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Three-dimensional lattice Boltzmann model for immiscible two-phase flow simulations
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We present an improved three-dimensional 19-velocity lattice Boltzmann model for immisicible binary fluids
with variable viscosity and density ratios. This model uses a perturbation step to generate the interfacial tension
and a recoloring step to promote phase segregation and maintain surfaces. A generalized perturbation operator
is derived using the concept of a continuum surface force together with the constraints of mass and momentum
conservation. A theoretical expression for the interfacial tension is determined directly without any additional
analysis and assumptions. The recoloring algorithm proposed by Latva-Kokko and Rothman is applied for phase
segregation, which minimizes the spurious velocities and removes lattice pinning. This model is first validated
against the Laplace law for a stationary bubble. It is found that the interfacial tension is predicted well for density
ratios up to 1000. The model is then used to simulate droplet deformation and breakup in simple shear flow. We
compute droplet deformation at small capillary numbers in the Stokes regime and find excellent agreement with
the theoretical Taylor relation for the segregation parameter β = 0.7. In the limit of creeping flow, droplet breakup
occurs at a critical capillary number 0.35 < Cac < 0.4 for the viscosity ratio of unity, consistent with previous
numerical simulations and experiments. Droplet breakup can also be promoted by increasing the Reynolds
number. Finally, we numerically investigate a single bubble rising under buoyancy force in viscous fluids for
a wide range of Eötvös and Morton numbers. Numerical results are compared with theoretical predictions and
experimental results, and satisfactory agreement is shown.
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I. INTRODUCTION

Numerical modeling and simulation of immiscible mul-
tiphase flows have received wide attention over the last 20
years, as such flows are involved in many aspects of basic
fluid mechanics as well as in engineering and environmental
problems. Traditionally, multiphase flows are simulated by
solving the macroscopic Navier-Stokes equations (NSEs) that
govern the physics of fluids together with a proper technique to
track or capture the interface between different phases. Among
the approaches, the front-tracking method [1–3], volume-
of-fluid (VOF) method [4–7], and level set method [8–10]
are commonly used. The front-tracking method is not suitable
for simulating interface breaking and coalescing, because
the interface must be manually ruptured based upon some
ad hoc criteria [2]. VOF and level set methods can naturally
deal with interface breaking and coalescing, and both solve
a pure advection equation for the interface in the Eulerian
frame. However, interface reconstruction is required in the
VOF method to determine the interfacial tension force and
calculate the flux across the interface. This process can be
time consuming and not always physically consistent [11].
Also, most of the VOF interface reconstruction schemes
are only first-order accurate. The level set method uses a
signed distance function to represent the interface. It requires
a reinitialization procedure to keep the distance property
when large topological changes occur around the interface.
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This may violate the mass conservation for each phase or
component. In addition, VOF and level set methods will suffer
from numerical instability at the interface region when the
interfacial tension becomes a dominant factor in complex
geometries [12]. For example, it is challenging to apply VOF
or level set methods to simulate capillary displacement in
porous media. Microscopically, the phase segregation and
the interfacial dynamics between different phases are due to
interparticle forces or interactions [13,14]. Thus, mesoscopic
level models are expected to describe accurately the complex
dynamic behavior of multiphase flows.

In recent years, the lattice Boltzmann method (LBM)
has emerged as an attractive numerical tool for simulat-
ing multiphase flow problems [15,16]. Unlike traditional
numerical methods, which are based on the solution of
macroscopic variables such as velocity and density, the LBM
is a pseudomolecular method that tracks evolution of the
particle distribution function of an assembly of molecules
and is built upon microscopic models and mesoscopic kinetic
equations [17]. The macroscopic variables can be obtained
from the moment integrations of the particle distribution
function. As such, the LBM has several advantages over
the traditional numerical methods such as the ability to be
programmed on parallel computers and the ease in dealing
with complex boundaries [18]. Besides, its mesoscopic nature
provides many of the advantages of molecular dynamics,
making the LB method especially effective for simulation of
complex interfacial dynamics [19–23].

Several lattice Boltzmann models have been proposed
for simulating multiphase flows. The color-fluid model
was proposed by Gunstensen et al. [24] based on the
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Rothman-Keller lattice gas model [25]. Two kinds of colored
particles (red and blue) are introduced to distinguish different
fluids. The local color flux and color gradient are calculated
and the work done by the color gradient against the color flux
is maximized to force the colored particles to move toward
fluids with the same color (this is known as the recoloring
step). A perturbation step is applied to realize the interfacial
tension effect. Later, Grunau et al. [26] modified this model
to allow for variations of density and viscosity. However,
the density ratio is restricted to around 1 for the color-fluid
model; in addition, the procedure to separate different phases
requires time-consuming calculations to find local maxima,
and the perturbation step can cause an anisotropic interfacial
tension that induces high spurious velocities near an interface
[18]. The pseudopotential model developed by Shan and
Chen [27] introduces the nearest-neighbor interaction between
fluid particles to describe the intermolecular potential, and
the phase separation occurs with a properly chosen potential
function. Although significant advances have recently been
made [28–30], further improvements are necessary for the
pseudopotential model to minimize spurious velocities at
interfaces and control numerical instability for flows with low
capillary number and high viscosity ratio [22]. The free-energy
model presented by Swift et al. [31] introduces phase effects
directly into the collision process by considering a generalized
equilibrium distribution function that includes a nonideal
pressure tensor term. These terms are defined to cohere with the
free-energy functional in diffuse-interface theory. In contrast
to the previous LB multiphase models, this model is shown
to be thermodynamically consistent. Although the free-energy
model satisfies the local conservation of mass and momentum,
it suffers from the lack of Galilean invariance except for a
binary fluid with equal densities. In addition, small droplets
are prone to dissolve since the multiphase system is always
evolving toward the direction of minimal free energy [21,32].
The mean-field model proposed by He et al. [13] introduces the
interfacial dynamics by incorporating molecular interaction
forces, which are approximated by the mean-field theory.
This model uses an index function to track interfaces, and its
numerical stability is enhanced by reducing the discretization
errors in calculation of molecular interactions. However, the
density ratio is restricted to a maximum of about 15 due to
the “stiffness” of the collision operator [33]. In addition, the
mobility in the interface-capturing equation is related to the
density and cannot be flexibly chosen [34]. Lately, several LB
multiphase models have emerged to tackle large-density-ratio
problems [34–37]. Most of them demand high computing
cost and/or complex numerical schemes [35,37]. Like the
free-energy model, these models cannot ensure the mass
conservation for each fluid due to numerical dissipation, which
becomes much worse for small droplets or bubbles in the
three-dimensional domain; see, e.g., Ref. [38].

Based on the original color-fluid model of Gunstensen
et al., some improvements have been made to model the
interfacial tension and reduce the spurious velocities at the
interface. Lishchuk et al. [39] used the concept of a continuum
surface force (CSF) [40] to model the interfacial tension.
In their algorithm, the perturbation step in the original
Gunstensen et al. model was replaced by a direct forcing
term in the mixed region. This forcing term is used to

recover the required pressure gradient across the interface,
and is calculated explicitly from the interfacial normal and the
macroscopic curvature of the interface. It has been reported
that this algorithm can greatly reduce the spurious currents
and improve the isotropy of the interface. However, this
algorithm needs additional calculation for the derivatives of
the interfacial normal to obtain the curvature, which leads
to difficulties in simulating contact angles because more
information is required at walls compared to the original
Gunstensen et al. model. Also, only equal density is considered
for both fluids. Latva-Kokko and Rothman [41] identified the
problem of lattice pinning exhibited by the recoloring step
in the original Gunstensen et al. model and proposed a new
algorithm for the recoloring step, which allows the red and the
blue fluids to moderately mix at the tangent of the interface
and keeps the color distribution symmetric with respect to
the color gradient. Wu et al. [42] found that the recoloring
algorithm proposed by Latva-Kokko and Rothman can resolve
the adverse side-effect problem, which induces anisotropy and
high spurious velocities at the interface. Recently, Reis and
Phillips [43] developed a two-dimensional nine-velocity LB
model for immiscible binary fluids with variable viscosities
and density ratios. A new perturbation operator was proposed
to recover the correct NSEs for two-phase flows. A theoretical
expression for interfacial tension was derived through its
mechanical definition and some approximations. However, this
model is limited to two dimensions; in addition, it preserves the
recoloring algorithm in the original Gunstensen et al. model
and uses second-order anisotropic discretization for the color
gradient, which greatly restricts the accuracy and stability of
model. By extending the model of Grunau et al. [26], Tölke
et al. [44] constructed a three-dimensional 19-velocity LB
model for immiscible binary fluids. It can be shown that this
model cannot produce the correct form for the interfacial
force. In order to accurately reproduce multiphase flows in
the real world, a three-dimensional LB model is urgently
required, which has high accuracy, low spurious velocities,
and the capability to simulate fluids with variable viscosities
and density ratios.

In this work, we present an improved LB color-fluid
model for simulating three-dimensional immiscible binary
fluids with variable viscosity and density ratios. A generalized
perturbation operator is derived using the concept of a
continuum surface force together with the constraints of mass
and momentum conservation. In order to generate isotropic
interfacial tension and reduce the spurious velocities, we use
fourth-order isotropic discretization for the gradient of the
phase field, as in Refs. [45–47]. A theoretical expression for the
interfacial tension parameter is obtained directly without any
additional analysis or assumptions. In addition, a recoloring
algorithm proposed by Latva-Kokko and Rothman [41] is
applied for phase segregation, which minimizes the spurious
velocities even further, and at the same time overcomes
lattice pinning. Finally, extensive numerical simulations are
conducted to validate the capability and accuracy of this model.
These include simulation of a static bubble for interfacial
tension, droplet deformation and breakup in simple shear
flow, and buoyancy-driven motion of a single bubble. The
numerical results are compared with theoretical and numerical
predictions as well as experimental data. We should mention
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that, in the present model, different contact angles can be
obtained easily through adjustment of the value of the phase
field at the solid surface [48].

II. THEORY AND MATHEMATICAL MODEL

In this model, red and blue particle distribution functions
f R

i and f B
i are introduced to represent two different fluids.

The total particle distribution function is defined as fi = f R
i +

f B
i . Each of the colored phases undergoes the collision and

streaming operators

f k
i (x + eiδt ,t + δt ) = f k

i (x,t) + �k
i (x,t), (1)

where the superscript k = R or B denotes the color (“red”
or “blue”), fi(x,t) is the particle distribution function in the
ith velocity direction at position x and time t , ei is the lattice
velocity in the ith direction, δt is the time step, and �k

i is
the collision operator. The collision operator is the result of
the combination of three suboperators [44]:

�k
i = (�k

i )(3)
[(

�k
i

)(1) + (
�k

i

)(2)]
, (2)

where (�k
i )(1) is the Bhatnagar-Gross-Krook (BGK) collision

operator, (�k
i )(2) is a two-phase collision operator (perturbation

step) which contributes to the mixed interfacial region and

generates an interfacial tension, and (�k
i )(3) represents the

“recoloring,” which mimics the phase segregation and keeps
the interface sharp.

In the BGK collision operator, the particle distribution
functions are relaxed toward a local equilibrium with a single
relaxation time: (

�k
i

)(1) = − 1

τk

(
f k

i − f
k,eq
i

)
, (3)

where τk is the dimensionless relaxation time of fluid k,
and f

k,eq
i is the equilibrium distribution function of f k

i .
Conservation of mass for each phase and total momentum
conservation require

ρk =
∑

i

f k
i =

∑
i

f
k,eq
i , (4)

ρu =
∑

i

∑
k

f k
i ei =

∑
i

∑
k

f
k,eq
i ei , (5)

where ρk is the density of fluid k, ρ = ρR + ρB is the total
density, and u is the local fluid velocity.

For the three-dimensional 19-velocity (D3Q19) model, the
lattice velocity ei and the weight coefficients wi are given as
follows:

ei =
⎧⎨
⎩

(0,0,0), i = 0,

(±1,0,0)c, (0, ± 1,0)c, (0,0, ± 1)c, i = 1,2, . . . ,6,

(±1, ± ,0)c, (±1,0, ± 1)c, (0, ± 1, ± 1)c, i = 7,8, . . . ,18,

(6)

wi =

⎧⎪⎨
⎪⎩

1/3, i = 0,

1/18, i = 1,2, . . . ,6,

1/36, i = 7,8, . . . ,18,

(7)

where c = δx/δt is the lattice speed with δx being the lattice
length. The equilibrium distribution functions are chosen to
respect the conservation constraints of Eqs. (4) and (5), and
are defined by

f
k,eq
i = ρk

(
φk

i + wi

[
3

c2
ei · u + 9

2c4
(ei · u)2 − 3

2c2
u2

])
,

(8)

where

φk
i =

⎧⎪⎨
⎪⎩

αk, i = 0,

(1 − αk)/12, i = 1,2, . . . ,6.

(1 − αk)/24, i = 7,8, . . . ,18.

(9)

In the above equation, αk is a free parameter, which determines
the speed of sound ck

s , thus controlling the hydrodynamic
pressure in the fluids. The pressure of fluid k is given as

pk = ρk

(
ck
s

)2 = ρk(1 − αk)

2
. (10)

For a flat two-phase interface in a quiescent system (e.g., the
layered flow of two immiscible fluids with different densities
between two parallel plates), the pressure across the interface
should be continuous, i.e., pR = ρR

1−αR

2 = pB = ρB
1−αB

2 ,
which indicates that the density ratio needs to be taken as
[43,44]

λ = ρR

ρB

= 1 − αB

1 − αR

. (11)

Note that αk should satisfy the condition 0 < αk < 1 in
order to avoid negative pressures and equilibrium distribution
functions.

The relaxation time τk is chosen so that Eq. (1) recovers the
macroscopic equations for single-phase flows in each single-
phase region. It is a function of the kinematic viscosity of fluid
and given by (see the Appendix for the derivation)

νk = c2

3

(
τk − 1

2

)
δt . (12)

To account for unequal viscosities of both fluids, a linear
interpolation is used to determine the relaxation time τ at
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the interface [44], i.e.,

τ = 1 + ρN

2
τR + 1 − ρN

2
τB, (13)

where the phase field ρN is defined as

ρN (x,t) = ρR(x,t) − ρB(x,t)

ρR(x,t) + ρB(x,t)
, − 1 � ρN � 1. (14)

The values of the phase field ρN = 1, −1, and 0 correspond
to a purely red fluid, a purely blue fluid, and the interface,
respectively.

In the color-fluid model, the perturbation operator is used
to model the interface tension. As can be shown below,
direct extension of the model of Grunau et al. [26], which
models immiscible fluid flows with different density ratios
and viscosities on a two-dimensional hexagonal lattice, to the
D3Q19 lattice fails to obtain the correct interfacial force. In
this study, we will use the concept of a continuum surface
force to construct the perturbation operator, which can reduce
the spurious currents and improve the isotropy of the interface.
More importantly, we build a bridge between the mesoscopic
interparticle interactions and the macroscopic description of
interfacial force. In addition, an expression for the interfacial
tension parameter is directly obtained without any additional
analysis and approximations. It is worth mentioning that this
method is different from the algorithm proposed by Lishchuk
et al. [39] which also uses the CSF to model the interfacial
force. In their algorithm, the macroscopic interfacial force
is calculated explicitly through the interfacial normal and
macroscopic curvature, and then incorporated into the LB
model as a forcing term.

To conserve the mass and momentum, the perturbation
operator should satisfy these constraints:

∑
i

(
�k

i

)(2) = 0, (15)

∑
i

(
�k

i

)(2)
ei = 0. (16)

Using the Chapman-Enskog multiscale analysis, Eq. (1) can
be reduced to the NSEs in the low-frequency, long-wavelength
limit with Eqs. (8), (15), and (16). The resulting equations
are [43]

∂tρ + ∇ · (ρu) = 0, (17)

∂t (ρu) + ∇ · (ρuu) = −∇p + ∇ · [ρν(∇u + ∇uT )] + ∇ · S,

(18)

where p = ∑
k pk is the pressure and ν = 1

3c2(τ − 1
2 )δt is

the kinematic viscosity of the color-blind fluid. The final
term in the momentum equation, i.e., ∇ · S, arises from the
perturbation operator, and S is given by

S = −τδt

∑
i

�
(2)
i ei ⊗ ei , (19)

where �
(2)
i = ∑

k(�k
i )(2).

It is well known that the expression for the stress jump
across the interface is given by

TR · n − TB · n = −∇ · [σ (I − n ⊗ n)], (20)

where I is the second-order identity tensor, T = −pI +
ρν(∇u + ∇uT ) is the stress tensor with the superscript R (B)
denoting the red (blue) side of the interface, σ is the interfacial
tension, and n is the interfacial unit normal vector.

In order to induce the local stress jump across the interface,
i.e., Eq. (20), a volume-distributed interfacial force F(x,t)
should be added in the momentum equation as an additional
body force. The interfacial force is

F(x,t) = ∇ · [σ (I − n ⊗ n)δ
], (21)

where δ
 is the Dirac delta function used to localize the force
explicitly at the interface. The unit normal vector and the Dirac
delta function are determined by the gradient of the phase field
∇ρN ,

n = ∇ρN

|∇ρN | , δ
 = 1

2
|∇ρN |. (22)

Substitution of Eq. (22) into Eq. (21) yields

F(x,t) = ∇ ·
[

σ

2|∇ρN | (|∇ρN |2I − ∇ρN ⊗ ∇ρN )

]
. (23)

Since the perturbation operator is responsible for generating
the interfacial tension, the term ∇ · S in Eq. (18) should be
equal to the interfacial force F, which is derived based on the
CSF concept and given by Eq. (23), i.e.,

∇ · S = ∇ ·
[

σ

2|∇ρN | (|∇ρN |2I − ∇ρN ⊗ ∇ρN )

]
, (24)

or

S = −τδt

∑
i

�
(2)
i ei ⊗ ei

= σ

2|∇ρN | (|∇ρN |2I − ∇ρN ⊗ ∇ · ρN ). (25)

As in Ref. [43], the perturbation operator is chosen to take the
form (

�k
i

)(2) = Ak

2
|∇ρN |

[
wi

(ei · ∇ρN )2

|∇ρN |2 − Bi

]
. (26)

Substituting Eq. (26) into Eqs. (15), (16), and (25), we obtain

σ = 2

9
(AR + AB)τc4δt , (27)

∑
i

Bi = 1

3
c2,

∑
i

Biei = 0,
∑

i

Bieiei = 1

3
c4I. (28)

Equation (27) suggests that we can control the interfacial
tension through the parameters AR and AB . It can be easily
justified that the following solutions for Bi satisfy Eq. (28):

B0 = − 2 + 2χ

3χ + 12
c2, B1–6 = χ

6χ + 24
c2,

B7–18 = 1

6χ + 24
c2, (29)
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where χ is a free parameter. For the sake of simplicity,
we choose χ = 2 and δx = δt = 1 in this study, so that
B0 = −1/3, B1–6 = 1/18, and B7–18 = 1/36. Without losing
generality, we also assume AR = AB = A, so that Eq. (27)
can be written as

σ = 4
9Aτ. (30)

With these parameters and assumptions given above, the
present perturbation operator obtained through the CSF con-
cept is formally similar to the interfacial-force-related term,
i.e., Eqs. (15) and (16) in Ref. [49], but their theoretical basis is
totally different. In Ref. [49] the interfacial tension is modeled
based on a diffuse-interface theory, in which the parameter A

is not only a function of the interfacial tension σ , but also a
function of the color or density gradient. More importantly,
the interfacial tension is also related to the interface thickness,
which is an unknown parameter in Ref. [49]. Therefore, the
theoretical expression for the interfacial tension cannot be
obtained analytically. In addition, the interfacial-force-related
term cannot be used to model a binary fluid with equal
densities because the density of the mixture is used to
distinguish different fluids. Finally, it should be noted that
CSF and diffuse-interface theory both are popular techniques
for modeling the interfacial tension force in the traditional
computational fluid dynamics (CFD) field. The former is
widely used in the VOF and level set methods, while the latter
is mainly used in phase field models.

Extending the work of Grunau et al. [26] to the D3Q19
lattice, Tölke et al. [44] proposed a perturbation operator given
by

(
�k

i

)(2) = A|C|
[

(ei · C)2

|C|2 − 5

9

]
, (31)

where C is the color gradient, which plays an equivalent role
to the gradient of the phase field. It is easily found that Eq. (31)
satisfies the constraints of Eqs. (15) and (16). However, it gives
the tensor S in the form of

S = 16Aτδt

|C|

⎛
⎜⎜⎝

7|C|2−27C2
x

36 −CxCy −CxCz

−CxCy
7|C|2−27C2

y

36 −CyCz

−CxCz −CyCz
7|C|2−27C2

z

36

⎞
⎟⎟⎠ , (32)

which cannot be written in the form of Eq. (25). Therefore, the
perturbation operator defined by Eq. (31) cannot recover the
correct interfacial force term in the NSEs.

The calculation of partial derivatives is required to evaluate
the local gradient of the phase field. To minimize the
discretization error, these derivatives are calculated using the
fourth-order-accurate isotropic finite difference:

∂ρN (x)

∂xα

= 3

c2

∑
i

wiρ
N (x + ei)eiα, (33)

which also contributes enhanced numerical stability [50].
Although the perturbation operator generates interfacial

tension, it does not guarantee the immiscibility of both fluids.
To promote phase segregation and maintain the interface, the
recoloring operator is applied, which enables the interface to
be sharp, and at the same time prevents the two fluids from

mixing with each other. In the original recoloring algorithm,
the colors are demixed by maximizing the work done by the
color gradient (i.e., ∇ρ) against the color flux q(x), which is
defined by

q(x) =
∑

i

[
f R

i (x) − f B
i (x)

]
ei . (34)

However, when applied to creeping flows, this recoloring
algorithm can produce lattice pinning, a phenomenon where
the interface can be pinned or attached to the simulation lattice,
rendering an effective loss of Galilean invariance [41]. It
was also identified that there is an increasing tendency for
lattice pinning as both the capillary and Reynolds numbers
decrease [45]. We replace the original recoloring algorithm
by an antidiffusion scheme proposed by Latva-Kokko and
Rothman [41], which can solve the lattice pinning problem
and create a symmetric distribution of particles around the
interface so that the spurious velocities can be further reduced.
Following their method, the recoloring operators for the red
and blue fluids are defined by(

�R
i

)(3)
(f R

i ) = ρR

ρ
f ∗

i + β
ρRρB

ρ2
cos(ϕi)f

eq
i |u=0, (35)(

�B
i

)(3)(
f B

i

) = ρB

ρ
f ∗

i − β
ρRρB

ρ2
cos(ϕi)f

eq
i |u=0, (36)

where f ∗
i denotes the postperturbation, presegregation value

of the total particle distribution function along the ith lattice
direction, and f

eq
i = ∑

k f
k,eq
i is the total equilibrium distri-

bution function. β is the segregation parameter related to the
interface thickness, and its value must be between 0 and 1 to
ensure positive particle distribution functions. ϕ is the angle
between the phase field gradient ∇ρN and the lattice vector ei ,
which is defined by

cos(ϕi) = ei · ∇ρN

|ei ||∇ρN | . (37)

III. NUMERICAL RESULTS AND DISCUSSION

The usefulness and accuracy of the improved LB model
will be verified and examined by three numerical examples,
specifically, a test of the Laplace law, droplet deformation
and breakup in simple shear flow, and a single bubble rising
in viscous liquids at various flow conditions. In the latter
two examples, our simulation results will be compared with
theoretical and experimental findings.

A. Test of the Laplace law with a stationary bubble

The first test problem represents a traditional benchmark
for a two-phase flow model. It consists of a blue spherical
bubble initially located at the center of a red fluid domain
with 65 × 65 × 65 lattice cells. Periodic boundary conditions
are imposed at all boundaries. According to the Laplace law,
when the system reaches the equilibrium state, the pressure
difference across the bubble interface �p is related to the
interfacial tension σ as

�p = 2σ

R
, (38)

where R is the radius of the bubble. Given the pressure
difference and the radius from the simulation, one can calculate
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TABLE I. Stationary bubble test in a computational domain of 65 × 65 × 65 lattice cells. Note that we set ρB = 1.0 and αB = 1/5 for
all the stationary bubble simulations.

β = 0.7 β = 1

ρR αR σtheory σLaplace E% |u|max σLaplace E% |u|max σLaplace [44] E%

1 1
5 0.024 0.0243 1.30 5.0 × 10−4 0.0242 0.83 8.8 × 10−4 0.0237 1.3

1 1
5 0.096 0.0972 1.28 1.9 × 10−3 0.0967 0.76 3.5 × 10−3 0.0956 0.4

1 1
5 0.24 0.2429 1.21 4.7 × 10−3 0.2417 0.73 8.6 × 10−3 0.224 6.6

2 3
5 0.108 0.1097 1.58 1.4 × 10−3 0.1089 0.84 2.4 × 10−3 0.1067 1.2

10 23
25 0.132 0.1346 1.95 1.2 × 10−3 0.1333 1.00 2.0 × 10−3 0.1264 4.2

30 73
75 0.1116 0.1140 2.12 1.0 × 10−3 0.1126 0.92 1.8 × 10−3 0.0966 13.4

100 124
125 0.1 0.1029 2.83 9.0 × 10−4 0.1012 1.16 1.7 × 10−3 – –

1000 1249
1250 0.1 0.1038 3.65 7.2 × 10−4 0.1016 1.58 1.3 × 10−3 – –

the interfacial tension σLaplace using Eq. (38) and compare it
with the theoretical value σtheory, which is set by specifying
A based on Eq. (30). The radius of the bubble is 16 lattice
units, and the relaxation time τ is set to unity. Table I gives the
simulation results for the segregation parameter β = 0.7 and
1 at several different interfacial tensions and density ratios. A
numerical artifact observed in many numerical methods is the
presence of spurious velocities at the phase interface. This is
also true in our case. For the sake of comparison, Table I also
gives the magnitude of the maximum spurious velocities for
each β. It can be clearly seen that the calculated interfacial
tensions (σLaplace) agree well with the theoretical ones (σtheory)
for both β = 0.7 and 1. However, changing β has opposite
effects on the accuracy of the interfacial tension and the
magnitude of the maximum spurious velocities. Specifically,
β = 1 produces the more accurate interfacial tension while
β = 0.7 generates lower spurious velocities. Finally, in order
to further show the superiority of the present model, the
simulation results of Tölke et al. [44] are listed in Table I as
well. Generally, the interfacial tension obtained by the present
model has higher numerical accuracy especially at high density
ratios. It is therefore expected that the present model is a better
candidate for the simulation of binary fluids with different
densities. Note that the error for the interfacial tension (which
is calculated by E% = |σtheory−σLaplace|

σtheory
× 100%) changes slightly

as the interfacial tension or the density ratio increases, which
is different from the observation of Tölke et al. [44].

To simulate large-scale multiphase flows in an industrial
process, computational efficiency is one of the most important
factors determining the applicability of a model. As we
stated in the Introduction, most of the currently available
LB high-density-ratio multiphase models suffer from high
computing costs. Here we present a comparison of the required
computational time between the present model and the phase
field model recently proposed by Lee and Liu [37]. The phase
field model is also used to simulate the stationary bubble case
with the density ratio of 100. The serial codes for the two
models are both run on a personal workstation equipped with
eight Intel Xeon E5630 2.53 GHz cores and 6 Gbytes RAM.
For each 1000 lattice time steps, the required CPU time is
700.99 s for the present model and 1558.23 s for the phase
field model, respectively. In addition, the two models need
different time steps to achieve the same stopping criterion. For

example, the stopping criterion is commonly chosen as∑
x[ρN (x,t) − ρN (x,t − 100)]2∑

x[ρN (x,t)]2
< 10−10. (39)

Note that the phase field ρN is the local composition of one of
the two phases in the phase field model. We find that the present
model with β = 0.7 (β = 1.0) needs 5400 (2900) lattice time
steps to achieve the above-mentioned stopping criterion, while
the phase field model with the interface thickness ξ = 5 (which
is defined in Ref. [37]) needs 127 800 lattice time steps. Obvi-
ously, the present model has much higher computational effi-
ciency compared to the phase field model of Lee and Liu [37].

B. Droplet deformation and breakup in simple shear flow

Taylor deformation is often used to assess whether a
multiphase model is able to simulate dynamic problems. A
droplet is placed between two parallel plates which are moving
in opposite directions to obtain a linear shear in the Stokes flow
regime (i.e., small Reynolds number). Droplet deformation is
studied as a function of the shear rate, which is expressed by
the capillary number. The definitions of the Reynolds number
and the capillary number are

Re = γR2ρ

η
, Ca = γRη

σ
, (40)

where γ = U/H is the shear rate with U being the velocity of
the moving plate and H being the half channel height; R is the
initial radius of the droplet; η = ρν is the dynamic viscosity.
For this case, we assume that both fluids have equal density
and viscosity. The simulations are first run at Re = 0.1 for a
spherical droplet with the radius of ten lattice cells in a system
of 100 × 50 × 50 lattice cells. At steady state, the droplet is
assumed to be ellipsoidal, which is usually characterized by
the deformation parameter Df , defined as

Df = a − b

a + b
, (41)

where a and b are the lengths of the major and minor axes
of the deformed droplet, respectively. For a droplet in the
Stokes regime with a low Ca, Df follows the Taylor relation
as [51]

Df = (35/32)Ca. (42)
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FIG. 1. (Color online) Time evolution of the Taylor deformation
parameter for β = {0.7,1} at Ca = {0.05,0.2,0.35} and Re = 0.1.

A series of numerical simulations are performed with β =
{0.7,1} and Ca varying from 0.05 to 0.35. Figure 1 shows
the time evolution of the Taylor deformation parameter for
different Ca and β. It can be observed that the droplet can
evolve to a steady state for both β = 0.7 and β = 1. However,
a large β (i.e., a small interface thickness) usually produces a
small droplet deformation at a fixed Ca. This can be also clearly
seen in Fig. 2, which plots the Taylor deformation parameter
as a function of the capillary number at Re = 0.1. Obviously,
the LB simulations with β = 0.7 are in good agreement with
the theoretical Taylor relation. In addition, a recent theoretical
analysis and numerical experiment also demonstrated that β <

Ca

D
f

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
0

0.1

0.2

0.3

0.4

β=0.7
β=1.0
Theoretical

FIG. 2. (Color online) Taylor deformation parameter Df as a
function of the capillary number at Re = 0.1. The solid line is the
theoretical Taylor relation given by Eq. (42).

FIG. 3. (Color online) Velocity field of the droplet deformation
in the x-z meridian plane at Ca = 0.2 and Re = 0.1.

0.71 is necessary to obtain a stable and continuum interface
for a stationary droplet [46]. Therefore, we will use β = 0.7
in the following simulations in order to reproduce the correct
droplet dynamic behavior.

A recent numerical study [42] observed that, when the origi-
nal color-fluid model of Gunstensen et al. is applied for droplet
deformation in the simple shear flow with small Reynolds
number and capillary number, large spurious velocities can
induce unphysical eddies and large variation in velocity near
the droplet interface, resulting in an incorrect deformation
of the droplet. Figure 3 shows the velocity field around the
deformed droplet in the x-z meridian plane at Ca = 0.2 and
Re = 0.1. Since the present model can effectively suppress the
spurious velocities, we can see a smooth velocity field with an
elliptical vortex inside the droplet, which is a typical feature
of reasonable droplet deformation [52].

Several previous theoretical, experimental, and numerical
studies [52–56] have indicated that in the creeping flow
regime, when the viscosity ratio of the droplet to the matrix
fluid λ is less than 4, there is a “critical capillary number”
Cac, above which the droplet continues to deform without
reaching a steady shape, and this finally leads to droplet
breakup. The critical capillary number for droplet breakup
in shear flow is lowest for λ roughly around 0.6 [53], and
its value (Cac ≈ 0.4) is slightly less than the case for λ = 1,
where Cac ≈ 0.41 [57]. The critical capillary number was
numerically and experimentally found to be a function of the
geometry confinement ratio R/H for λ = 1 [58–60]. Due to
an unidentified systematic error, Janssen et al. [60] found in
all data sets that the experiments gave a slightly higher critical
capillary number, but trends were found to be identical. A
minimum in Cac is reached at a geometry confinement ratio of
approximately 0.5 with its value equal to 0.37 and 0.41 for the
simulations and experiments, respectively. Li et al. [52] used
the volume-of-fluid method to investigate the droplet breakup
in simple shear flows and found that, when the geometry
confinement ratio is large (R/H = 0.5), no steady deformation
is obtained for Ca = 0.4, implying that Cac < 0.4. On the other
hand, for small geometry confinement ratio (R/H = 0.125),
a steady deformation is obtained for Ca = 0.4 and the flow
becomes unsteady for Ca = 0.42. They concluded that the
close proximity of the two moving plates reduces the critical
capillary number.

The present model is also used to predict the critical
capillary number. To examine more carefully the deformation
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FIG. 4. (Color online) Evolution of droplet shape for Ca = 0.4,
Re = 0.1, and R/H = 0.5 in a computational domain of 240 × 60 ×
60 lattice cells.

and breakup processes, we have done the calculation in a
240 × 60 × 60 lattice domain with the droplet radius R =
15 lattice units such that the geometry confinement ratio
R/H = 0.5. The Reynolds number is still kept at Re = 0.1.
We observe that the droplet can evolve to a steady shape for
Ca = 0.35 (at steady state Df = 0.543), whereas the breakup
occurs for Ca = 0.4. It is evident that the critical capillary
number lies between 0.35 and 0.4, which is in agreement
with previous numerical results obtained with the boundary
integral method [60] and the volume-of-fluid method [52].
Figure 4 shows the evolution of droplet shape for Ca = 0.4,
Re = 0.1, and R/H = 0.5. The droplet deforms continuously
and eventually breaks up into two equal parts, which is referred
to as binary breakup. The competition between the externally
imposed shear flow and the interfacial-tension-driven flow is
obvious in this figure. Initially, the most noticeable motion is
the elongation of the droplet, stretched by the viscous shear
stresses from the external flow (γ t = 0, 5, and 15). At time
γ t = 20, we can clearly see that a waist is formed near the
center of the droplet, and the droplet continually thins. The
droplet begins to lengthen slowly and a visible neck is formed
near the center of the droplet (γ t = 24). The neck continues to
thin (γ t = 25) and eventually pinches off, leading to formation
of two equal-sized droplets (γ t = 26 and 29).

Next, we investigate the effect of Reynolds number on
the droplet breakup. We focus on the case Ca = 0.4 and
R/H = 0.5, and increase the Reynolds number from 0.1 to
2, i.e., Re = {0.1,0.5,1,2}. For the former three cases, the
computational domain is chosen as 240 × 60 × 60 lattice cells,
while for the case of Re = 2 the computational domain is
increased to 360 × 60 × 60 lattice cells in consideration of
the long stretching in the x direction. When the Reynolds
number is increased from 0.1 to 0.5, one can observe in
Fig. 5 that the droplet is elongated and breakup occurs at

FIG. 5. (Color online) Comparison of the droplet shape, viewed
from the front of the computational domain, for (a) Re = 0.1 and
(b) Re = 0.5 at Ca = 0.4 and R/H = 0.5. The time is taken at γ t =
25 and 23, respectively.

an earlier time, although both cases exhibit binary breakup.
It is therefore expected that increasing the Reynolds number
can increase the droplet deformation and promote the droplet
breakup, which is consistent with the finding of Li et al. [52].
When the Reynolds number is increased to 1, the droplet
breaks up into three parts (i.e., ternary breakup) with two
daughter droplets having slightly larger size (see Fig. 6).
If we continue to increase the Reynolds number to 2, the
droplet will disintegrate into more daughter droplets. Figure 7
gives the snapshots of droplet breakup for Ca = 0.4, Re = 2,
and R/H = 0.5. We can observe that the first four daughter
droplets are formed by the end pinching (γ t = 24 and 25).
Next, the intermediate ligament breaks into two parts, which
then retract to a “dumbbell” shape (γ t = 27) and eventually
stabilize to an ellipsoid shape (γ t = 34). By comparing the
simulation results for different Re, we can obtain the result that

FIG. 6. (Color online) Evolution of droplet shape for Ca = 0.4,
Re = 1, and R/H = 0.5 in a computational domain of 240 × 60 × 60
lattice cells.
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FIG. 7. (Color online) Evolution of droplet shape for Ca = 0.4,
Re = 2, and R/H = 0.5 in a computational domain of 360 × 60 × 60
lattice cells.

the droplet breakup becomes increasingly unstable and the end
pinching becomes increasingly pronounced, disintegrating the
droplet as Re increases.

C. Single bubble rising in viscous liquids

Bubble rise subject to gravity is one of the most common
gas-liquid flow phenomena. Understanding bubble dynamics
is of great importance for the design and operation of industrial
applications such as liquid rocket motors and blood-pumping
machines. As a fundamental subject of fluid mechanics, the
dynamic behavior of a gas bubble rising in a viscous liquid
has been investigated both numerically and experimentally
by numerous authors for many years. A detailed review of
experimental studies and correlations was provided by Clift
et al. [61]. Later, Bhaga and Weber [62] presented a more
comprehensive study, in which shape regimes and bubble ter-
minal rise velocity are correlated on the basis of experimental
data. Different shapes of bubbles, namely, spherical, oblate
ellipsoidal, oblate ellipsoidal cap, and skirted bubbles, can
be observed in the experiments [62], and strongly depend on
the values of four important dimensionless parameters. These
dimensionless parameters are the viscosity ratio λ, the Eötvös
number Eo, the Morton number Mo, and the Reynolds number
Re, which are defined as

λ = ηg

ηl

, Eo = g�ρD2

σ
, Mo = g�ρη4

l

σ 3ρ2
l

, Re = ρlUtD

ηl

,

(43)

where ηl and ηg are the dynamic viscosities of the liquid and
gas phases, �ρ = ρl − ρg is the density difference between
liquid and gas, D is the bubble diameter, g is the gravitational
acceleration, and Ut is the terminal velocity of the rising
bubble.

In the present study ρl = 2 and ρg = 0.4 are chosen, and
the kinematic viscosities for both phases are kept equal so
that λ = ρg

ρl
= 1

5 . The bubble diameter is fixed at D = 24
lattices. The buoyancy force G is defined in such a way that it
affects only the gas, equivalent to G = −(ρ − ρl)giz, where iz
represents a unit vector pointing in the positive z direction. The
buoyancy force is introduced into the LBM through a forcing
term given by Guo et al. [63]. Simulations are performed in
an enclosed cubic domain and bounceback [64] is used on all
boundaries in order to obtain no-slip boundary conditions. To
reduce the wall viscous effect, the lateral domain sizes of 4D

are selected, since they provide a final bubble shape very close
to that in a larger domain and the difference in terminal velocity
is less than 10% [65]. The influence of the vertical domain size
is different in each case, since the bubble motion depends on
the magnitude of Re. For cases of Re ∼ 1, the vertical size of
4D is sufficient. However, for Re ∼ 100 the vertical size has to
be as high as 9D [65,66]. Therefore, in what follows, we will
use the computational domain Lx × Ly × Lz = 4D × 4D

× 14D.
First, the influence of Morton number on the bubble motion

is investigated at a fixed Eo = 32. The Morton number is varied
from 104 to 0.1. Figure 8 shows the evolution of the bubble
velocity and the instantaneous Reynolds number (which is
defined by the bubble velocity ud as Re∗ = ρludD

ηl
) with time

for a rising bubble at Mo = {104,103,102,1,10−1}. The bubble
velocity and time have been normalized as u∗

d = ud√
gD

and t∗ =
t

√
g

D
. It can be observed that the bubble motion can evolve to

a steady state for all the Morton numbers. However, we also
notice that the Morton number has different effects on the
evolution of bubble velocity: at large Mo the bubble velocity
quickly increases to a constant, whereas at small Mo the bubble
velocity first increases to a peak value and then decreases until
a steady terminal velocity is reached. The overshoot in velocity
becomes increasingly evident with an increase in Morton
number, indicating that the bubble motion has a tendency to
increasing instability. In addition, we can find in Fig. 8 that the
terminal velocity (or the Reynolds number) increases as Mo
decreases, consistent with previous experimental observations
[61,62]. Figure 9 gives the final shapes for the rising bubble for
various Mo at Eo = 32. Note that the bubble is spherical for the
case of Mo = 104, which is not shown in this figure. We can
clearly see that, as Mo increases, the bubble shape successively
undergoes three different regimes, namely, spherical, oblate
ellipsoid, and oblate ellipsoidal cap regimes. The increase in
bubble deformation is attributed to the fact that the interfacial
tension, which prevents the bubble deformation, becomes less
important in comparison with the buoyancy with the increase
in Mo.

Next, the accuracy of the numerical results is examined
by comparing with experimental correlations and theoretical
predictions. The parameters used in our simulations are
summarized in Table II. For each case, the interfacial tension,
Mo, and Eo are initially given; g and τ can be easily calculated
by Eqs. (43) and (12). It can seen that a broad range of τ is
included in our simulations (0.54–1.73), indicating that the
present model has good numerical stability. When the bubble
motion reaches steady state, the obtained terminal velocity Ut

is used to calculate the Reynolds number, which is also given
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FIG. 8. (Color online) Variation of (a) the normalized bubble velocity and (b) the instantaneous Reynolds number with time for different
Morton numbers at Eo = 32.

in Table II. Figure 10 gives several typical bubble shapes in
the x-z meridian plane with the corresponding case number
shown on the left side of each deformed bubble. Note that
Fig. 10 does not show the bubble shapes for the cases (f)–(i)
because they have been shown previously in Fig. 9. As can

FIG. 9. (Color online) Effect of Mo on the terminal shape of a
rising bubble at Eo = 32. For each Mo, the upper graph is the three-
dimensional simulation result, and the lower one is the corresponding
bubble shape in the x-z meridian plane.

be seen from Figs. 9 and 10, our numerical simulations have
covered a wide range of bubble shape regimes.

During the process of bubble rise, there are two main forces
acting on the bubble: buoyancy and drag. Buoyancy acts to
drive the bubble motion while drag opposes the motion. When
these two forces are balanced, the bubble motion reaches a
steady state and the bubble rises at a constant velocity (i.e., the
terminal velocity). The drag coefficient can be obtained from
the force balance and is given by

CD = 4�ρgD

3U 2
t ρl

. (44)

The calculated drag coefficients have been compared to
the experimental correlation of Bhaga and Weber [62], in
which the drag coefficient for fluid systems with large values
of Morton number (Mo > 4 × 10−3) is said to obey the
relationship

CD =
[

(2.67)0.9 +
(

16

Re

)0.9
]1/0.9

. (45)

TABLE II. Parameters for single bubble rising using the LBM.

Case σ Eo Mo Re
(a) 2 × 10−2 1 1 × 10−2 0.80
(b) 2 × 10−3 10 5 × 102 0.12
(c) 4 × 10−3 10 1 × 100 2.26
(d) 4 × 10−3 10 1 × 10−3 23.99
(e) 3 × 10−4 32 1 × 104 0.15
(f) 4 × 10−4 32 1 × 103 0.46
(g) 1 × 10−3 32 1 × 102 1.33
(h) 1 × 10−3 32 1 × 100 7.39
(i) 1 × 10−3 32 1 × 10−1 13.47
(j) 5 × 10−5 100 1 × 105 0.26
(k) 1 × 10−4 100 1 × 104 0.77
(l) 5 × 10−4 100 1 × 102 4.90
(m) 1 × 10−3 100 1 × 100 17.78
(n) 1 × 10−3 100 1 × 10−1 33.72
(o) 1 × 10−4 1000 1 × 106 2.09
(p) 1 × 10−5 1000 1 × 105 4.79
(q) 1 × 10−4 1000 1 × 104 9.32
(r) 2 × 10−5 1000 1 × 103 17.31
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FIG. 10. (Color online) Typical bubble shapes for the cases given
in Table II. The case number is shown on the left side of the rising
bubble for each case.

The results of the numerical simulations have also been
compared to the theoretical prediction of Joseph [67], which
was derived based on the theory of viscous potential flow and
the information of Davies and Taylor [68] at the asymptotic
large-Re limit. The drag coefficient is given as

CD = 0.445

(
6 + 32

Re

)
. (46)

These results are shown in Fig. 11. It can be seen that the
simulation results are in good agreement with the experimental
correlation and theoretical prediction.

In addition to comparing the numerical drag coefficient
with the experimental correlation and theoretical prediction,
the flow number and the velocity number, which are defined
by [69]

F = g

(
D8ρ5

l

ση4
l

)1/3

, (47)

V = Ut

(
D2ρ2

l

σηl

)1/3

, (48)
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FIG. 11. (Color online) Drag coefficient versus Reynolds number
for a rising bubble. The discrete points are obtained from three-
dimensional lattice Boltzmann simulations. The dashed and solid
lines represent the theoretical solution of Joseph [67] and the
experimental correlation of Bhaga and Weber [62], respectively.
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FIG. 12. (Color online) Velocity number versus flow number
for a rising bubble. The discrete points are obtained from three-
dimensional lattice Boltzmann simulations. The solid and dashed
lines represent the experimental correlations of Eq. (49) and Eq. (50),
respectively.

are also evaluated and compared to the following empirical
correlations [69]:

V = F

12 + 0.588F 0.75
, (49)

V = F

(12 + 0.0188F )0.75
, (50)

As can be observed in Fig. 12, for Eo � 100 our LBM
results are in satisfactory agreement with the correlations
of Eqs. (49) and (50), whereas for the highest Eo, i.e.,
Eo = 1000, there exist large differences between our LBM
results and the prediction values. To clarify the cause of the
large differences, it is necessary to know the accuracy of our
numerical simulations. Fortunately, for a rising bubble in an
infinite medium with Eo > 40 and Mo > 200, the Reynolds
number can be obtained analytically through solution of the
following equation [61]:

2Re2 + 6Re
2 + 3λ

1 + λ
− Eo3/2Mo−1/2 = 0. (51)

From Eq. (51), the theoretical values of the Reynolds number
are obtained as 1.89, 4.53, 9.74, and 19.34 for Mo = 106, 105,
104, and 103 at Eo = 1000. On the other hand, as shown in
Table II, the simulation results for the Reynolds number are
2.09, 4.79, 9.32, and 17.31 for Mo = 106, 105, 104, and 103

at Eo = 1000. Obviously, our simulation results agree well
with the theoretical solutions, indicating that our numerical
simulations can provide satisfactory accuracy. Based on the
big differences shown in Fig. 12, we can conclude that the
correlations of Eqs. (49) and (50) are not applicable to describe
a rising bubble with very high Eo.
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FIG. 13. (Color online) Terminal shapes of rising bubble at Mo =
266 and Eo = 116 for the density ratio of (a) 10, (b) 50 and (c) 80. For
each density ratio, the upper graph is the three-dimensional simulation
result, and the lower one is the corresponding bubble shape in x − z

meridian plane.

To further investigate the capability of the present model
in simulating multiphase flows with high density ratio, we
simulate a bubble rising under buoyancy for Mo = 266 and
Eo = 116 with the density ratios of 10, 50, and 80. The liquid
density is still kept at 2, and the gas density is varied to obtain
different density ratios. We also choose the interfacial tension
σ = 6 × 10−5, and the kinematic viscosities for both fluids are
kept equal in these three simulations. Figure 13 gives the final
shapes for a rising bubble at Mo = 266 and Eo = 116 for the
density ratios of (a) 10, (b) 50, and (c) 80. We can see that
the bubble shape does not change much with an increase in
density ratio. This may be attributed to the small variation
in Reynolds number when the density ratio is increased.
For the density ratio λ = 10, 50, and 80, the simulation
results for the Reynolds number are 3.88, 4.06, and 4.17,
respectively, indicating good agreement with the theoretical
values (which are 3.8, 3.86, and 3.87) obtained by Eq. (51).
However, numerical instability is observed when the density
ratio is increased to 100. The numerical instability results
from the negative density of the gas phase at the interface.
Actually, a similar numerical instability is also observed for
a single bubble rising in the phase field model of Lee and
Liu [37] when the density ratio is increased to 100 or higher.
Therefore, an artificial pressure gradient term is introduced to
avoid a negative value of the composition [65]. However, the
physical meaning of this artificial pressure gradient term is still
unclear.

IV. CONCLUSIONS

In this paper, a lattice Boltzmann color-fluid model is
proposed to simulate three-dimensional immiscible binary
fluids using a D3Q19 lattice. An equilibrium distribution
function and single-relaxation-time collision operator for each
fluid are provided, allowing each fluid to have its own
density and viscosity. To recover the correct form of the
Navier-Stokes equations, the perturbation operator should
satisfy mass conservation, momentum conservation, and an
additional constraint, which is responsible for generating

the interfacial tension. With the concept of a continuum
surface force to model the interfacial tension, we have derived
a generalized expression for the perturbation operator. In
addition, a theoretical expression for the interfacial tension
parameter is obtained directly without any additional analysis
or approximations. A recoloring algorithm proposed by Latva-
Kokko and Rothman [41] is applied for separating two fluids,
which can overcome “lattice pinning,” a problem that may
prevent the interface from moving.

This model is first validated against the Laplace law for the
interfacial tension. It is found that the segregation parameter β

has an opposite effect on the magnitude of spurious velocities
and the accuracy of interfacial tension: a larger β yields a more
accurate interfacial tension but larger spurious velocities. This
model is then used to simulate single-droplet deformation and
breakup under simple shear flow. We investigate the droplet
deformation for small capillary numbers in the Stokes flow
regime, and find that the numerical results with β = 0.7 are
in excellent agreement with the theoretical Taylor relation,
while the numerical simulations with β = 1 underpredict the
deformation. For a geometry confinement ratio R/H = 0.5,
we find that in the limit of creeping flow the droplet breakup
occurs at a critical capillary number 0.35 < Cac < 0.4, con-
sistent with previous numerical simulations and experiments
[52,60]. An increase in the Reynolds number can increase the
droplet deformation and promote droplet breakup, leading to
formation of more small droplets. Finally, this model is applied
to simulate buoyancy-driven motion of a single bubble. It is
observed that at a fixed Eötvös number an increase in Morton
number can enhance the deformation and the terminal velocity
of the rising bubble, so that the instability of the bubble
is increased. Numerical simulations are carried out with a
wide range of Eötvös and Morton numbers, and many bubble
shape regimes are observed. The calculated drag coefficient is
compared with experimental correlations [62] and theoretical
predictions [67], and good agreement is shown. We also
compare our numerical results with the correlation of Rodrigue
[69], which was obtained using a dimensionless analysis on
experimental data from 19 studies. We have demonstrated
that this correlation is not applicable for describing rising
bubbles with high Eötvös number, although our numerical
results are in satisfactory agreement with this correlation
for Eo � 100.
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APPENDIX: DERIVATION OF THE NAVIER-STOKES
EQUATIONS IN THE SINGLE-PHASE REGION

In each pure fluid, the gradient of the phase field is zero,
so the perturbation operator (�k

i )(2) = 0 and the recoloring
operator (�k

i )(3) is a unit operator. The collision operator in
Eq. (2) can be simplified as �k

i = (�k
i )(1), and one can rewrite
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Eq. (1) as

f k
i (x + eiδt ,t + δt ) = f k

i (x,t) − f k
i (x,t) − f

k,eq
i (x,t)

τk

(k = R or B) (A1)

with f
k,eq
i given by Eq. (8). Introducing the Chapman-Enskog

expansion

f k
i (x + eiδt ,t + δt ) =

∞∑
n=0

εn

n!
Dn

t f
k
i (x,t), (A2)

f k
i =

∞∑
n=0

εnf
k,(n)
i , (A3)

∂t =
∞∑

n=0

εn∂tn , (A4)

where ε = δt and Dt ≡ (∂t + ei · ∇), the following equations
are obtained up to second order in the parameter ε:

O(ε0): f
k,(0)
i = f

k,eq
i , (A5)

O(ε1): Dt0f
k,(0)
i = − 1

τk

f
k,(1)
i , (A6)

O(ε2): ∂t1f
k,(0)
i +

(
1 − 1

2τk

)
Dt0f

k,(1)
i = − 1

τk

f
k,(2)
i , (A7)

where Dtn ≡ (∂tn + ei · ∇). Note that one can use the following
solvability conditions for f

k,(n)
i (n = 1,2, . . .):∑

i

f
k,(n)
i = 0,

∑
i

f
k,(n)
i eiα = 0, (A8)

and the conditions for the equilibrium distribution function
f

k,eq
i are ∑

i

f
k,eq
i = ρk,

∑
i

f
k,eq
i eiα = ρkuα,

∑
i

f
k,eq
i eiαeiβ = ρkuαuβ + pkδαβ, (A9)

∑
i

f
k,eq
i eiαeiβeiγ = 1

3
ρkc

2(uαδβγ + uβδαγ + uγ δαβ),

where pk is defined by Eq. (10).
The zeroth- and first-order moments of Eq. (A6) lead to

∂t0ρk + ∂α(ρkuα) = 0, (A10)

∂t0 (ρkuα) + ∂β(ρkuαuβ + pkδαβ) = 0. (A11)

The moments of Eq. (A7) lead to

∂t1ρk = 0, (A12)

∂t1 (ρkuα) +
(

1 − 1

2τk

)
∂β�

k,(1)
αβ = 0, (A13)

where �
k,(1)
αβ = ∑

i f
k,(1)
i eiαeiβ is the first-order momentum

flux tensor and can be calculated by

�
k,(1)
αβ =

∑
i

f
k,(1)
i eiαeiβ = −τk

∑
i

eiαeiβDt0f
k,eq
i

= −τk

{
∂t0 (ρkuαuβ + pkδαβ)

+ ∂γ

[
1

3
ρkc

2(uαδβγ + uβδαγ + uγ δαβ)

]}

= −τk

[
−∂γ (ρkuαuβuγ ) + 1

3
ρkc

2(∂αuβ + ∂βuα)

]

−τk

[
1

3
c2 − (

ck
s

)2
]

[uα∂βρk + uβ∂αρk

+ ∂γ (ρkuγ )δαβ],

= −1

3
τkρkc

2(∂αuβ + ∂βuα) + O(Ma3), (A14)

where Ma is the Mach number, given by Ma = u/cs . In the
above result, the terms of O(Ma3) should be neglected in order
to be consistent with the small-velocity expansion of f

k,eq
i up

to O(Ma2). Hence, Eq. (A13) becomes

∂t1 (ρkuα) + ∂β

[
c2

3

(
τk − 1

2

)
(∂αuβ + ∂βuα)

]
= 0. (A15)

Combining the zeroth- and first-order results together with
∂t = ∂t0 + ε∂t1 , we can obtain the macroscopic governing
equations as

∂tρk + ∂α(ρkuα) = 0, (A16)

∂t (ρkuα) + ∂β(ρkuαuβ + pkδαβ)

= ∂β

[
c2

3

(
τk − 1

2

)
δt (∂αuβ + ∂βuα)

]
, (A17)

which are the exact continuity and momentum equations for
single-phase flows if the kinematic viscosity νk is expressed
as Eq. (12) in each single-phase region.

[1] S. O. Unverdi and G. Tryggvason, J. Comput. Phys. 100, 25
(1992).

[2] D. Juric and G. Tryggvason, J. Comput. Phys. 123, 127 (1996).
[3] G. Tryggvason, B. Bunner, A. Esmaeeli, D. Juric, N. Al-Rawahi,

W. Tauber, J. Han, S. Nas, and Y.-J. Jan, J. Comput. Phys. 169,
708 (2001).

[4] C. Hirt and B. Nichols, J. Comput. Phys. 39, 201 (1981).
[5] W. J. Rider and D. B. Kothe, J. Comput. Phys. 141, 112

(1998).

[6] D. Gueyffier, J. Li, A. Nadim, R. Scardovelli, and S. Zaleski,
J. Comput. Phys. 152, 423 (1999).

[7] J. E. Pilliod Jr. and E. G. Puckett, J. Comput. Phys. 199, 465
(2004).

[8] S. Osher and J. A. Sethian, J. Comput. Phys. 79, 12 (1988).
[9] M. Sussman, E. Fatemi, P. Smereka, and S. Osher, Comput.

Fluids 27, 663 (1998).
[10] S. Osher and R. P. Fedkiw, Level Sets Methods and Dynamic

Implicit Surfaces (Springer, Berlin, 2003).

046309-13

http://dx.doi.org/10.1016/0021-9991(92)90307-K
http://dx.doi.org/10.1016/0021-9991(92)90307-K
http://dx.doi.org/10.1006/jcph.1996.0011
http://dx.doi.org/10.1006/jcph.2001.6726
http://dx.doi.org/10.1006/jcph.2001.6726
http://dx.doi.org/10.1016/0021-9991(81)90145-5
http://dx.doi.org/10.1006/jcph.1998.5906
http://dx.doi.org/10.1006/jcph.1998.5906
http://dx.doi.org/10.1006/jcph.1998.6168
http://dx.doi.org/10.1016/j.jcp.2003.12.023
http://dx.doi.org/10.1016/j.jcp.2003.12.023
http://dx.doi.org/10.1016/0021-9991(88)90002-2
http://dx.doi.org/10.1016/S0045-7930(97)00053-4
http://dx.doi.org/10.1016/S0045-7930(97)00053-4


HAIHU LIU, ALBERT J. VALOCCHI, AND QINJUN KANG PHYSICAL REVIEW E 85, 046309 (2012)

[11] X. Yang, A. J. James, J. Lowengrub, X. Zheng, and V. Cristini,
J. Comput. Phys. 217, 364 (2006).

[12] R. Scardovelli and S. Zalesk, Annu. Rev. Fluid Mech. 31, 567
(1999).

[13] X. He, S. Chen, and R. Zhang, J. Comput. Phys. 152, 642 (1999).
[14] H.-Y. Chen, D. Jasnow, and J. Viñals, Phys. Rev. Lett. 85, 1686
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