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Analytical solutions of drying in porous media for gravity-stabilized fronts
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We develop a mathematical model for the drying of porous media in the presence of gravity. The model
incorporates effects of corner flow through macroscopic liquid films that form in the cavities of pore walls, mass
transfer by diffusion in the dry regions of the medium, external mass transfer over the surface, and the effect of
gravity. We consider two different cases: when gravity opposes liquid flow in the corner films and leads to a stable
percolation drying front, and when it acts in the opposite direction. In this part, we develop analytical results
when the problem can be cast as an equivalent continuum and described as a one-dimensional (1D) problem.
This is always the case when gravity acts against drying by opposing corner flow, or when it enhances drying
by increasing corner film flow but it is sufficiently small. We obtain results for all relevant variables, including
drying rates, extent of the macroscopic film region, and the demarkation of the two different regimes of constant
rate period and falling rate period, respectively. The effects of dimensionless variables, such as the bond number,
the capillary number, and the Sherwood number for external mass transfer are investigated. When gravity acts
to enhance drying, a 1D solution is still possible if an appropriately defined Rayleigh number is above a critical
threshold. We derive a linear stability analysis of a model problem under this condition that verifies front stability.
Further analysis of this problem, when the Rayleigh number is below critical, requires a pore-network simulator
which will be the focus of future work.
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I. INTRODUCTION

During the drying of a porous medium, initially fully
saturated by a volatile liquid, evaporation gives rise to a number
of liquid-gas interfaces. These are located in pore bodies,
that define the percolation front [Fig. 1(d)], but also reside
in the cavities and corners along the pore walls in the form of
macroscopic liquid films, which develop as the bulk liquid-gas
menisci recede in the pore space [Figs. 1(b)–1(c)]. The
movement of these interfaces is controlled by the combined
action of capillary, gravity, and viscous forces.

As in all drainage processes, fluid transport through the liq-
uid films is an important transport mechanism. Films provide
hydraulic connectivity between liquid-saturated regions that
may appear to be macroscopically disconnected [1,2]. Such
flows are induced by capillarity and driven by changes in the
curvature of the liquid-gas menisci [3,4]. These macroscopic
films should be clearly distinguished from thin films that
develop on flat surfaces of the pore walls as vapor molecules
are absorbed due to van der Waals forces. Liquid flow through
the latter thin films, as well as mass transfer by diffusion in
the film region, has been shown to be negligible compared to
corner flow in the cavities through macroscopic films [5].

Recent drying studies have suggested that macroscopic
films provide hydraulic connectivity even at late times when
a significant amount of the liquid has evaporated [6–8]. If the
films reach the external surface S of the medium, wicking
action keeps the surface at least partially wet. As more films
get detached, the liquid content at the surface progressively
decreases. However, the surface remains saturated with the
evaporating species, even at small liquid content (liquid satu-
ration), provided that the thickness of the external mass transfer

boundary layer is sufficiently larger than the characteristic pore
size of the medium [9]. Under such conditions, the process is
controlled by mass transfer through the boundary layer and
characterized by a constant drying rate [the constant rate period
(CRP) regime], which may last up to very late times [8,10].

At a certain length, liquid films cannot sustain capillary flow
over increasingly larger lengths and they become detached
[6,11–13]. Then, a completely dry region (absence of bulk
liquid and corner flow through macroscopic films) develops
between the evaporation front and the external surface. Drying
is now controlled by diffusion through this dry region and the
evaporation rate starts decreasing signaling the onset of the
falling rate period (FRP) [Fig. 1(d)].

Previous studies have explored in detail various mathemati-
cal models of drying, including those based on a pore-network
representation of the porous medium (developed by Fatt
[14]). These have progressed from simple percolation models
[15,16], to models that include corner film flow [17,18], and
more recently those incorporating the effect of an external
mass transfer boundary layer [10]. Absent has been the effect
of gravity, which in many applications can play an important
role. Indeed, in recent experiments [19–21] it was found
that incorporating gravity in drying is necessary to match
the experimental results. It is the objective of our work to
address the effect of gravity in the drying of porous media and
quantities such as film extent, film thickness, and drying rates.

In this paper we develop the mathematical formalism to
incorporate the effect of gravity. This can be stabilizing or
destabilizing, depending on the orientation of the porous
medium [stabilizing when gravity opposes corner flow in the
films (and thus drying) and destabilizing in the opposite case,
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assuming sufficiently strong buoyancy]. We provide analytical
solutions for relevant quantities when gravity opposes drying
and investigate the sensitivity to dimensionless variables, such
as the bond number, the capillary number, and the Sherwood
number. Attention is paid to drying curves and the conditions
that mark the transition between the constant (CRP) and the
falling rate (FRP) periods. When gravity enhances corner
film flow, an equivalent 1D continuum can still apply if
a critical threshold for an equivalent Rayleigh number is
exceeded. We derive such a condition and infer its validity
by a simplified stability analysis. For the more general case,
a detailed pore-network is needed. This is a subject for future
research [21].

II. MODEL FORMULATION

As in our previous studies [10,11,17], we postulate the
following [Fig. 1(d)]: An external mass transfer boundary layer
over the external surface S of the porous medium (sometimes
referred to as the product surface), where the evaporating
species is purged; an innermost region of pores, fully occupied
by liquid (liquid saturated region); and intermediate regions
containing pores partly occupied by liquid films (film region)
or not occupied at all (dry region), depending on the extent of
the process. The interface between the fully occupied and film
pores is typically a percolation front (which in the presence
of gravity can be determined using invasion percolation in the
presence of a stabilizing or a destabilizing gradient [22,23]
depending on the orientation). Gravity modifies both the
morphology of the percolation front, as well as the extent
of the film region by either enhancing or opposing corner flow
in the films. To understand its effects we consider that the
full problem can be cast as a 1D equivalent of drying from a
material bearing the geometrical characteristics of capillaries
with noncircular (i.e., rectangular) cross sections. This allows
for the modeling of corner flow in the form of films that develop
as the bulk liquid-gas meniscus recedes deeper in the pore
space [Figs. 1(a)–1(c)] [19].

Within the film region the dominant mass transport mecha-
nism is corner liquid flow through the films [5]. The films are
then parametrized by the radius of curvature of the liquid-gas
menisci r(x,t) along their length from the product surface
S [11], taken at ξ = 0, to the percolation front, taken at
an average position ξp < 0. Under capillary equilibrium, the
excess pressure in the film is

Pl = −γ /r, (1)

where γ is the interfacial tension and flow is unidirectional
along direction x and described by a Poiseuille-type law [3,4]

Qx = −C∗r4

μβ

(
∂Pl

∂x
− ρlgx

)
. (2)

Here μ is viscosity, gx is the gravity component, ρl is density,
β is the dimensionless flow resistance [3], C∗r2 is the cross
sectional area of the liquid film and C∗ is a shape factor that
expresses the area available for fluid flow in the corners of the
capillaries. For the case of a square cross section C∗ = 4 − π .
While valid for any gravity orientation [21], this paper will
be restricted only to the case when the x direction is aligned
with the gravity vector, namely gx = ±g. Taking into account

Eq. (1), the above can be rewritten as

Qx = −C∗γ
3μβ

∂r3

∂x
+ C∗r4

μβ
ρlgx. (3)

The mass balance for the evaporating species along the
capillary is

∂V

∂t
= −∂Qx

∂x
− Qev, (4)

where V = C∗r2, Qev = −(2πrDM/ρl)Ce/r0[∂ζ/∂n]
is the evaporation rate in a cross section of the capillary,
r0 is the average size of the capillary in the cross section,
DM is the molecular diffusivity, Ce is the equilibrium
mass concentration, and ζ = C/Ce is the dimensionless
concentration. n is the normal to the interface and the brackets
denote an average over the dimensionless concentration
gradient at the interface. The above expression will not be
used further, however. In the following we will focus on two
distinct macroscopic regions: one in which the gas phase is
practically saturated by vapor and transport is through film
flow only, and another ahead of the film region, where the pore
space is completely dry and the transport is by diffusion in
the gas phase only. A macroscopic mass balance will connect
the two regions.

In dimensionless notation, this further reads

2Caf

C∗ρl

πCe

∂ρ

∂τ
= 1

ρ

∂2ρ3

∂ξ 2
− 3Box

ρ

∂ρ4

∂ξ
− 2Caf (1 − ζ ) (5)

where we introduced the dimensionless film thickness ρ =
r/r0 (not to be confused with the density notation), length ξ =
x/r0, and time τ = tDM/r2

0 , and we defined the dimensionless
capillary and bond numbers

Caf = 3βπμDMCe

C∗γρlr0
, Bo = ρlgr2

0

γ
. (6)

In our notation, the x direction is always taken from the
inside of the porous medium toward the external surface,
therefore Box = −Bo corresponds to evaporation from the
top (gravity-opposed drying), while Box = Bo corresponds to
evaporation from the bottom (gravity-enhanced drying).

Proceeding with the conventional quasi-steady-state as-
sumption and also considering that evaporation practically
occurs only near the film tip (due to the saturated gas phase
along the capillary) [11,17], the mass balance simplifies to

∂qx

∂ξ
= ∂2ρ3

∂ξ 2
− 3Box

∂ρ4

∂ξ
= 0. (7)

The above formalism can also be generalized (e.g., to a pore
network). Its continuum equivalent reads

∇2

(
ρ3 − 3Box

∫ ξ

0
ρ4dξ

)

= −3Box

(
∂2

∂u2

∫ ξ

0
ρ4dξ + ∂2

∂ω2

∫ ξ

0
ρ4dξ

)
, (8)

where u = y/r0 and ω = z/r0. When the right-hand side of
Eq. (8) is negligible, as in the specific case here of a 1D

046308-2



ANALYTICAL SOLUTIONS OF DRYING IN POROUS . . . PHYSICAL REVIEW E 85, 046308 (2012)

FIG. 1. Schematics of drying from a capillary with a noncircular (i.e., square) cross section with the top side open to the ambient environment
(a)–(c). The capillary is initially filled with a volatile liquid up to a certain height (a) (contact angle not shown here). As the liquid evaporates,
the liquid-gas interface recedes in the capillary forming a meniscus, while liquid films develop at the corners of the capillary. Initially, the film
tips reach up to the initial position of the liquid-gas interface (b). At later times, the film tips depin from their initial position and they recede
deeper in the capillary following the movement of the bulk meniscus (c). Also shown in (d) later times of the more general drying problem
from a porous medium bounded by an external mass boundary layer of thickness d over the product surface S. The pores can be classified in
analogy with the single capillary problem as: (i) completely dry (dry region) where mass transfer is by diffusion only, (ii) pores invaded by the
gas phase that contain liquid films at the pore walls (film region) where mass transfer is primarily through corner film flow, and (iii) pores that
are fully saturated by the liquid phase (liquid saturated region). The evaporation front (film tips), ξi , is located at the interface between the dry
and film regions. The percolation front, ξp , is located at the interface between film and liquid saturated regions. Lengths are in dimensionless
notation.

continuum, we can write

∇2

(
ρ3 − 3Box

∫ ξ

0
ρ4dξ

)
= 0, (9)

the 1D equivalent of which is Eq. (7). Checking the validity of
this assumption in the pore-network simulations is a subject
for future research [21].

In the dry region (where ρ = 0), the mass balance at steady
state is the Laplace equation

∇2ζ = 0. (10)

For convenience and following earlier works, diffusion is also
assumed to apply within the external mass transfer boundary
layer [9,10] as well. However, these results also apply to a
convective boundary condition, as discussed further below.
Finally, continuity of mass fluxes at the film tips (evaporation
front in Fig. 1) reads at steady state

∂ρ3

∂n
= Caf

∂ζ

∂n
, (11)

where n denotes outer normal.
We proceed as in previous works [11,17] and develop a

solution uniformly valid over both film and dry regions by
defining the auxiliary variable

� = ρ3 − 3BoxI + Caf ζ

1 + Caf

, (12)

where

I =
∫ ξ

0
ρ4dξ. (13)

This satisfies the Laplace equation over both the film and dry
regions as required

∇2� = 0 (14)

and it is continuous with continuous fluxes at the yet-to-be-
determined evaporation front [Eq. (11)]. Equation (14) is then
to be solved subject to the following boundary conditions.

(i) At the percolation front (ξ = ξp � 0), we have saturated
conditions, ζ = 1, ρ = 1, hence

� = �p ≡ 1 − 3BoxI (ξp)

1 + Caf

. (15)

(ii) At the top of the mass boundary layer outside the porous
medium (ξ = d), we have ζ = 0, ρ = 0, hence

�0 = 0. (16)

The unknown position of the film tips is the place where ρ = 0
and ζ = 1, hence

� = �i ≡ Caf

1 + Caf

. (17)

Finally, at the product surface S (ξ = 0) mass flux continuity
applies

∂�

∂ξ

∣∣∣∣
S−

= λ
∂�

∂ξ

∣∣∣∣
S+

, (18)

where λ > 1 is the ratio of external to effective internal
diffusivities. At the same place � is discontinuous early in
the process. Namely, when the films reach the product surface,
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FIG. 2. (Color online) Plot of the auxiliary variable � vs the
dimensionless depth of the porous medium ξ in the 1D problem. The
product surface is located at ξ = 0, the percolation front at ξp < 0
(not shown here) and the film tips at ξi < 0, where �(ξi) = Caf /(1 +
Caf ). The red line (�) shows a solution for early times when ξp > ξpc,
the film tips reach the product surface S, and � is discontinuous there.
The blue line (◦) shows a solution for later times when ξp � ξpc, the
films have detached from S, and � is continuous there.

they have a finite thickness ρ∗ > 0 on the porous medium side
of the surface S–,hence �(S−) = ρ∗+Caf

1+Caf
, and zero thickness

(ρ = 0) just over the surface S+, �(S+) = Caf

1+Caf
. After the

detachment of the films, however, � becomes continuous at
ξ = 0.

The 1D solution of Eq. (14) is straightforward: � is linear
in ξ subject to the above conditions. Schematics of such a
solution are shown in Fig. 2 for the two different cases of the
film condition at the product surface S. We proceed therefore
by considering the two different cases, when gravity opposes
or enhances drying, respectively.

III. GRAVITY-OPPOSED DRYING, Box = −Bo � 0

Consider, first, the case when gravity opposes drying
(Box = −Bo and evaporation is from the top). The percolation
front is at ξp � 0 and the film tips at ξi � 0 (where ξi � ξp).
Here and in the material below, we assume that the percolation
front has not reached the bottom boundary of the medium,
located at ξ = ξb. This will be relaxed later.

At early stages the films are attached to S (ρ∗ > 0 at
ξ = ξi = 0). As drying proceeds, ρ∗ decreases, and when ξp

reaches a critical value ξpc (when ρ∗ = 0), the films detach.
From that point on, the position of the evaporation front recedes
within the pore space, ξi < 0, while a growing dry region
forms below the product surface, ξi < ξ � 0, where gas-phase
diffusion is the controlling process.

A. Films terminate at product surface, ξ p > ξpc

When the films end at the external surface S of the porous
medium, � is discontinuous there,

�(S−) = ρ∗3 + Caf

1 + Caf

, �(S+) = Caf

1 + Caf

. (19)

It is straightforward to show that the solution of Eq. (14) for
� is

�(ξ ) = Caf

1 + Caf

(
d − ξ

d

)
for 0 < ξ � d, (20)

�(ξ ) = �p + λCaf

1 + Caf

(
ξp − ξ

ξp

)

= �(S−) + Caf

1 + Caf

(−λξ

d

)
for ξp � ξ < 0.

(21)

In this regime the mass flux is independent of time and constant

−∂�

∂ξ

∣∣∣∣
S+

= Caf

d(1 + Caf )
≡ �i

d
. (22)

This defines the CRP regime, which lasts as long as the films
stay connected to the surface. The film thickness is obtained
by differentiating Eq. (12) and taking ζ = 1

dρ3

dξ
+ 3Boρ4 = (1 + Caf )

∂�

∂ξ

∣∣∣∣
S−

= −λCaf

d
. (23)

This can be integrated once∫ ρ

ρ∗

3ρ2dρ( λCaf

d
+ 3Boρ4

) = −ξ. (24)

For compactness we will also use the hypergeometric function
2F1(a,b; c; z) to represent the above integral [24]∫ z

0

3u2

a + 3bu4
du = z3

a

[
2F1

(
1,3/4; 7/4; −3

bz4

a

)]
. (25)

The thickness of the film is thus

ρ3

[
2F1

(
1,3/4,7/4,

−3Bod

λ Caf

ρ4

)]

− ρ∗3
[

2F1

(
1,3/4,7/4,

−3Bod

λ Caf

ρ∗4
)]

= −λ Caf

d
ξp,

(26)

while the dependence of ρ∗ on the position of the percolation
front ξp can be obtained through

2F1

(
1,3/4,7/4,

−3Bod

λ Caf

)

− ρ∗3
[

2F1

(
1,3/4,7/4,

−3Bod

λ Caf

ρ∗4
)]

= −λ Caf

d
ξp.

(27)

The end of the CRP is at the critical detachment position ξpc,
obtained by setting ρ∗ = 0 in the above

−λ Caf

d
ξpc = 2F1

(
1,3/4,7/4,

−3Bod

λ Caf

)
. (28)
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Note that the external mass transfer variable occurs in the
combination λ/d. It is not difficult to show that more generally
it represents an equivalent mass transfer coefficient across the
boundary layer. Indeed, if the flux condition at the surface was
based instead on a convective mass transfer coefficient h (e.g.,
Flux = hCS+), it can be readily shown that

λ

d
= Sh ≡ hr0

Deff
(29)

where we defined a Sherwood number Sh for the external
mass transfer using the pore length r0 and the effective internal
diffusivity Deff as the characteristic quantities. We remark that
because we used the characteristic pore size above, the so-
defined Sherwood number would usually take small values.
From this point on we will use without loss the equivalence
between Sh and d/λ.

It is also worth noting that the explicit effect of Bo
can be removed from the above by rescaling all lengths
by −Box = Bo > 0: Then by defining ξ̂ = Boξ , Eq. (24)
becomes independent of Bo∫ ρ

ρ∗

3ρ2dρ

(τ + 3ρ4)
= −ξ̂ , (30)

where we introduced the single dimensionless parameter

τ ≡ ShCaf

Bo
. (31)

One can view τ as an equivalent Rayleigh number Raev =
Caf

Bo = 3πβ

C∗
CeDMν

ρlgr3
0

for evaporation in the presence of buoyancy

(i.e., τ = RaevSh) where ν = μ/ρl is viscous diffusivity (as
also in the case of miscible fluids [25]). In this notation, the
equivalent of Eq. (27) is

2F1

(
1,3/4,7/4,

−3

τ

)
− ρ∗3

[
2F1

(
1,3/4,7/4,

−3

τ
ρ∗4

)]

= −τ ξ̂p (32)

and that of the detachment time ˆξpc is

ξ̂pc = − 1

τ

[
2F1

(
1,3/4,7/4,

−3

τ

)]
. (33)

Figure 3 shows profiles of the film thickness ρ∗ just below the
product surface S– as a function of the rescaled position of the
percolation front ξ̂p for different values of τ . The inset of the
same figure shows ρ∗ vs the position of the percolation front
ξp for the corresponding values of Box and a fixed value of the
capillary number Caf . As expected, the film thickness at the
product surface decreases as the percolation front recedes in
the pore space, higher values of Bo corresponding to shorter
films (due to stronger buoyancy) and earlier detachment times
(smaller values of the magnitude of ξp).

Figure 4 shows the critical rescaled position of the percola-
tion front ξ̂pc as a function of τ . The figures demonstrate that
smaller capillary and Sherwood numbers lead to longer films.
The critical percolation front location ξpc is a slowly increasing
function of τ . An asymptotic analysis of the corresponding
Eq. (33) shows that at sufficiently large times, namely large
values of −ξ̂pc

−ξ̂pc ∼ Jτ−1/4, (34)

2000 1500 1000 500 0
0.0

0.2

0.4

0.6

0.8

1.0

Ξp

Ρ

8 6 4 2 0
0.0

0.2

0.4

0.6

0.8

1.0

Ξp
Ρ

FIG. 3. (Color online) Film thickness ρ∗ at the surface vs the
rescaled position of the percolation front ξ̂p for various values of
τ ; τ = 0.1 (�), τ = 0.01 (�), τ = 0.001 (©). Inset shows the film
thickness at the surface ρ∗ vs the position of the percolation front
ξp for the corresponding values of Box ; Box = −0.001 (�), Box =
−0.01 (�), Box = −0.1 (©) when Caf = 0.001 and Sh = 0.1. The
critical detachment time ξpc for each case is found when ρ∗ = 0.

where the algebraic constant J can be expressed in terms
of the gamma function J = 3− 3

4 �(1/4)�(3/4) 	 1.462. This
behavior is also demonstrated in Fig. 4. The magnitude of

10 6 10 5 10 4 0.001 0.01 0.1 1

1

2

5

10

20

50

Τ

pc

FIG. 4. (Color online) Log-log plot of the rescaled critical
detachment position −ξ̂pc vs τ . The dashed line of slope − 1

4
corresponds to the asymptotic prediction of Eq. (34).
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the percolation front position is used as a proxy for time. Its
specific relation to time will be discussed in a later section.

B. Films terminate inside the porous medium, ξ p � ξpc

When the films have detached from S, the evaporation front
is at ξi < 0. Now the variable � is continuous at ξ = 0 (Fig. 2)
and we have

�(ξ ) = �i

(
d − ξ

d − λξi

)
= �p

(
d − ξ

d − λξp

)
for 0 � ξ � d,

(35)

�(ξ ) = �i

(
d − λξ

d − λξi

)
= �p

(
d − λξ

d − λξp

)
for ξp � ξ � 0.

(36)

The drying flux remains proportional to the gradient of � and
from Eq. (35) we get

−∂�

∂ξ

∣∣∣∣
+

= �i

d − λξi

. (37)

Now the drying rate decreases as ξi decreases.
As before, the film thickness ρ is the solution of

dρ3

dξ
+ 3Boρ4 = (1 + Caf )

∂�

∂ξ

∣∣∣∣
−

= − ShCaf

1 − Shξi

(38)

or

∫ ρ

0

3ρ2dρ

Sh Caf

1−Shξi
+ 3Boρ4

= ξi − ξ (39)

and in compact notation,

ρ3

[
2F1

(
1,3/4,7/4, − 3ρ4Bo

1 − Shξi

ShCaf

)]

= ShCaf

1 − Shξi

(ξi − ξ ). (40)

By taking ρ = 1 at ξ = ξp, we obtain ξi as a function of ξp

2F1

(
1,3/4,7/4, − 3Bo

1 − Shξi

ShCaf

)
= ShCaf

1 − Shξi

(ξi − ξp).

(41)

With the percolation front location as a proxy for time, we
can determine all relevant variables, including the location of
the film tips ξi , as well as the film thickness profiles over ξ .
However, in this regime the effect of Bo cannot be simply
rescaled out as before, except for the critical percolation time.
Indeed, by using the rescaled notation, the above become

ρ3

[
2F1

(
1,3/4,7/4, − 3ρ4 Bo − Shξ̂i

Boτ

)]

= Bτ

Bo − Shξ̂i

(ξ̂i − ξ̂ ), (42)

and

2F1

(
1,3/4,7/4, − 3

Bo − Shξ̂i

Boτ

)
= Boτ

Bo − Shξ̂i

(ξ̂i − ξ̂p).

(43)

The profile for ρ as a function of ξ is plotted in Fig. 5 for
various values of the dimensionless numbers Bo and Caf .
The familiar cubic dependence as the film tip is approached
is evident [11]. For larger values of Bo, the liquid films
become shorter as buoyancy forces increasingly dominate over
capillary forces and the films detach from the product surface
earlier [Fig. 5 (left)]. The effect of Caf is demonstrated in
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0.2
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0.6
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Ρ
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Ξ

Ρ

FIG. 5. (Color online) (Left) Film profile ρ vs ξ for a fixed position of the percolation front ξp = −1000 (ξp � ξpc) for different values of
the bond number; Box = −0.1 (©) and Box = −0.01 (�) when Caf = 0.001 and Sh = 0.1. (Right) Film profile ρ vs ξ for the same fixed
position of the percolation front for different values of the capillary number; Caf = 0.1 (©), Caf = 0.01 (�), and Caf = 0.001 (�) when
Box = −0.01 and Sh = 0.1.
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FIG. 6. (Color online) The rescaled spatial extent of the film
region ξ̂i − ξ̂p as a function of the rescaled position of the percolation
front ξ̂p for different values of the parameter τ and Bo/Sh = 0.01;
τ = 1 (�), τ = 0.1 (©), τ = 0.01 (�). The dashed lines correspond
to the asymptotic dependence of Eq. (44) at large values of −ξ̂p .

Fig. 5 (right), with smaller values of Caf leading to longer
films as capillarity dominates over viscosity supporting liquid
flow over longer distances in the porous medium. This results
in later detachment times and a longer CRP that eventually
leads to faster drying of the medium.

Figure 6 shows the rescaled extent of the film region ξ̂i − ξ̂p

as a function of the rescaled percolation front position ξ̂p for
various values of the dimensionless parameter τ . All curves
collapse to the same curve at early times, but increasingly
deviate later, when the two fronts appear to be separated by
only a slowly varying distance, which is the film region extent
and which is smaller as τ is larger. An asymptotic analysis of
Eq. (43) shows that at sufficiently large times, namely −ξ̂p 

1, we have

−ξ̂p ∼ Caf

J 4
(ξ̂i − ξ̂p)4 = τBo

ShJ 4
(ξ̂i − ξ̂p)4, (44)

which is apparent in Fig. 6.
Before closing this section we note that the previous

analysis must be modified when the percolation front reaches
the lower boundary. Then the bulk liquid region, providing
liquid for the films, no longer exists and the remaining fluid
is contained only in the film region. The boundary condition
corresponding to the percolation front must now be replaced by
its counterpart � = (ρ3

b + 3BoIb + Caf )/(1 + Caf ) at ξp =
ξb and the control parameter for evaporation is either the film
thickness ρ∗ at ξ = 0 or the thickness ρb at ξ = ξb. Again
we need to distinguish two cases, depending on whether
the films detach from the product surface prior to or after
the percolation front reaches the bottom of the medium.
In the first case, where ξb � ξpc, Eq. (42) is still valid provided

we set ρ = ρb at ξ = ξb, hence

ρ3
b

[
2F1

(
1,3/4,7/4, − 3ρ4

b

Bo − Shξ̂i

Boτ

)]

= Boτ

Bo − Shξ̂i

(ξ̂i − ξ̂b). (45)

In the second case, where ξb > ξpc, it is Eq. (26) that is valid
with ρ = ρb at ξp = ξb

ρ3
b

[
2F1

(
1,3/4,7/4, − 3

ρ4
b

τ

)]

− ρ∗3

[
2F1

(
1,3/4,7/4, − 3

ρ∗4

τ

)]
= −τ ξ̂b. (46)

The corresponding expression for the flux, ∂�/∂ξ , remains
the same as do the evaporation rate expressions.

C. The drying curve

We proceed now by determining the drying curve. The
dimensional drying rate is obtained from its dimensionless
counterpart through the solution for variable �

�̇ = −DMr2
0 Ce(1 + Caf )NyNz

Caf

d�

dξ

∣∣∣∣
S+

, (47)

where N denotes size. Its constant value at the onset of the
process during the CRP will be used to normalize all rates

�̇CRP = DMr2
0 CeNyNz

1

d
, (48)

hence

E = �̇
�̇CRP

= 1

1 − Shξi

= Bo

Bo − Shξ̂i

. (49)

This provides a direct relationship between drying rates and
the position of the film tips ξi , and through the relationship of
the latter to the percolation front position ξp. To connect the
variables to the process time, we will derive expressions for
the overall liquid volumetric content, which we will denote
as the liquid saturation, Sres. This is the combined sum of the
bulk liquid in the pores below the percolation front and that
contained in the liquid films. The bulk fluid contribution is
4(ξp − ξb) assuming ξp � ξb. The amount in the films Sf is
obtained by integrating the cross sectional area of the film
region ξi − ξp, which is proportional to ρ2, hence

Sf = −C∗
∫ ξp

ξi

ρ2dξ. (50)

During the CRP we have

Sf = C∗
∫ 1

ρ∗

3ρ4dρ

ShCaf + 3Boρ4

= C∗

Bo

[
1 − 2F1

(
1,1/4,5/4, − 3

τ

)]

− ρ∗ C∗

Bo

[
1 − 2F1

(
1,1/4,5/4, − 3

τ
ρ∗4

)]
, (51)
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while following detachment (during the FRP),

Sf = C∗
∫ 1

0

3ρ4dρ
ShCaf

1−Shξi
+ 3Boρ4

= C∗

Bo

[
1 − 2F1

(
1,1/4,5/4, − 3

τE

)]
, (52)

where we used Eq. (49). The overall liquid saturation, Sres, is

Sres = 4(ξp − ξb) + Sf

−4ξb

. (53)

The above equations relate implicitly the position of the
percolation front ξp to the remaining liquid saturation. The
relation to time results from the mass balance

dSres

dt
= −E. (54)

The above are valid before the percolation front reaches
the bottom of the medium. After that condition is reached,
the film thickness is obtained from Eqs. (45) and (46) and a
similar procedure can be applied. For simplicity, details will
be omitted.

The drying curve is a plot of the normalized evaporation
flux E versus the liquid saturation Sres. By using the previous
expressions we construct the plots shown in Fig. 7 that
demonstrate the shape of the drying curve for different values
of Bo and fixed values of Caf and Sh. The curves show a

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

S

E

FIG. 7. (Color online) Dimensionless drying rate E as a function
of the liquid saturation Sres for different values of the bond number
[Box = −0.1 (red-dashed line); Bx = −0.01 (blue-dotted line);
Box = −0.001 (green-dot-dashed line); Box = −0.0001 (orange-
continuous line)] for Caf = 0.01, Sh = 0.1, and ξb = −1000. The
smaller the effect of gravity, the longer the CRP. The curves
correspond to a solution where the films detach from the product
surface before the percolation front reaches the bottom of the medium,
namely when ξpc � ξb. Note the difference in the curves at lower bond
numbers as the bottom boundary is approached.

clear CRP, where E = 1, at early times (higher values of liquid
saturation Sres) that lasts until the films detach from the product
surface S (when the percolation front reaches ξpc). The plot
shows that the CRP is shorter for higher values of the bond
number that corresponds to stronger buoyancy effects within
the films. After that time, the drying rate decreases rapidly as
a completely dry region of increasing extent develops between
the evaporation front ξi and the product surface. This regime
corresponds to the FRP. A last regime occurs at very low
residual saturations, when the percolation front reaches the
bottom of the medium, and the bulk liquid has evaporated.
This regime corresponds to the shrinking of the liquid films
and is particularly evident for higher values of Bo. It is also
interesting to note that the dimensionless drying rate E has
a value slightly greater than zero at the limit Sres → 0 that
corresponds to an evaporation front ξi located exactly at the
bottom of the medium ξb, namely Emin = 1

1−Shξb
.

Of importance is the critical saturation Sc
res when the CRP

regime ends, namely when the surface film thickness becomes
ρ∗ = 0 for the first time. Its value depends on whether the films
detach from the surface before (ξb � ξpc) or after (ξb > ξpc) the
percolation front has reached the bottom boundary ξb. After
calculations, omitted for simplicity, we find

Sc
res,1 = 1 + 1

τ ξ̂b

[
2F1

(
1,3/4,7/4, − 3

τ

)]

− C∗

4ξ̂b

[
1 − 2F1

(
1,1/4,5/4, − 3

τ

)]
, (55)

in the first case, and

Sc
res,2 = −BoSf

4ξ̂b

= −C∗ρb

4ξ̂b

[
1 − 2F1

(
1,1/4,5/4, − 3ρ4

b

τ

)]
,

(56)

where ρb is given by

ρ3
b 2F1

(
1,3/4,7/4, − 3ρ4

b

τ

)
= −τ ξ̂b (57)

in the second. As expected, if the medium is infinitely long,
the critical saturation is equal to 1. Figure 8 shows the critical
saturation for various values of τ for this case. As expected
the critical saturation parameter is a strong function of τ .

IV. GRAVITY-ENHANCED DRYING, Box = Bo > 0

A. 1D predictions

The previous analysis was developed under the condition
that gravity opposes liquid flow through the films where a 1D
effective continuum solution is valid. This may not necessarily
be the case when film flow is enhanced by gravity (Bx > 0).
Under this condition and for sufficiently strong buoyancy, both
the percolation and the evaporation front are likely to become
unstable, mass transfer through the porous medium will not
be sufficiently fast to balance gravity and establish a quasi-1D
regime, and the films will remain at the product surface for very
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FIG. 8. (Color online) Critical saturation Sc
res vs parameter τ when

the films detach before the percolation front reaches the bottom of the
medium (ξ̂b < ξ̂pc) for various values of ξ̂b; ξ̂b = −20 (�), ξ̂b = −10
(�), ξ̂b = −5 (©). From the solution of Eq. (55).

long times leading to longer CRPs and a faster recovery of the
liquid. In the case, however, that gravity is not so strong, it is
possible that mass transfer can be sufficiently fast to convect
the gravity-draining liquid through the films and establish
a flow regime that can be approached with the previous
methods.

To determine if such a regime exists we consider the 1D
analysis of the previous section for Box > 0. In this case films
will stay at the product surface S provided that a solution of
the following equation, which is the counterpart of Eq. (24)
for Box > 0, exists:

∫ 1

ρ∗

3ρ2dρ

ShCaf − 3Boρ4
= −ξp. (58)

Clearly, a necessary condition is that the integral does not
diverge, which is satisfied if

ShCaf > 3Bo ⇒ τ > 3. (59)

This condition is favored by stronger viscous forces (compared
to gravity) and faster mass transfer in the dry region and over
the product surface. Then, a solution to Eq. (24) exists and
can be computed as in the previous sections. The resulting
surface film thickness ρ∗ at the surface as a function of the
percolation front position ξp is shown in Fig. 9 for the case
of gravity-enhanced drying (Box > 0), and the cases of zero
gravity (Box = 0) and gravity-opposed drying (Box < 0). The
solution for ρ∗ = 0 gives the critical position of the percolation
front ξpc. Larger values of Box lead to later detachment times
and evidently longer CRPs.
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FIG. 9. (Color online) Film thickness ρ∗ as a function of the
position of the percolation front ξp for the case of gravity-enhanced
drying, Box = 0.0001 (�), when gravity is neglected, Box = 0 (�),
and when it opposes drying, Box = −0.0001 (©). The CRP lasts
longer when Box > 0 as expected. Caf = 0.01, Sh = 0.1.

After the films detach, and always under the condition of
Eq. (59), their thickness is obtained through equation

∫ ρ

0

3ρ2dρ( ShCaf

1−Shξi
− 3Boρ4

) = ξi − ξ. (60)

As the magnitude of ξi increases, however, the above integral
will diverge when the following condition is approached

−ξis =
(

τ
3 − 1

)
Sh

or H = πβ

C∗
DMCeν

ρgr2
0

− D

λ
, (61)

where H = (−ξis)r0 and D = dr0 are the dimensional position
and boundary layer thickness, respectively. This implies that
the evaporation front will become stationary at that location.
Inspection of Eq. (61) shows that this location consists of two
competing terms; one due to gravity involving τ , which does
not depend on surface tension, and another corresponding to
external mass transfer. Under the condition that diffusivity
within the medium and viscous forces are strong enough to
balance gravity, or that external mass transfer is not very
strong, films will detach and their tips will stabilize at a fixed
location. Such behavior is indeed demonstrated in Fig. 11. The
location of the evaporation front ξi reaches a stationary state
at sufficiently large values of time (position of the percolation
front ξp) (inset of Fig. 11). It is interesting to note that the
film thickness profile in Fig. 10 is qualitatively different from
that of gravity-opposed drying. The film thickness becomes
almost constant and equal to unity away from the film tips,
and decreases rapidly to zero as that position ξi is approached.
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FIG. 10. (Color online) Plot of the film thickness ρ vs ξ̂ for the
case of gravity-enhanced drying when Bo/Sh = 0.1, Caf = 1 and
ξ̂p = −8. The film thickness remains practically constant and equal
to unity along the entire length of the film region, except very close
to the film tips ξ̂i , where it decreases sharply to zero.

This practically implies that the flow through the films is driven
by gravity, rather that capillarity-induced pressure gradients,
since the term ∂r3

∂x
	 0 in Eq. (3).

The above analysis suggests that when the evaporation front
reaches the stationary state, the drying curve should exhibit a
second period of constant drying rate (following the initial
CRP and FRP) when the dimensionless drying rate becomes
equal to E = 3

τ
. This behavior is indeed demonstrated in

Fig. 11.

B. Linear stability analysis of buoyant instability of an
evaporation front

While the previous analysis showed that a stationary front
for the film tips is possible for a percolation front that
continuously recedes deeper in the pore space, it cannot
indicate whether it is in fact stable. To verify its stability we
consider a somewhat simpler approach in the absence of films,
as shown in right side of Fig. 12. In this model, liquid (darker
gray) drains downward due to gravity in a porous medium of
porosity φ and permeability k. At a finite location z = −H , it
evaporates and then diffuses through the medium (lighter gray
region) toward the outside of the medium where it is purged at
the mass boundary layer (white region). The concentration of
the liquid vapors is zero at z = D. We will find the stationary
states of this process and their stability.

Here we introduce the following dimensionless notation,
where all lengths are normalized with H , concentration with
Ce, pressure with ρgH , fluid velocity with kρg/μ, and
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FIG. 11. (Color online) Drying curve for the unstable case, Box >

0, under the condition τ > 3. The curve clearly exhibits two CRP
regimes: an early one that lasts until the films detach from the product
surface S–and a late one that occurs when the condition of Eq. (61)
is satisfied. Caf = 1.0, Box = 0.01, Sh = 0.1, and ξb = −180. Inset
shows the corresponding position of the evaporation front ξi as a
function of the position of the percolation front ξp . The stationary
state solution for ξi corresponds to the solution of Eq. (61).

time with φHμ/kρg. The evaporation front is considered at
location

ϒ ≡ z − f (y,t). (62)

The relevant dimensionless Darcy’s law, continuity and diffu-
sion equations are respectively

�u = −�∇p + �i, (63)

�∇ · �u = 0, and (64)

∇2ζ = 0, (65)

where �i is the unit vector in the downward direction.
At the interface the liquid pressure is assumed zero (equal

to the surrounding constant gas pressure and in the absence
of capillary or surface tension effects) and the mass balance
reads

un + Rak
∂ζ

∂n
= φvn ≡ −ϒt/| �∇ϒ |, (66)

where Rak = CeDMν

ρlgkH
is analogous to the above-defined number

for evaporation in porous medium and vn is the normal
component of the interface velocity. At the product surface
z = 0, we have continuity of concentration and mass fluxes,
and at z = ds , ζ = 0.
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FIG. 12. (Color online) (Left) Dispersion relation of the linear stability analysis for various values of Rak and λ = 1; ds = 1. Rak = 0.8
(©), Rak = 1 (�), and Rak = 1.3 (�). For Rak > 1 the condition of Eq. (73) is always fulfilled. (Right) Schematic of the process for the
linear stability analysis of an evaporation front in the presence of gravity with Box > 0. Liquid (darker gray region) drains downwards due to
gravity and evaporates at position z = −H . It then diffuses through the porous medium and the mass boundary layer (lighter gray regions).
The concentration of the liquid vapors is zero at z = D.

The properties of the stationary state are easily derived;

f = −1; p0 =
(

1 − λRak

λ + ds

)
(z + 1);

ζ0 = 1 − λ(z + 1)

λ + ds

; −1 < z < 0; (67)

ζ0 = ds − z

λ + ds

; 0 < z < ds.

Importantly, this state requires that the liquid viscous flow rate
is balanced by evaporation and diffusion into the surroundings.
Expressed in terms of dimensional variables this condition
reads

H = DMCeν

kρg
− D

λ
. (68)

Note the similarity of Eq. (68) to those of the stationary
evaporation front, Eq. (61). Again, we note that the stationary
front consists of two counterbalancing terms, one due to
gravity and the other due to mass transfer. If gravity is
sufficiently small, namely when

ShRak
H

r0
> 1, (69)

then a balance and a stationary state exists within the porous
medium. The above condition is analogous to the condition
τ > 3, derived for the more general problem that accounts
also for the liquid films.

For a linear stability analysis, we next take small (ε)
perturbations at the front, of wave vector α and temporal
growth rate σ

f (y,t) = −1 + ε exp(iαy + σ t) (70)

and corresponding perturbations on the pressure and
concentration. These are substituted and linearized in

Eqs. (62) and (63) and the boundary conditions of Eq. (66).
After tedious calculations, we obtain the linears stability
dispersion relation for the rate of growth as a function of the
wave number

σ =
(

1 − λRak

λ + ds

)
α −

(
λRak

λ + ds

)

× sinh αds sinh α + λ cosh αds cosh α

sinh αds cosh α + λ cosh αds sinh α
α, (71)

which is plotted in Fig. 12. As can be shown analytically, the
long-wave (small wave number) (LW) limit is stable, whereas
the short-wave (SW) limit could be either stable or unstable

σLW = − λ2Rak

(λ + ds)2
; σSW =

(
1 − 2λRak

λ + ds

)
α. (72)

The condition for stability is therefore

2Rak > 1 + ds

λ
. (73)

Using Eq. (68) for H , the above reads

Rak > 0, (74)

which is always satisfied. We conclude, therefore, that if the
condition of Eq. (69) is satisfied, the evaporation front is stable.
By extension, we believe that the same applies to the general
case described in the previous section under the condition
τ > 3.

V. CONCLUSION

We have presented a mathematical model for the drying
of porous media that accounts for capillarity-induced flow
through liquid films, the effect of gravity on the extent of
the film region, and mass transport through an external mass
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boundary layer over the medium surface. By treating the
medium as a 1D continuum in the case when gravity opposes
drying, thus leading to a stable percolation front, we obtain
analytical expressions for all relevant variables, such as the
drying rates and the critical saturation that marks the transition
from the constant to the falling rate periods. Based on these
expressions, we study the effect of capillarity (expressed as
a film-based capillary number) and gravity (through the bond
number). In such cases, gravity opposes drying and leads to a
shorter CRP regime, shorter films, and reduction of the overall
drying rate. When gravity enhances film flow, the analytical
results are valid only when a suitably defined Rayleigh number
is sufficiently large to stabilize the front. This condition is
qualitatively similar to a condition obtained by considering
the linear stability analysis of a simpler 2D problem. We
find that in the latter case, there exists a solution where the

evaporation front reaches a stationary state, thus leading to a
second constant rate period regime that occurs after the films
detach from the medium surface. The detailed analysis of the
destabilizing case will be the subject of a pore-network study
to be presented, along with supporting experimental results in
future work.
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