eE0
ε0

κi ≈ 2π
lFH

, where
lFH = εi/eE0 is the Franck-Hertz wavelength. Hence it follows
that

D(iκi) ≈ 0 (26)

for E0/N inside the window.

2. Resonances and nonlocality

For the present source-free problem in unbounded space,
where κ is a prescribed, real quantity, the argument of D(iκ)
is purely imaginary. Hence while D(iκ) can never vanish
exactly, by virtue of (26) it can be small if κ ≈ κi , and in that
case

k = 2π

λ
= 3

2

eE0

ε0
κ ≈ 3

2

eE0

ε0
κi ≈ 2π

lFH

. (27)

In other words, the denominators of the terms on right-hand
sides of Eqs. (21)–(23) are all small if

λ ≈ lFH , (28)

that is, when the wavelength of the applied field matches the
system’s natural “Franck-Hertz” wavelength, the quantities
defined by Eqs. (21)–(23) are all very large and a resonance
situation prevails. It is to be emphasized that there is only
one natural frequency and consequently, there can be only one

resonance condition (28) in any linear treatment. This point is
discussed further below.

If κ �= 0, Im[t̄(iκ)] �= 0, and Eq. (21) shows that v1(z)
generally differs in phase from E1(z). Thus cause (the field)
and effect (the velocity) are displaced in space, and this phase
shift can be taken as a measure of nonlocality. One expects
that the phase shift and nonlocality will be appreciable if κ ≈
lε /λ ∼1. However, in the limit κ ≈ lε/λ � l, it is clear from
Eqs. (21) and (24) that t̄(iκ) ≈ 1, Im[t̄(iκ)] ≈ 0, and hence
Eq. (21) reduces to the expected local relation v1 ≈ μdE1.

Similar comments apply to the mean energy and heat flux,
Eqs. (22) and (23), respectively.

3. Numerical examples

It is clear from the above discussion that for wavelengths
satisfying Eq. (2), both resonant and nonlocal effects can
occur simultaneously, and Figs. 1(a) and 1(b) show just
such a situation. Figure 1(a) illustrates the situation using the
benchmark model of Ref. [2], with M = 4 amu, Tg = 293 K,
and constant elastic and inelastic cross sections σm = 6 Å2

and σi = 0.1 Å2, respectively, the latter having a threshold
energy of εi = 2 eV. Figure 1(b) is for neon gas at Tg = 293 K,
using elastic, inelastic, and ionization cross sections provided
by Hayashi [18], with ionization treated approximately as
just another inelastic event. (A more accurate treatment of
ionization would require reformulation of the fluid equations,
something that is left for future work.) Differential mobility
and differential energy in each case were evaluated from drift
velocity and energy swarm data calculated using a numerical
solution of the spatially homogeneous Boltzmann equation
(see [19] for details). We could also have used measured swarm
transport data to evaluate these differential properties for neon.
Figures 2(a) and 2(b) show how resonances occur within the
Franck-Hertz “window” for the same model.

D. Solution of the fluid equations: General spatially
dependent fields

Equations (13) and (14) effectively constitute a Fourier
transformation of the fluid equations, and hence the corre-
sponding solutions for the general z-dependent field E1(z) can
be found from the results for a sinusoidal field, simply by
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FIG. 1. (Color online) (a) The mean electron velocity (21) (solid
curve) for a sinusoidal perturbing field (dashed curve) of amplitude
0.5 Td, superimposed on a constant uniform field of E0/N = 5 Td,
with the resonant wavelength ∼5.5 ζ , where ζ = (21/2Nσ0)−1 and
σ0 = 10−20 m2. The collision model is the same as in Ref. [2], and
is described in the text (1 Td = 1 townsend = 10−21 V m2). (b) The
mean electron velocity (21) (solid curve) for a sinusoidal perturbing
field (dashed line) of amplitude 6 Td, superimposed on a constant
uniform field of E0/N = 60 Td, with the resonant wavelength
∼5.5 ζ . The collision model is for neon gas as described in the
text.

replacing the constant E1 with

E1(k) = 1

2π

∫ ∞

−∞
E1(z)e−ikzdz, (29)

and Eqs. (21)–(23) by integrals over k, e.g.,

v1(z) = μd

∫ ∞

−∞
t̄

(
2

3

ε0

eE0
ik

)
E1(k)eikzdk. (30)

FIG. 2. (Color online) (a) The function τ (κ) = γ

γ+2p
|t̄(iκ)| for

values of E0 /N lying below (0.5 Td, dashed line) and within (5 Td,
solid line) the Franck-Hertz “window” corresponding to the collision
model of Fig. 1(a). (b) The function τ (κ) = γ

γ+2p
|t̄(iκ)| for values of

E0 /N lying below (0.5 Td, dashed curve) and within (60 Td, solid
curve) the Franck-Hertz “window” corresponding to the collision
model for neon of Fig. 1(b). Resonance occurs when the wavelength
of the field matches the Franck-Hertz wavelength, at the values of κ

given by Eq. (15).

Using the convolution theorem, this can be written in the
form of a general nonlocal transport relation (1),

v1(z) =
∫ ∞

−∞
K(z − z′)E1(z′)dz′, (31)

where

K(z) ≡ 1

2π
μd

∫ ∞

−∞
t̄

(
2

3

ε0

eE0
iκ

)
eikzdk. (32)

A space-dependent field generally produces nonlocal ef-
fects arising from phase shifts associated with its various
Fourier components (29). Figures 3(a) and 3(b) show the
situation for a perturbing Gaussian disturbance E1(z) using the
same collision models as in Figs. 1(a) and 1(b). The picture
is similar to that obtained by Sigeneger and Winkler [13]
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FIG. 3. (Color online) (a) A narrow Gaussian perturbation in the
field centered at z = 5ζ produces pronounced nonlocal and resonant
effects if E0 /N lies within the “Franck-Hertz window” for the
collision model of (a) Fig. 1(a) and (b) Fig. 1(b). Similar results for
neon have been obtained by Sigeneger and Winkler [13] via solution
of the Boltzmann equation for an arbitrarily large Gaussian pulse.
The chain curve is the response for E0 /N below the window.

in a rigorous numerical solution of Boltzmann’s equation
for electrons in a large-amplitude Gaussian pulsed field
E(z). In the special case where the dominant contribu-
tion is from wave numbers such that κ = 2

3
ε0

eE0
k = lε

λ
� 1,

Eq. (21) shows that t̄ ≈ 1 and hence Eq. (32) gives K(z) ≈
1

2π
μd

∫ ∞
−∞ eikzdk = μd δ(z). Equation (31) then reduces to

the local relation v1(z) = μdE1(z), as expected. Similarly,
if the width of the Gaussian pulse is increased sufficiently
we obtain local behavior, as has been verified by numerical
calculations.

IV. CONCLUDING REMARKS

In this paper we have generalized a physically based and
benchmarked fluid model to consider electron swarms under
the influence of perturbative nonuniform electric fields E1(z).
The key results arising from this paper are:

(1) Analytic expressions have been derived for physical
quantities in the case of harmonically varying fields, in which
the origin of nonlocality and resonances, and the interplay
between the two effects, is now transparent.

(2) This formalism for harmonic fields enables us to gen-
eralize the expressions to the case of arbitrary space-varying
fields. Results of numerical calculations have been given for
Gaussian space dependences for model and real gases.

These results are consistent with the previous Boltzmann
equation analyses, though the fluid model offers the distinct
advantage of offering more physical insight with far less
computational effort.

Following the same rationale of the previous kinetic work,
the next logical phase would be to adapt the current formalism
of this paper to the electron component of a plasma and
consider E1(z) to be now the internal, self-consistent space-
charge field, to be found through simultaneous solutions of
Poisson’s equation and the fluid equations for both electrons
and ions. Nonlocality and resonance effects will then be
accompanied by screening effects, as characterized by an
additional intrinsic scaling parameter, the Debye length lD .
However, further progress depends upon development of a
corresponding set of physically based and benchmarked ion
fluid equations, suitable for practical application to plasmas.
Reference [1] sets out such general equations, which, however,
need to be adapted to a form suitable for practical application
to plasmas.
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